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Abstract

Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being
accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a
significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a
characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses
on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the
oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely
deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation
response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear
components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that
properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems
possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid
response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in
this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling.
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Introduction

Calcium oscillations regulate a number of processes in plants,

including the establishment of the legume/rhizobial symbiosis.

During this interaction, bacteria (called rhizobia) invade the plant

roots and are accommodated in membrane bound compartments

within plant cells of a specialized organ on the root: the nodule.

Within the nodule the bacteria convert atmospheric dinitrogen

into ammonia, a form of nitrogen readily available to the plant.

The availability of nitrogen is one of the most limiting factors for

plant growth and fixed nitrogen from the legume/rhizobial

symbiosis provides an essential nitrogen source for agriculture

and natural ecosystems.

The establishment of the legume/rhizobial symbiosis involves a

molecular communication between the plant and the bacteria,

with bacterially-derived Nod (nodulation) factor acting as a central

signal to the plant. Perception of Nod factor by legumes activates

most of the developmental processes associated with the formation

of a nodule. The Nod factor signal transduction pathway of

legumes has been well characterized and involves calcium

oscillations, termed calcium spiking. An example of calcium

spiking is given in Figure 1. Receptor-like kinases are involved in

the perception of Nod factor and this leads to induction of calcium

spiking via cation channels, that appear to regulate potassium

movement and components of the nuclear-pore complex [1]. This

signal transduction pathway has also been shown to function in the

establishment of a second symbiotic interaction: the mycorrhizal

symbiosis. This interaction involves the colonization of the plant

root by mycorrhizal fungi that aid the plant in the uptake of

nutrients from the soil. Mycorrhizal fungi have been shown to

activate calcium oscillations, but with a different structure to Nod

factor induced calcium spiking [2]. This suggests that the symbiosis

signaling pathway can be differentially activated by both rhizobia

and mycorrhizal fungi.

The nature of biological systems and the challenges inherent in

experimentation often result in seemingly erratic time-series

behaviour with little apparent structure. Despite advances in

signal processing methodology, the extraction of information from

such data remains a challenge. Erratic behaviour is often thought

to be the consequence of noise or stochastic effects, but apparent

randomness can also be generated by a deterministic system

operating in the chaotic regime. A universally accepted definition

of chaos is still outstanding, however, a number of key features are

held in common: A chaotic system is deterministic, nonlinear, and

highly sensitive to the initial conditions. The exponential

divergence of nearby trajectories implies that the predictability is
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limited to short time scales. Long-term forecasts become

impossible despite the underlying deterministic nature. Unpre-

dictable systems are frequently handled with the methods of

probability theory and termed stochastic.

Sophisticated techniques exist for distinguishing between linear,

nonlinear, deterministic, stochastic and chaotic systems. However,

disentangling experimental noise, stochastic effects, and underly-

ing deterministic laws is non-trivial and the initial data derived

from biological processes are not often of sufficient quality to allow

such analyses. Experimental investigations into calcium (Ca2+)

oscillations have frequently been accompanied by mathematical

modeling and a wide range of models exist (see [3] for an excellent

review of this topic). Questions, however, remain as the

mechanisms responsible for the Ca2+ signal en- and decoding

likely vary between organisms and are not fully understood.

For example, intracellular Ca2+ oscillations and Ca2+ spikes

have been modeled with chaotic systems [4,5,6], although

stochastic descriptions have been proposed for some of the ion

channels involved [7]. Initial chaotic models were inspired by the

bursting behaviour observed in experiments on hepatocytes

[8,9,10]. However, a later theoretical study has shown that an

example Ca2+ oscillatory system can only be modeled determin-

istically at physiological Ca2+ concentrations when bursting is not

taking place [11].

A recent study on Ca2+ oscillation data from hepatocytes, which

included bursting, led to the conclusion that calcium oscillations

were predominately stochastic in nature [12]. Time series data

from four cell types in mice and humans was used to show a

rapidly falling autocorrelation between Ca2+ spike intervals [13].

This was interpreted as evidence that Ca2+ spikes are initiated

stochastically. Further analysis revealed that the statistics of the

interspike intervals are in agreement with a stochastic model.

