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Feature similarity is non-linearly related to attentional
selection: Evidence from visual search and sustained attention

tasks
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Although many theories of attention highlight the
importance of similarity between target and distractor
items for selection, few studies have directly quantified
the function underlying this relationship. Across two
commonly used tasks—visual search and sustained
attention—we investigated how target-distractor
similarity impacts feature-based attentional selection.
Importantly, we found comparable patterns of
performance in both visual search and sustained
feature-based attention tasks, with performance
(response times and d’, respectively) plateauing at
medium target-distractor distances (40°-50° around a
luminance-matched color wheel). In contrast, visual
search efficiency, as measured by search slopes, was
affected by a much more narrow range of similarity
levels (10°-20°). We assessed the relationship between
target-distractor similarity and attentional performance
using both a stimulus-based and psychologically-based
measure of similarity and found this nonlinear
relationship in both cases. However, psychological
similarity accounted for some of the nonlinearities
observed in the data, suggesting that measures of
psychological similarity are more appropriate when
studying effects of target-distractor similarities. These
findings place novel constraints on models of selective
attention and emphasize the importance of considering
the similarity structure of the feature space over which
attention operates. Broadly, the nonlinear effects of
similarity on attention are consistent with accounts that
propose attention exaggerates the distance between
competing representations, possibly through
enhancement of off-tuned neurons.

To prioritize the processing of relevant visual
information, we can direct attention toward a specific
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spatial location or visual feature, such as a specific
motion direction or color (Carrasco, 2011). Many
theories have emphasized that attentional selection

is based not only on aspects of the target, but that
the visual surroundings, such as distractor items,
influence selection (Duncan & Humphreys, 1989;
Geng & Witkowski, 2019; Lee & Geng, 2020; Wolfe &
Horowitz, 2004; Yu & Geng, 2019). One particularly
important dimension is the similarity between targets
and nontargets: selection is easiest when targets

are very different from distractors, and increases in
difficulty as they are made more similar to one another
(Duncan & Humphreys, 1989; Pashler, 1987; Treisman
& Gelade, 1980; Vighneshvel & Arun, 2013), which is
presumably driven by the degree of representational
overlap between target and distractor features. Thus,
to understand attentional selection of visual features,
and to develop and constrain models of attention, it is
important to characterize target-distractor similarities
across a wide range and well-sampled distribution

of feature values and to assess their influence on
attentional performance.'

Target-distractor similarity in visual search

Research into the relationship between attention
and target-distractor similarity has predominantly
relied on visual search paradigms. It has been argued
that similarity is a major factor that determines the
efficiency of search: when targets and distractors
are adequately distinct from one another, search
occurs rapidly in parallel, whereas when similarity
is high a more thorough, serial search is required to
identify the target (Buetti, Cronin, Madison, Wang, &
Lleras, 2016; Itti & Koch, 2000; Rosenholtz, Huang,
Raj, Balas, & Ilie, 2012; Treisman & Gelade, 1980;
Wolfe, 1994). Likewise, attentional engagement theory
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(Duncan & Humphreys, 1992, 1989) proposes a
“search surface,” with search efficiency monotonically
increasing—and response times decreasing—as the
similarity between targets and non-targets decreases”.
Consistent with this, research has shown that feature
similarity is coded in visual cortex, because the response
of visual neurons changes systematically as a function
of the similarity between a current stimulus and that
neuron’s preferred feature (Martinez-Trujillo & Treue,
2004; Treue & Martinez-Trujillo, 1999). Additionally,
neural recordings have demonstrated that attention
enhances responses to target features (Andersen,
Hillyard, & Miiller, 2008; Miiller, Andersen, Trujillo,
Valdés-Sosa, Malinowski, & Hillyard, 2006) and

can even suppress responses to distractor features
that are similar to the target (Stormer & Alvarez,
2014). Thus feature-based attention—and visual
search performance specifically—depend on the
ability for the visual system to separate target and
distractor representations to enable efficient target
selection.