In plants, moreover, little is known about the secondary

messengers or calcium channels that may direct Nod factor

induced calcium spiking [14], also it is apparent that there are

major differences in the proteins that activate or perceive well-

characterized animal secondary messengers such as inositol

trisphosphate and cADPR [15]. Given these unknowns and

differences, we are reluctant to bias our analysis towards the

models and conclusions drawn from animal systems. Instead, a

more appropriate approach to understand Nod factor signaling is

to analyse the experimentally obtained calcium oscillations using

methods from nonlinear time series analysis. Using a series of

techniques, we demonstrate that Nod factor induced Ca2+

oscillations generated within the legume M. truncatula are

deterministic, nonlinear and show an exponential divergence that

is typical of chaotic systems. This observation suggested an

alternative explanation to a stochastic interpretation and prompt-

ed us to validate our methodology using negative and positive

controls. We generated time series using the chaotic Lorenz system

of differential equations and the chaotic Haberichter model of

Ca2+ oscillations. These models were tested alongside our

experimental data. We find that while both these positive control

data sets would be classified as chaotic using many classical

methods, they would be categorized as stochastic using the

methods employed in recently published time series analyses of

Ca2+ oscillations. Whereas stochastic modeling is often an effective

approach, the extrapolation from a modeling convenience to the

nature of observed phenomena is not without risk and interesting

phenomena may be overseen and/or ascribed to random effects.

We therefore take a number of precautions to present as thorough

an analysis as possible of the experimental Ca2+ oscillations.

Results

In the following we describe the results of a number of nonlinear

time series analyses. In order to check whether a stream of data

has arisen from a chaotic system, a number of tests must be carried

out. Definitive answers are rare unless the system of underlying

equations or map is known. Plotting system observables as a

Figure 1. Time series Nod1 given as an example of a raw Nod Factor induced Ca2+ spiking trace and after detrending using a
moving average (blue) and Empirical Mode Decomposition (red). The Y axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The X axis is time in seconds.
doi:10.1371/journal.pone.0006637.g001
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function of themselves at an earlier time gives rise to the return

map, which often appears as a simple curve for deterministic

systems. The shape of such a curve strongly indicates the

classification of the dynamics. This technique is in fact a form of

state space reconstruction, in which typical deterministic trajecto-

ries should establish themselves upon a low-dimensional attractor.

A further test is for exponential divergence and the calculation of

Lyapunov exponents, which if positive indicates chaos. These tests

are sensitive to noise, which is always present especially in

biological data, and hence rarely provide definitive answers. One

of the key steps for such analyses is proper embedding and the

determination of attractor dimensionality. Current approaches for

these steps work well for data with in the order of 2% noise but

perform unreliably for noisy data sets. Thus, we are limited in the

application of such methods and as a result could not determine

the dimensionality reliably, and the return map computations did

not produce convincing results. However, as can be seen in

Figure 2, the attractor does appear to unfold well in three

dimensions. Additionally, a number of tests did provide useful

results with a good confidence level. The following sections

describe the application of a number of different tests, which taken

together certainly do not prove but provide evidence for

chaos.

The results are described in two sections. The first section

provides accumulated evidence for chaotic behaviour in the Ca2+

time series in M. truncatula. In the second section, additional tests

allow a comparison to previous time series analyses that were

performed on Ca2+ oscillations in animals.

Evidence of Chaos?
We analysed the Ca2+ oscillations (Supporting Information

Experimental Data S1) by following the procedure illustrated in

the flowchart of Figure 3. The full time series are used and not just

interspike times. The time series of Ca2+ concentration were first

detrended using two different techniques, Empirical Mode

Decomposition (EMD) and a moving average (Figures S1, S2,

S3, S4, S5, S6, S7, S8, S9). Using EMD does not distort the shape

of the Ca2+ spikes and does not remove low frequency components

of the experimental signal. However, because the low frequency

components of the signal may not be significant, as an alternative

to EMD we also detrended the data using a moving average.

Each detrended Ca2+ spiking time series was tested for

nonlinearity using a nonlinear predictor and linear surrogates. If

nonlinearity was detected, a noise titration was used to test for

chaos and the Lyapunov exponent was calculated using a direct

method. The direct method calculates the maximal Lyapunov

exponent and inspection of the resulting divergence data can help

one to discern if the divergence of the system is due to chaotic or

stochastic effects. An indirect method was also used where multiple

nonlinear models were fitted to the experimental data and a

maximal exponent calculated for each model. The indirect

method gave a selection of Lyapunov exponents and if a clear

majority of well fitting models had positive exponents then we take

this as evidence that the divergence is more likely due to

deterministic chaos rather than stochasticity (Figure S12).

Nonlinearity, Noise Titration and Lyapunov Exponents
Evidence of chaos was suggested in the majority of traces (16 out

of 21) using a noise titration with the surrogates nonlinear test

(Table 1). Applied to linear autoregressive (AR) models fitted to

the experimental data, this test correctly identified forty true

negatives and only two false positives. In some cases, the results of

the experimental time series vary depending on the method of

detrending, with some (4 out of 10) EMD detrended time series

failing the test for nonlinearity.

The nonlinear surrogates test exhibits a length dependence and

so the shorter time series failed (Table 1). The nonlinear

predictability was computed for a long time series that was

steadily truncated to provide a comparison of p-value against series

length (Figure 4). The p-values do not consistently indicate

nonlinearity for times shorter than 400 samples.

An indirect method for maximal Lyapunov exponent calcula-

tion that fitted deterministic models to the Ca2+ time series, gave

positive exponents for all experimental time series except for Nod3

and Nod4. All negative controls correctly gave negative maximal

Lyapunov exponents.

 

Figure 2. Three dimensional embeddings of a time series of fluorescence ratios (Nod1) and the stochastic spiking model data for
comparison. A: The experimental series is clearly noisy, prohibiting accurate dimensionality determination, but it unfolds well to the eye in three
dimensions. B: The data from the stochastic spiking model, however, appears to cross itself in many places and coalesces, violating the uniqueness
property of ODE.
doi:10.1371/journal.pone.0006637.g002
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Since the majority of the traces passed a test for nonlinearity the

system can be considered nonlinear, justifying the application of

nonlinear noise reduction techniques. Once the experimental Ca2+

spiking traces were noise-reduced, a direct Lyapunov calculation

method was performed. The logarithm of the divergence of

neighbouring points in phase space against time revealed a clear

linear trend in the majority of the time series, indicating

exponential divergence. This is shown in Figure 5. Taking an

average gradient gave a Lyapunov exponent of 0.014 s21 for time

series detrended using a moving average and 0.013 s21 for time

series detrended using EMD.

Tests for comparison
Nonlinear System with Random Interspike

Intervals. Properties of the autocorrelation of interspike

intervals have been used to support the idea of stochastic spike

activation in four cell types from mice and humans [13]. In order

to compare our initial results, which tend to support the case for

determinism, with the stochastic hypothesis, the autocorrelation of

the intervals between maxima was calculated for two known

chaotic differential equations and an experimental Nod factor

Ca2+ spiking time series. For a purely random time series (white

noise) the autocorrelation is close to zero. This is depicted in

Figure 6 in which horizontal dashed lines mark the approximate

95% confidence interval for white noise. This confidence interval

is calculated as 61.96/!N, where N is the length of the series of

interspike intervals. Both the mathematical models and the

experimental data show a rapid drop in autocorrelation

indicating that successive intervals are not correlated. However,

the mathematical models act as positive controls revealing that the

drop in autocorrelation is not necessarily down to stochastic

effects.

It must be pointed out that nonlinear time series analyses cannot

provide a definite answer regarding the nature of spike activation

and interspike times in the system. We considered a nonlinear

deterministic model for the spike waveforms, with randomly

chosen interspike intervals. As expected, this signal clearly appears

nonlinear; however, it also appears chaotic using a noise titration.

This demonstrates that some conventional tests used to detect

chaos are unable to discern between purely chaotic systems and a

carefully designed deterministic spiking system with stochastic

activation. For this reason we use a number of different techniques

with the goal of presenting as thorough an analysis of the

experimental Ca2+ oscillations as possible. A direct Lyapunov

Figure 3. Flowchart of the tests run to gather evidence for
chaos. A summary of results on the left of the figure are after
processing with a moving average. The summary of results on the right
are after detrending with Empirical Mode Decomposition (EMD).
doi:10.1371/journal.pone.0006637.g003

Table 1. Stationary time series of Ca concentration with
lengths given by the number of samples.