Despite these theories clearly articulating the
necessity of understanding the similarity between target
and distractor stimuli, few studies have attempted
to systematically quantify the relationship between
similarity and attentional performance with high
resolutions. Of the literature that has measured
visual search performance while manipulating the
similarity between items, most rely on qualitative
or categorical distinctions, such as between color or
shape categories (Alexander & Zelinsky, 2012; Becker,
Folk, & Remington, 2013; Buetti, Xu, & Lleras, 2019;
Lleras, Wang, Madison, & Buetti, 2019; Ng, Buetti,
Patel, & Lleras, 2021; Reijnen, Wallach, Stocklin,
Kassuba, & Opwis, 2007). A few studies have assessed
a broader range of quantified feature values to be able
to describe the impact of target-distracter similarity
on performance in visual search tasks. For example,
Nagy and colleagues (Nagy & Cone, 1996; Nagy &
Sanchez, 1990) measured search time as a function
of the color difference between target and distractor
items, finding that performance improved log-linearly
for more similar items, before plateauing at higher
levels of dissimilarity. Another study assessed visual
search performance as a function of target-distractor
similarity using orientation and found that search
reaction times were best described as a sigmoid
function of the orientation difference between target
and distractor stimuli up until 45° of orientation
difference, after which performance plateaued (Arun,
2012). One study in pigeons measured visual search
performance using stimuli that differed in terms of
shape and size and found that pigeons’ search speed
was well predicted as an exponential decay function of
the similarity between target and distractor array items
(Blough, 1988). However, the generalizability of each
of these findings is limited, given that the number of
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distractors remained constant. Only one study, to our
knowledge, has measured search slopes as a function
of target-distractor similarity: Wolfe, Klempen, and
Shulman (1999) found that, in addition to faster search
response times, search slopes concurrently decreased
as a function of decreasing orientation similarity,
suggesting that both measures might index the efficiency
of search under manipulations of target-distractor
similarity. Together, these studies suggest that search
performance follows a nonlinear, roughly exponential
function of the similarity between targets and
distractors.

Feature similarity in sustained attention tasks

Other researchers have studied feature-based
attention using different paradigms, particularly
ones which require subjects to select a target
feature among spatially intermingled nontarget
features, and sustain attention to that feature for
an extended period of time (Andersen et al., 2008;
Martinez-Trujillo & Treue, 2004; Saenz, Buracas,

& Boynton, 2003). The main differences between
visual search tasks and these sustained feature-based
attention tasks is that while both depend on selecting
targets based on visual features, visual search also
contains a spatial component where attention is
directed to the location of the target feature once it
is detected. Thus, visual search performance is also
a function of the ability to use those features to
guide spatial attention to the target item (Andersen,
Miiller, & Hillyard, 2009; Shih & Sperling, 1996).
Thus, sustained attention tasks are useful to study
feature-based selection processes in isolation from
the spatial components of attention that are present
during visual search, and have been instrumental

in providing evidence for the spatially global nature
of feature-based attention (Chapman & Stormer,
2021; Saenz et al., 2003), as well as the neural effects
of selecting individual features independently of
location (Andersen et al., 2008; Andersen, Hillyard,
& Miiller, 2013; Saenz, Buracas, & Boynton, 2002;
Serences & Boynton, 2007; Stormer & Alvarez, 2014).
To our knowledge, there have been no attempts to
systematically evaluate the effects of target-distractor
similarity on performance in sustained attention
tasks and to compare variation in performance

to visual search tasks. In fact, visual search and
sustained attention tasks are largely used by separate
groups of researchers despite the same goal of
understanding and characterizing feature-based
attention (search: e.g., Buetti et al., 2016; Duncan

& Humphreys, 1989; Wolfe, Klempen, & Shulman,
1999; etc.; sustained attention: e.g., Andersen et

al., 2013; Martinez-Trujillo & Treue, 2004; Saenz

et al., 2003; etc.), Thus it is critical to understand
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how performance in these tasks is related and
potentially predicted by target-distractor similarities
to help bridge theories and findings across these two
literatures.