Time Series Detrending Length # Spikes Zeroth
Noise
Titration%

Nod1 MA 500 31 0.01 16

EMD 500 34 0.01 16

Nod2 MA 400 36 0.01 25

Nod3 MA 700 45 0.01 23

Nod4 EMD 600 46 0.02 20

Nod5 MA 480 30 0.01 20

EMD 741 46 0.01 12

Nod6 MA 339 14 0.01 0

EMD 359 15 0.20 0

Nod7 MA 1058 46 0.01 9

EMD 1170 50 0.01 11

Nod8 MA 1100 55 0.01 15

EMD 1029 47 0.82 0

Nod9 MA 409 15 0.01 1

EMD 260 9 0.83 0

Nod10 MA 400 22 0.01 20

EMD 520 30 0.01 16

Nod11 MA 440 46 0.04 24

EMD 700 67 0.02 13

Nod12 MA 600 34 0.01 23

EMD 760 43 0.33 0

Stochastic
interspike

- 1000 73 0.01 34

The sample time is 5 seconds. The spikes column indicates the number of spikes
in the time series. P-values are given for the null hypothesis that each nod
factor time series was generated by a linear process. The p-values are calculated
by running the zeroth surrogates test, which was also used for a noise titration
to get a limit for the noise that could be added without destroying evidence of
nonlinearity.
doi:10.1371/journal.pone.0006637.t001
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calculation for the time series with stochastic interspike times does

not exhibit a clear exponential divergence. Figure 5 shows the

divergence to be of the form t1/a, characteristic of a randomly

perturbed deterministic system. The indirect method also indicates

that the majority of models fitted to the time series with stochastic

interspike intervals have a negative Lyapunov exponent.

Determinism
The results of determinism tests are somewhat subjective and

were therefore not used to support our conclusions. In contrast,

the findings from one such test have been used as evidence of

stochasticity in Ca2+ oscillations [12]. All traces obtained from our

experiments pass the three statistical tests for determinism

Figure 4. Semi-log plot of p-value against series length for a single time series that passes the zeroth surrogates test for
nonlinearity. Each p-value was calculated using 100 surrogates. Signs of nonlinearity are not detected until the length of series being tested is
greater than 400 samples. P-values do not drop to show significant nonlinearity, which is marked with a red line, until the time series is approximately
500 samples long.
doi:10.1371/journal.pone.0006637.g004

        
 

 

 

 

 

 

 

 

Figure 5. Semi-log plot of the average divergence ,dt. of the nearest neighbors of each point in the time series as a function of
time. The short term fluctuations are due to the periodicity of the signal, but the average distance clearly grows exponentially. The data points
pictured are for an embedding dimension of seven, and consistent values for the maximal exponent are achieved once the dimension is greater than
or equal to six. The exponent is 0.0142 for traces detrended with a moving average (A), and 0.0132 for EMD (B). These values are given by the slope of
the black dashed lines. For each trace, the exponent was computed as the average of three slopes: 1) the slope through local maxima; 2) the slope
through local minima; and 3) the slope through the average of local minima and maxima. The final value of the exponent was computed by
averaging over all traces. Computations were not done for traces Nod6 and Nod9 for either detrending because of the short series length. We remark
that the same computations for the stochastic spiking model give a semi-log plot of the form ,dt. , t1/A, indicating diffusive-like divergence.
doi:10.1371/journal.pone.0006637.g005
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proposed by Aparicio [16] without the use of noise reduction. A

negative control using random numbers fails the three determin-

ism tests.

We evaluated the Kaplan and Glass measure for determinism

on the Lorenz system and the Haberichter chaotic model of Ca2+

oscillations, both with 10% noise added to mimic the noise

estimated in the experimental data. This method is based on a

vector reconstruction of the attractor over a grid of 56 boxes. It

gives a determinism factor,
2
L, of

2
L= 1 for full determinism and

2
L= 0 indicates complete randomness. The Lorenz time series had

a determinism factor of
2
L= 0.88, and

2
L= 0.78 for the chaotic

spiking model. Both of these time series would be classed stochastic

using the criteria from other studies which required
2
L.0.9. More

than highlighting deficiencies of the Kaplan Glass test, these results

show the limitations in using only one metric to characterize noisy

data sets.

Discussion

Chaos is common in nature. For instance, the gravitational

three body problem can exhibit deterministic chaos and numerous

further examples exist for which chaotic behaviour have been

identified or suggested, ranging from the solar system, weather,

population dynamics, to Brownian motion and diffusion [17]. An

interesting example of the potential relevance of chaotic flexibility

has been discussed for human heart beats. It has been suggested

that normal heart behaviour might be chaotic and can thus

respond efficiently to perturbed conditions, whereas diseased

hearts are more stable in their frequencies and less able to make

necessary adjustments to stress [18]. However, chaos may also be

involved in the destabilisation of heart rhythms, as quasiperiodicity

and intermittency have been observed in the Ca2+ oscillations of

cultured cardiomyocytes degenerating into chaos-like behaviour

that would be fatal in-vivo [19]. Whether or not biological systems

such as the heart or brain are really chaotic is still the subject of

much debate and on-going research.