Stimulus-based and psychological similarity

Critically, previous studies (in particular visual search
studies that varied target-distractor similarity, e.g.,
Nagy & Sanchez (1990); Arun, 2012) operationalized
target-distractor similarities in terms of the stimulus
characteristics of a given feature space and assumed
a linear similarity function (measured in e.g., angular
distance in orientation or color space; hereafter referred
to as “stimulus-based similarity”). However, this misses
a critical issue: namely that similarity in a given stimulus
space does not linearly map on to the representational
similarity in our mind, which is globally exponential
(Shepard, 1987). To demonstrate this, consider
the color wheel in Figure 1D and the associated
psychological dissimilarity functions. The graph shows
psychological dissimilarity between colors as a function
of angular distance on a color wheel. The difference in
psychological dissimilarity between two colors 120° and
180° around the color wheel is negligible, whereas the
same 60° change from 30° to 90°, for example, produces
a massive change in psychological dissimilarity. Thus
psychological dissimilarity of features does not scale
linearly with distance along a color wheel, but is instead
exponential with respect to the target color in mind
(see also Schurgin, Wixted, & Brady, 2020). Indeed,

a rich body of work suggests that this psychological
similarity, defined based on psychophysical judgments
from observers rather than on the stimulus space itself,
captures aspects of performance across a wide range
of tasks (Shepard, 1987; Sims, 2018). In particular,
Shepard’s (1987) Universal Law of Generalization
predicts that the likelihood of a behavior being
generalized from one stimulus to another is an
exponential function of the psychological similarity
between them. In the case of visual search, for example,
the generalization in question is whether a distractor
stimulus is falsely “detected” as the target. To date,

no research has directly and independently assessed
the relationship between psychological similarity and
attentional selection. However, because attention
depends on the representational organization in sensory
cortices, it is critical to test how attentional selection
is constrained by psychological similarity, and not
just similarity in stimulus space. For example, it may
be the case that psychological similarity—commonly
described as a nonlinear, exponential function—can
in part explain the pattern of performance across
different target-distractor distances, which often

also appears to follow a roughly exponential
function.

Chapman & Stérmer

The current study

Thus in the current study we quantify how both
stimulus similarity and psychological similarity—
measured in an independent psychophysical
task—affect the efficiency of feature-based attentional
selection. The main question is whether nonlinearities
in psychological similarity can, at least in part, explain
behavioral nonlinearities observed in attention tasks.
If the efficiency of selection is driven by the perceived
similarity between items that compete for attention,
plotting performance as a function of psychological
similarity, rather than stimulus-based similarity, should
better capture the non-linear relationship. Critically,
we assess attentional selection across two different
tasks commonly used: visual search and sustained
feature-based attention, to generalize our results
and help bridge findings across different studies on
feature-based attention that have used one task or the
other. We use color as a test case and systematically
vary the stimulus-based similarity between target and
distractors as defined in degrees around a roughly
perceptually uniform color wheel (CIELab), commonly
used in attention and working memory studies, while
psychological similarity is empirically measured
using the same color space. Following previous
work (Schurgin et al., 2020), we assess psychological
similarity with independent perceptual tasks, using
maximum-likelihood difference scaling to model
the similarity structure among features (Maloney &
Yang, 2003). To measure attentional selection, we use
both visual search (Experiments 1a, 1b, Ic, 2) and a
sustained feature-based attention task (Experiment 3).
By comparing how target-distractor similarities affect
performance across different tasks, we can test theories
of attention more robustly, allowing for a more
generalizable understanding of the effects of feature
similarity on attentional selection.

In Experiment la, we assessed the effects of
stimulus-based and psychological target-distractor
similarity on visual search response times. On each
trial, participants saw a circular array of 8 colored
circles, and had to respond as quickly as possible when
they detected the target color, which was previewed
at the beginning of the trial. All colors were sampled
from a circular color space (Suchow, Brady, Fougnie,
& Alvarez, 2013), and the similarity between target
and distractor items was manipulated by varying the
angular distance between the colors.
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Figure 1. (A) Example of a visual search trial with a target stimulus among seven distractors 180° distant on the color wheel. Stimuli
and text not to scale. (B) Example of a quad similarity task trial. Participants were instructed to select which pair (top or bottom) were
least similar in color. (C) Example of triad similarity task trial. Participants were instructed to select which item (left or right) was most
similar in color to the center stimulus. (D) Psychological dissimilarity estimates from MLDS for Experiments 1a, 2 (online, quad
similarity task), and 3 (in-lab, triad similarity task). The CIELab color wheel used in the experiments is presented alongside this
function. For all experiments, psychological dissimilarity reached 50% at approximately 30° around the color wheel.
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Method

Participants

Sixty undergraduate students from the University
of California, San Diego subject pool participated in
this experiment for course credit. We excluded eight
participants whose average accuracy was below 70%
in either task, leaving a final sample of 52 participants
(44 women, six men, two did not report gender), aged
18 to 28 (M = 20.6 £ 1.6 years). This sample size was
determined based on the size of the effects observed in
previous studies (Becker et al., 2013; Buetti et al., 2016;
Ng et al., 2021), accounting for additional variance
introduced by online data collection, and provides a
posteriori power at 80% to detect a significant effect
of nf) >.219. For all experiments, participants gave
informed consent before starting the experiment as
approved by the Institutional Review Board at UC San
Diego.

Stimuli

Participants completed the experiment online on
their own personal computer. Stimulus sizes are given in
pixels, given that we had limited control over the display
size and viewing distance. However, the display size
was restricted to a minimum of 800 x 600 pixels, and
participants were instructed to complete the experiment
in full screen.

All colors were selected from a set of 360 equally
spaced equiluminant colors in the CIELab color space,
drawn from a circle with radius 49 units, centered at
L =54, a =21.5, b = 11.5. The visual search array
consisted of eight circles (80px diameter) arranged
evenly in a circle centered on fixation (10px diameter
filled black dot). Each search array item was positioned
260px from fixation. On each trial, the target color
was selected randomly from the full set of colors,
and the distractor was chosen relative to the target
based on the experimental condition (10°, 20°, 30°,
40°, 50°, 60°, 90°, or 180° from the target), therefore
varying the target-distractor similarity. Distractor
colors were equally often chosen by rotating the color
wheel clockwise and counterclockwise from the target
position. For the psychological similarity measurement,
two pairs of colored circles (140px in diameter) were
shown on the top and bottom of the display, and color
similarity between them was varied systematically.

Procedure

All participants completed the experiment online.
The order of the two tasks was determined randomly
at the time the experiment was loaded. In the visual
search task (Figure 1A), participants searched for one
pre-cued target item among seven distractor items.

Chapman & Stérmer

At the beginning of each trial, blank placeholders
(outlined circles with no color) were shown at each

of the eight array positions, and the upcoming target
color was cued by presenting a colored circle at fixation
800 ms. Immediately after the cue disappeared, each
search array location was filled with color (seven
distractor-colored items; one target-colored item). The
position of the target item was randomly determined
on each trial. Participants were instructed to locate the
target-colored item as quickly as possible and press the
space bar as soon as they had found it. As soon as they
responded, the color of each search item was removed
(leaving only the placeholders), and participants had
to click on the location at which they saw the target.
Participants completed 384 search trials, consisting of
48 trials of each target-distractor distance level in a
random order.

To measure psychological similarity between targets
and distractors, participants also completed a color
quad judgment task (Figure 1B; Maloney & Yang,
2003; Schurgin et al., 2020). Participants were shown
two pairs of colored circles, one pair on the upper half
of the display, one on the lower half. On each trial,
participants were instructed to indicate which pair was
least similar in color (“t” for the top pair, “b” for the
bottom pair). All items remained on the screen until
a response was made. For each pair, the difference
between their colors was separately manipulated across
trials (0°, 10°, 20°, 30°, 40°, 50°, 60°, 90°, 120°, or
180°; sampled without replacement on each trial). On
each trial, the color of one item was randomly drawn
from the color wheel, thus determining its paired item’s
color. The color of the other pair was determined by
centering them on the other side of the color wheel
(180° away), such that each pair spanned a distinct
section of the color wheel. The pairs were randomly
assigned to the top and bottom of the display, and each
item in the pair was randomly assigned to be presented
on the left or right. Participants completed 405 trials of
the similarity task, consisting of 9 repetitions of each
possible combination of color difference of the top and
bottom pairs.