Using a range of techniques from nonlinear time series analysis

we have gained some evidence suggesting that the Ca2+ spiking in

the root hair cells of M. truncatula might be chaotic. We first

demonstrated that the majority of the time series show the Ca2+

oscillations to be nonlinear. To check for false positives we also

tested linear models fit to the experimental data. The two false

positives we obtained show that the test for nonlinearity can be

fallible in some cases, should not be considered absolute, but

nevertheless provides evidence of nonlinearity.

We then performed a test for chaos using the noise titration

technique. This test indicated that the majority of the Ca2+ time

series were nonlinear in the presence of additive noise. This can be

viewed as evidence of chaos [20]. Although the majority (19 out of

21) of the negative controls were correctly identified, the two false

positives from the nonlinear test also passed the noise titration.

Furthermore, a synthetically produced time series consisting of

deterministic spikes separated by stochastic interspike intervals - a

model that has been proposed for Ca2+ oscillations in animal

systems - was also classed as chaotic by the noise titration method.

Although this model is largely deterministic and nonlinear, it is not

chaotic. This demonstrates that classification using the noise

titration method should be done with caution.

Using a combination of an indirect method to compute the

probable sign of Lyapunov exponents and a direct method to

calculate the magnitude and type of the divergence, evidence of

chaos was revealed in the Ca2+ oscillations and controls without

any false positives. To our knowledge, this particular combination

of direct and indirect methods of Lyapunov exponent calculation

with the use of controls has not been used before.

In animals, the hypothesis that Ca2+ oscillations, experimentally

obtained from hepatocytes, originated from a deterministic system

was rejected [12]. The conclusion that these oscillations are

‘‘prevalently stochastic’’ was reached because one of two time

series failed a nonlinear test, and the one that passed had a

determinism score of
2
L ,0.9 as provided by a Kaplan-Glass

analysis. We have given two examples of chaotic oscillations that

fail to meet this criterian under similar noise conditions to the

experimental data being considered. The noise present in our

experimental data (around 10%), results in some of the individual

tests producing inconclusive answers, but the combination of all

results presents a stronger case which suggests that the oscillations

in M. truncatula are produced by a nonlinear, deterministic

system.

In order to understand the fundamental nature of seemingly

erratic calcium oscillations, the question of randomness or chaos

arises and needs to be sufficiently addressed. To indisputably

demonstrate stochasticity as a main driving mechanism in calcium

oscillations, determinism must be eliminated. This is a non-trivial

task for a number of reasons. Fundamentally, given that noise is

nearly always present and the high demand on data quality and

quantity for most non-linear techniques to work robustly, this

distinction between stochasticity, noise, and low-dimensional

chaos can rarely be achieved. Practically, the choice of

parameterisation is often known to be approximate and deviations

therefrom are called stochastic effects within the chosen frame-

work and reduced phase space. However, there now exists a

wealth of advanced tools and approaches from time series analyses

and dynamical systems theory, which can be employed to shed

light on the nature of experimental data and offer possible

interpretations. In accepting randomness too readily, the exciting

discovery of a biological system taking advantage of attributes of

chaotic motion would be missed and some of its most interesting

features labeled as chance occurrences.

A number of properties of dissipative chaotic systems make

them suitable for Ca2+ signaling. First, and perhaps counterintu-

itively, a theoretical study on Ca2+ oscillations has shown that both

the sensitivity to parameter perturbations and the capacity to

attune to a forcing frequency do not depend on the oscillations

being chaotic or regular [21]. This means that, despite the

sensitive dependence on initial conditions, chaotic systems can be

equally robust and flexible as regular systems in a highly variable

biological environment. While these statements are based upon

evidence from a particular model, they can be generalized.