Data Analysis

Data were analyzed using R (Version 4.1.0; R Core
Team, 2021) with the “tidyverse” package (Wickham,
Averick, Bryan, Chang, McGowan, Frangois,
Grolemund, Hayes, Henry, Hester, Kuhn, 2019).
Quad color similarity task: To calculate the
psychological similarity function, we used the
Maximum Likelihood Difference Scaling method
(Maloney & Yang, 2003; Knoblauch & Maloney,
2012). This method finds scaled values for similarity
across the colors tested that best predict a participant’s
accuracy in the quad task. Psychological similarity
functions were fit for each subject using GLMs
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(Knoblauch & Maloney, 2012) and scaled such that
dissimilarity was 0 at 0° (the target color) and 1 at 180°
(the most dissimilar color on the color wheel). Note
that this scaling is done to bring participants onto a
standard scale, as GLM estimates vary significantly
based on average accuracy in the similarity task.
However, psychological dissimilarity estimates show
consistent scaling regardless of what maximally
dissimilar stimulus pairs are presented.

Visual search task: To assess the effects of target-
distractor similarity, we conducted a repeated-measures
analysis of variance (ANOVA) on the natural logarithm
of visual search response time (RT), to better meet the
normality assumptions of the general linear model.
RTs were calculated from speeded responses to target
detection, and they were filtered to only exclude
incorrect identifications of the target location (4.6%

of trials) and RTs slower than 10 seconds or faster
than 200 ms (3.55% of trials). Follow-up pairwise
comparisons were conducted using false-discovery rate
(FDR) correction (« < .05).

Modeling of exponential functions: In addition to
standard repeated-measures analyses, we also fit
untransformed individual-subject RT data using
exponential functions. These functions took the form
RT = Ae~ L xdistance 4 I \where the three parameters A,
L, and F correspond to the model intercept (RT at a
distance of 0, adjusted for floor), the slope/steepness of
the exponential function, and floor RT, respectively. For
distance, we used both color distance in angles around
the color wheel and psychological color similarity,
estimated per subject from the quad similarity task
(both scaled so that distance was between 0-1).

Before modeling, RTs were filtered between 200 and
10000 ms and for correct trials and were scaled using
z-scores (we reversed this scaling post-modeling for

all visualizations). Models were fit using the function
nlmer from the R package “lme4” (v1.1-26; Bates,
Maechler, Bolker, & Walker, 2015), and initial models
included random effects for each model parameter per
subject. For Experiment 1, the final model excluded the
random effect of L, because it was highly correlated
with the other two random effects. These model fits help
visualizing the relationship between search performance
and our two similarity metrics.

Results

Performance on the similarity judgement task was
generally very high (M = 85.4%, SD = 5.6). We used
maximum-likelihood difference scaling (MLDS) to
transform responses on this task into an estimate of
psychological dissimilarity, representing participants’
perceived dissimilarity between colors as a function
of their distance around the color wheel. As expected,
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psychological dissimilarity gradually increased around
the color wheel and followed a similar non-linear,
roughly exponential shape as has been previously
reported (Schurgin et al., 2020). In particular, shown
in Figure 1D, psychological dissimilarity reached 50%
of maximum at a color distance of only 30° (i.e., 16.7%
of the maximum distance around the color wheel). In
other words, a target color (at 0°) relative to a color 30°
apart is equally dissimilar as colors 30° and 180° from
the target are, because they cover equal distances on the
y-axis.

In the visual search task, there was a main effect of
target-distractor distance on RT, F(7,357) = 199.93,
p < .001, njz, =.797, demonstrated in Figure 2A. RTs

declined steeply within the first few target-distractor
distances (i.e., 15° vs. 30°) and continued to decrease
with greater distance between target and distractor
color, until they flattened out at about 60° distance on
the color wheel, as evidenced by significant pairwise
comparisons of distances 10-40° compared to all
later distances, all p < 0.003. There was no difference
in RT for comparisons between 50° to 180°, all p >
0.117 (except that RTs were significantly faster at 60°
than 50°, p = 0.039). Thus search RTs were strongly
influenced by target-distractor distance around the
color wheel, but mainly for nearby distances.
Interestingly, although search times flattened out
completely at a color distance of 60°, the psychological
dissimilarity function only reached 75% by this distance
(Figure 1D), pointing to a non-linear relationship
between psychological similarity and visual search
performance. This non-linearity was confirmed
by plotting visual search RTs against participants’
psychological dissimilarity estimates (Figure 2B).
Because participants have different psychological
similarity estimates for each of the assessed color
distances, RTs cannot be directly compared across
fixed similarity levels as when using stimulus distance.
Following Blough (1988), we fit an exponential model
to our data, separately for target-distractor distance
and psychological dissimilarity. Exponential functions
fit the data well, both at the group (dashed lines
in Figures 2A and 2B) and individual subject level (see
Supplementary Figure S1), suggesting that visual search
performance was well described as an exponential
function of stimulus distance. Consistent with the
non-linear relationship between target-distractor
distance and psychological dissimilarity, the exponential
fits were less steep when fit with the dissimilarity
metric (target-distractor distance slope = 24.71, SE
= 0.76; psychological dissimilarity slope = 5.67, SE
= 0.13). Although model parameters could not be
compared directly, because of the nonlinear model
fitting approach, this suggests that psychological
dissimilarity accounts for a portion of the nonlinearity
in visual search RTs.
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Figure 2. Mean visual search response times in Experiment 1a as a function of (A) stimulus-based target-distractor distance around
the color wheel, (B) psychological dissimilarity, as measured with the quad color similarity task for each participant. Error bars are
within-subject SEM, whereas red dashed lines correspond to exponential model fits.

In Experiment la, the target color was randomly
selected on each trial, meaning that the function of
target-distractor distance we observed was averaged
across the entire stimulus space we used. If there are
inhomogeneities in the way that distance impacts
performance at different points around the color space,
such as the existence of categorical boundaries (e.g., the
boundary between “green” hues and “blue” hues) which
do not occur at consistent distances in CIELab space
(Bae, Olkkonen, Allred, & Flombaum, 2015; Fang,
Becker, & Liu, 2019), then the results of Experiment la
might not be representative of any single color. To
account for this possibility, we ran a version of the
visual search experiment in which each participant
was assigned to see one of six possible target colors
(arranged evenly around the color space) throughout
the entire experiment. If the effects of target-distractor
distance are dependent on the position in color space,
then this should be observable in the performance of
the different groups.

Method

Participants

One-hundred twenty-three undergraduate students
from the University of California, San Diego subject
pool participated in this experiment for course credit.

We excluded three participants who had an accuracy
lower than 70% in either task. The final sample of 120
participants (90 women; aged 18-25, M = 20.48 +

1.6 years) were randomly and equally assigned to one
of six experimental conditions (target colors evenly
spaced 60° around the color wheel; 20 per group). This
sample size provides 90% power to detect a main effect
of target-distractor similarity of nf, > .107, and an

interaction with target color of 1712, > .183.

Stimuli & procedure

The experiment was conducted similarly to
Experiment 1a, except participants now completed
visual search for the same target color on each trial.
Target color cues were still presented on each trial,
but this color remained the same throughout the
experiment. The possible target colors were positioned
at 0°, 60°, 120°, 180°, 240°, and 300° around the color
wheel used in Experiment la. These target colors
spanned the entire range of the color space and fell
in distinct color categories (red, orange, yellow, green,
blue, and purple, respectively). Participants performed
192 trials of the visual search task, 24 for each
target-distractor distance (10°, 20°, 30°, 40°, 50°, 60°,
90°, and 180°). Participants also completed 270 trials
of a color triad similarity task (Schurgin et al., 2020;
Torgerson, 1958), where they had to judge on each trial
which of two colors was most similar to their given
target color from the visual search task (see Figure 1C).
A circle in the target color was presented in the center
of the display, while the two other colored circles were
presented to the left and right of the target and their
colors were sampled on each trial (0°, 10°, 20°, 30°,
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40°, 50°, 60°, 90°, 120°, or 180°, relative to the target
color), and participants were instructed to select which
of the two colors was most similar to the target color.
Analyses of the similarity task data are presented in the
Supplementary Materials.

Data analysis

Analyses excluded trials with incorrect search
responses (2.9% of trials) or responses that were slower
than 10 seconds or faster than 200 ms (4.0% of trials).