Figure 6. Autocorrelation of cycle times for a Nod Factor time
series and two positive controls based on chaotic mathemat-
ical models. The X axis is the lag measured in number of samples
(sample time is 5 seconds). All time series show a rapid drop to within
the 95% confidence interval for white noise which is marked with
horizontal dashed lines and represents no identifiably repeating
patterns.
doi:10.1371/journal.pone.0006637.g006
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In non-conservative systems, chaotic trajectories are restricted

to lie upon either strange attractors or chaotic saddles. These two

cases represent sustained or transient chaos, respectively. The

saddles are hyperbolic, and as such they are structurally stable and

deform smoothly with parameters. Moreover, it has been shown

that the transient time spent tracing a chaotic saddle changes

slowly with increasing levels of noise [22]. The case of sustained

chaos is similar: strange attractors typically retain their shape

regardless of small parameter perturbation (except at crisis values).

Thus the trajectories that trace the attractors also maintain their

characteristic shape in noisy environments. The consequence is

that the patterns made by system observables – here the oscillating

Ca2+ level – can be robust despite fluctuations.

These qualities are advantageous to the symbiosis signaling

pathway under study, which has been shown to take part in two

important symbioses that are evolutionary separated by hundreds

of millions of years [2]. Each symbiosis leads to a different Ca2+

oscillation signature despite the use of common components. The

existence of the multiple steady states excludes the possibility that

the signaling pathway is a stationary, linear process.

The possibility that the system jumps from one attractor to

another in response to different input signals would have

important implications, but the capacity for dual signal generation

could also be a sign that the system is controlling chaos, i.e. the two

signals represent subregions of a larger chaotic set. The control of

chaotic motion, as originally proposed [23], utilizes that the state

of the system visits any neighborhood of periodic orbits of every

period. Tiny controlling effects can then be adeptly used to direct

the behaviour to any periodic motion. The concept has been

widely used in circuitry, lasers, chemistry, low-energy orbit design,

and even to direct the rhythms of the heart. In the case of Ca2+

oscillations one candidate for the source of the pertubations is

Ca2+ influx [24]. The control algorithm is attractive because of its

efficiency, and could be used here to maintain the periodicity of

the oscillations, to synchronize spatially separate components, or

to specify one of the two signals.

It remains to be discovered whether chaos control is being

harnessed for the efficient tuning of the Ca2+ oscillations or if

chaotic flexibility is an essential factor for signaling specificity.

Discovering further examples of nonlinearities and chaos within

the cell would have implications for the way we view the principles

of signaling pathways. One reason to suspect intracellular chaos is

simply that it can be produced rather easily by relatively few

strongly-interacting components, and it is common in many

natural systems. As has been shown for noise, biological systems

are capable of using common effects to its advantage. Given that

chaotic systems can indeed be robust, and that chaos control

enhances adaptability to environmental changes at less energetic

costs and with accurate targeting of desired behaviour, we find this

a fascinating speculation for biological signaling. It may come as

no surprise to learn that evolution could have beaten physicists to

the discovery that small perturbations can be efficiently used to

control chaotic systems [25,26].

Materials and Methods

In the following, we concisely explain the methods employed in

this study. For readers who are not familiar with nonlinear time

series analysis, we provide additional background in Supporting

Information Additional Background S1.

Time Series and Controls
We analysed time series data obtained from root hair cells of M.

truncatula treated with M Nod factor from S. meliloti. The nature of

the Ca2+ oscillations is comparable whether the plant is treated

directly with Nod factor or with S. meliloti [27], but for ease of

experimentation in this study we have chosen to use isolated Nod

factor. The changes in Ca2+ levels were measured using the ratio

of fluorescence from two dyes: Oregon Green that responds to

calcium levels with changes in its fluorescence and Texas Red that

is not responsive to calcium and provides a control for fluorescence

changes unrelated to calcium. These dyes were micro-injected into

root hair cells and fluorescence measured as described in [28]. The

intensity of the fluorescence was measured in individual cells at

five second intervals for a period of at least 60 minutes. Examples

of an unprocessed time series and detrended time series are given

in Figure 1.

Experimental time series from 9 cells, were analysed. After

detrending by two methods, splitting some time series according to

stationarity tests and removing one EMD detrended time series

due to nonstationarity, we were left with a total of 21 Ca2+ spiking

time series.

The comparison of the autocorrelation of interspike intervals

used two time series obtained from chaotic mathematical models

as positive controls. One of the positive controls was generated by

a model of Ca2+ spiking developed by Haberichter et al [6] and the

other by the well known chaotic Lorenz system [29]. Tests for

determinism used a time series generated with random numbers

obtained from http://www.randomnumbers.info/ as a negative

control. As negative controls for nonlinearity we produced two

time series, an instance of an autoregressive (AR) model, and a

surrogate [30], from each experimental time series (Figure S10).