Results

The results of this experiment are demonstrated
in Figure 3, which depicts the mean RTs separately for
each group as a function of target-distractor distance.
Model fits for each group are shown in Supplementary
Figures S3 and S4. Overall, we found a roughly similar
pattern of visual search performance across all groups
and when compared to the results of Experiment la,
though we also observed some differences between
target colors. We conducted an ANOVA with target
color as a between-subject factor and target-distractor
distance as a within-subject factor. Analyses revealed
a main effect of target-distractor distance, F(7,798)
= 373.61, p < 0.001, nf, = .742, consistent with the
decrease in visual search RTs with increasing distance
seen in Experiment la. There was also a main effect
of target color, F(5,114) = 3.49, p = 0.006, 1, =
.133, such that participants in some groups were on
average faster than in other groups. We also found a
small but reliable interaction between these factors,

2500
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Figure 3. Mean visual search RTs for each target color group in

Experiment 1b. Solid lines correspond to the mean RT for each

target-distractor distance, with each line drawn in its particular
target color. Error bars are omitted for visibility. Model fits can

be found in the supplement.
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F(35,798) = 3.19, p < 0.001, nf, = .032, suggesting
that different target colors were affected differently by
target-distractor distance. Because of the small effect
size of this interaction and the multiple cross-condition
comparisons that could be made, identifying the nature
of this interaction was not straightforward. However,
we performed simple one-way ANOVAs across target
color groups for each target-distractor distance level,
which showed that there were significant differences
across groups only at low-moderate distances of 10°

(» = 0.002), 20° (p < 0.001), and 30° (p = 0.024). For
40° onward, there were no significant differences across
the groups (all uncorrected p > .07). We also conducted
pairwise-comparisons across target-distractor distances
within each target color group, to assess the point at
which RTs did not significantly improve with increasing
distance. For two groups (target color 0° and 60°),
RTs were significantly faster from 10° through to 40°,
beyond which there was no improvement, whereas in
the other 4 groups there were significant improvements
in RTs up to only 30°. However, given that we had
much smaller sample sizes in each group compared to
Experiment la, this data may underestimate the RT
differences across conditions. When collapsed across
groups, we found that RTs were significantly slower
for 10°, 20°, and 30° compared to later distances (all p
< 0.002). Furthermore, RTs at 180° were significantly
faster compared to those at 40°, 50°, and 90° (p < 0.01;
marginally significant difference between 60° and 180°,
p = 0.053).

Because Experiment 2b was run between subjects,
we conducted a within-subject replication in which we
tested the same six target colors and target-distractor
distances of 10°, 30°, 60°, and 180°. We replicated the
main effect of differences among target colors only
at the low target-distractor distances (10° and 30°),
with slowest RTs for colors in the 0° to 60° range of
the color wheel (pinkish colors). There was no hint
of any differences at larger target-distractor distances
(i.e., 180°). The results of this additional Experiment 1c
are reported in detail in the Supplementary
Materials.

Thus, although we observed reliable differences
between target colors across these two experiments,
these were only present for small target-distractor
distances. Interestingly, pinkish colors (0°-60° around
this CIELAB color wheel) resulted in the largest RTs.
This is notable since previous work (Schurgin et al.,
2020), as well as our own data (see Supplementary
Figure S2) shows that psychological dissimilarity
increases slowest in this region of color space,
suggesting that colors 10° away from this point (e.g.,
red at 0°) are highly perceptually confusable and,
hence, have the slowest visual search RTs. Thus most
of the differences among different visual search target
colors appears to be driven by differences in perceptual
dissimilarity. Of most interest to the present study, the
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results of Experiment 1b and 1c demonstrate that the
general function of target-distractor distance is not an
artifact of averaging across trials with different target
colors, nor does performance depend on differences
across color categories.