To see the effects of a time series analysis on the type of system

suggested by [13], a simple nonlinear model with random

interspike intervals was tested.

Random Interspike Intervals
The following model was used to generate a synthetic time series

as a negative control. The model has a state SM{spike,release}, the

time since the last spike, t, total spikes n, and a set of interspike

intervals that follow a normal distribution, {a}, N(m,s):

xt~xt{1zk1 when S~spike ð1Þ

xt~xt{1zk2t when S~release ð2Þ

The model produces a linear spike followed by an exponential

decay. The state changes from spike to release when xt exceeds a

threshold value. Stochasticity is introduced by changing the state

from release to spike when t= ai. The shape of the spikes are

controlled by the constants k1 and k2.

Detrending
Cytoplasmic streaming causes relocalisation of the fluorescent

dye and this coupled to photobleaching causes noticeable Ca2+

independent changes in the overall fluorescence. The ratio of the

Ca2+ responsive dye, Oregon green, to the non responsive dye,

Texas red, reduces some of these non-specific fluctuations, but

does not remove all Ca2+ independent changes in fluorescence. To

remove these effects a moving average was taken and the result

subtracted from the time series [31]. The number of points in the

moving average was particular to each trace and was set to either

19 or 25 points. Changing the number of points gave control over

the type of features to be removed.
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The moving average is a linear method and can obscure non-

linearities within the signal. A further danger arises in that human

judgment of how many points to include in the moving average

may affect the final results. Because of this potential for bias, the

Nod factor induced spiking time series were also separately

detrended by Empirical Mode Decomposition (EMD) [32]. This

method of detrending deals more formally with the nonlinearity of

the time series and does not distort the shape of the Ca2+ spikes

[33], however like most automatic methods it is unable to apply

heuristic information and could fail to remove experimental

idiosyncrasies.

Stationarity
In order to detect possible parameter changes, such as

alterations in temperature, which could affect the period and

shape of the Ca2+ oscillations, a test for non-stationarity [34] was

run on each time series. Whenever there was evidence of a

parameter change, given by a cluster of p-values below 0.05 along

a section of the time series, the series was cropped before the

section showing the parameter change. The detrended time series

in Figure 1 were truncated in this way. The complete and

truncated time series are shown in the Supporting Information

(Figure S11).

Time Delay Embedding
The percentage of false nearest neighbours was graphed for

embedding dimension, m, where 2#m#10. The embedding

dimension m = 6 was chosen after reviewing all the traces for a

dip in the percentage of false nearest neighbours. This embedding

would be suitable for an attractor which has up to three

dimensions [35].

A delay time of fifteen seconds for the embedding was suggested

by three different methods: mutual information [35], a drop in

autocorrelation to (12
1

e
) [36] and considering time window length

[37].

Detecting Determinism
Recurrence quantification analysis [16] was run on the

detrended time series to detect determinism. The Kaplan Glass

test for determinism [38,39] was used on a grid of size five with a

six dimensional embedding to plot the average box vector length,
2
Ln, against the number of passes, n, and to calculate a determinism

factor
2
L.

Noise Reduction
When working with Ca2+ spiking traces, we found a

straightforward noise reduction method [40] was able to remove

the background activity and preserve the spikes in agreement with

qualitative inspection from experimentalists. The neighbourhood

size was chosen by inspecting autocorrelation plots of the removed

noise and cross-correlation plots of the noise against remaining

signal. We chose the largest neighbourhood size that combined

rapidly decaying autocorrelation with insignificant cross-correla-

tion.

Testing for Nonlinearity
The performance of a nonlinear predictor on experimental data

can be used to test for nonlinearity. These results were compared

against those obtained from numerically generated surrogate time

series [41]. This comparison resulted in a p-value for the null

hypothesis that the Ca2+ spiking time series is linear. Following

[41], if the p-value,0.05 the experimental time series was classed

as nonlinear and a noise titration was performed.

Noise Titration
Nonlinear tests can be used to detect chaos using a noise

titration technique [20]. The titration was used in conjunction

with the nonlinear test that utilised surrogates, as we found this test

more noise resistant than the test conventionally used with a noise

titration. Similiar observations have been reported by [41].

Direct Method for Maximal Lyapunov Exponents
The maximal Lyapunov exponent was calculated using a

method proposed by Rosenstein [36] suited to short time series of

lengths in the order of 1000 points.

Indirect Method for Maximal Lyapunov Exponents
The indirect method fitted many nonlinear models to each time

series. Each model had the form,

xn~f xn{1l , xn{21, . . . , xn{dlð Þze

where f is a function produced by fitting a neural network [42] to

the time series under study, d is the embedding dimension, l the

time delay and e is a noise term. Multiple models were fitted for

each value of d and l.

A Lyapunov exponent was then calculated from each fitted

model along with a Bayesian Information Criterion (BIC) to

describe how well each model fitted the data under test. The sign

of the Lyapunov exponent was determined by the sign of the

exponents for a majority of the fitted models with a lower BIC.

Computational Tools
Time series analysis was carried out with the Tisean package

[43], version 3.01, using the RTisean interface for the R statistical

environment [44] unless stated otherwise. The Empirical Mode

Decomposition was performed by a program provided by Patrick

Flandrin at ENS Lyon [45]. AR models were generated in R using

the Burg algorithm. The Kennel test of nonstationarity and

determinism tests were developed using R. The Lyapunov

exponents were computed directly using code provided by

Rosenstein [36]. The indirect Lyapunov exponents were calculat-

ed using the LENNS program version 1.0 [42].

Supporting Information

Experimental Data S1 The experimental calcium traces

Found at: doi:10.1371/journal.pone.0006637.s001 (0.10 MB ZIP)

Additional Background S1 We provide additional theoretical

background information on the computational methods as most

readers may not be familiar with the employed techniques. There

is no one good source for these methods and interested readers

would therefore have to consult a number of books and papers to

gather this information.

Found at: doi:10.1371/journal.pone.0006637.s002 (0.05 MB

TAR)

Figure S1 The Nod1 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series have been truncated to

make stationary.

Found at: doi:10.1371/journal.pone.0006637.s003 (0.12 MB EPS)

Figure S2 An original experimental time series (red), after

detrending with a moving average to produce Nod2 (green) and

Nod3 (cyan) and after detrending using EMD to produce Nod4

(purple). Y axis is a fluorescence ratio between Ca2+ sensitive and
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Ca2+ insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s004 (0.23 MB EPS)

Figure S3 The Nod5 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s005 (0.14 MB EPS)

Figure S4 The Nod6 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s006 (0.11 MB EPS)

Figure S5 The Nod7 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s007 (0.20 MB EPS)

Figure S6 The Nod8 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s008 (0.21 MB EPS)

Figure S7 The Nod9 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s009 (0.11 MB EPS)

Figure S8 The Nod10 time series (black), after detrending with a

moving average (blue) and after detrending using EMD (red). Y

axis is a fluorescence ratio between Ca2+ sensitive and Ca2+

insensitive dyes. The detrended time series were truncated to

obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s010 (0.18 MB EPS)

Figure S9 An original experimental time series (black), after

detrending with a mov- ing average to produce Nod11 (blue) and

Nod12 (cyan) and after detrending using EMD to produce Nod11

(red) and Nod12 (purple). Y axis is a fluorescence ratio between

Ca2+ sensitive and Ca2+ insensitive dyes. The detrended time series

were truncated to obtain long, stationary segments.

Found at: doi:10.1371/journal.pone.0006637.s011 (0.25 MB EPS)

Figure S10 Examples of an experimental time series after

moving average detrending (red), an AR model fitted to the

experimental data (green) and a surrogate time series (blue). Y axis

is a fluorescence ratio between Ca2+ sensitive and Ca2+ insensitive

dyes.

Found at: doi:10.1371/journal.pone.0006637.s012 (0.14 MB EPS)

Figure S11 Example of a time series truncated for stationarity. a)

The original time series is given in red and the time series, after

trunctation, is given in blue. b) The cluster of p -values (y axis) that

indicate nonstationarity when the entire series is analysed. c) The

results of the staionarity test after truncation. The red line marks the

p -value 0.05 which is used as a cutoff for clusters of non-stationary p

-values. When a a p -value is calculated that is ,0.05 it is marked

with a red dot.

Found at: doi:10.1371/journal.pone.0006637.s013 (0.29 MB EPS)

Figure S12 Examples of indirect Lyapunov exponents calculat-

ed for an experimental time series and an AR model used as a

negative control. The ‘L’ values indicate the delay time or lag that

was used for particular models and the points are only plotted for

the best fitting model for each dimension and lag.

Found at: doi:10.1371/journal.pone.0006637.s014 (0.22 MB EPS)
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