Experiment 1 revealed a nonlinear relationship
between stimulus-based feature distance and visual
search response times, consistent with previous
theoretical and empirical work (Blough, 1988; Duncan
& Humphreys, 1989; Nagy & Cone, 1996; Nagy
& Sanchez, 1990; Wolfe & Horowitz, 2004; Wolfe
et al., 1999); furthermore, the results suggest that
carefully quantified psychological dissimilarity—which
is nonlinearly related to stimulus distance of a given
feature space—explains a portion of the nonlinearities
observed in visual search performance. Although
Experiment 1 focused on measuring overall search
RTs across different target-distractor distances, a
more sensitive measure of search performance may
be search efficiency, which is often used to index
perceptual similarity between targets and distractors.
Search efficiency can be measured using search slopes,
estimated by manipulating the number of nontarget
items present in the search display, with the general idea
that shallower search slopes require less attentional
scrutiny (more efficient search) relative to steeper search
slopes (less efficient search). Therefore, in Experiment 2,
we had participants perform visual search while
manipulating both the target-distractor similarity, as in
Experiment 1, and the number of distractors. On half
of the trials, we presented the target item among seven
distractors, as in Experiment 1, whereas on the other
half of trials only two distractors were presented. Our
main goal was to assess how stimulus-based distance
and psychological dissimilarity between targets and
distractors would relate to search efficiency.

Method

Participants

Thirty-six undergraduate students from the
University of California, San Diego subject pool
participated in this experiment for course credit. We
excluded two participants whose average accuracy was
below 70% in either task, leaving a final sample of 34
participants (25 women, seven men, two did not report
gender), aged 18 to 32 (M = 21.7 £ 3.7 years). This
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sample size provides 80% power to detect an interaction
between target-distractor distance and the number of
distractor items at 7 > .280.

Stimuli & procedure

Colors were drawn from the same set as Experiment 1.
A target color was randomly selected on each trial,
and the distance between target and distractor colors
was manipulated across six levels: 10°, 15°, 20°, 30°,
60°, or 180°. Distractor colors were randomly chosen
clockwise or counterclockwise relative to the target.
Participants completed 384 trials of visual search, in
which target-distractor similarity and distractor set size
(two or seven distractors) were manipulated. When two
distractors were presented on a trial, the remaining
search array items remained as unfilled, outlined circles,
and were not selectable by participants as the target
location. The target color was cued before each trial, as
in Experiment 1.

Participants also completed 396 trials of the quad
color similarity task, with each pair differing by 0°,
10°, 15°, 20°, 30°, 60°, 90°, 120°, or 180°, and each
combination of pairs repeated 11 times.

Data analysis

Data analysis was conducted similarly to
Experiment 1. For the visual search task, a repeated-
measures ANOVA with factors target-distractor
distance and number-of-distractors was conducted,
and significant interactions and main effects were
followed up by simple pairwise comparisons with FDR
correction. Analyses excluded trials with incorrect
search responses (6.95% of trials) or responses that were
slower than 10 seconds or faster than 200 ms (8.6% of
trials).

For exponential modeling, we adapted our previous
method to allow for estimation of how model
parameters differed by the number of distractors in
the display. Specifically, we fit an expanded model
with six parameters, three for each distractor set
size, such that the full model function had the form
RT = (AO + A4, x ND7)67(L0+L1><ND7)><distance + K+
F x ND;, where “ND7” corresponds to a dummy
parameter encoding trials on which there were seven,
rather than two, distractor items. To assess whether
each parameter significantly varied as a function of the
number of distractors, we compared the full model (six
parameters) to models in which each parameter was
fixed across distractor set size (i.e., parameter A; was
set to zero) using chi-square tests. The full model was
initially fit with random effects for each parameter by
subject (six random effects), after which the random
effect of F; was removed because it explained a small
amount of variance, and the random effect of L; was
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Figure 4. Top panels: mean visual search response times for Experiment 2 as a function of (A) target-distractor distance around the
color wheel, (B) psychological dissimilarity, as measured with the quad color similarity task for each participant. Data is plotted
separately for trials where there were two or seven distractors. Dashed lines correspond to exponential model fits. Bottom panels:
difference in response times for trials with two versus seven distractors as a function of (C) target-distractor distance, (D)

psychological dissimilarity. All error bars are within-subject SEM.

removed because it was highly correlated with other
random effects.

Results

Performance was high on the similarity task
(M = 86.4%, SD = 6.4), and MLDS estimates of
psychological dissimilarity were nearly identical to
Experiment la (Figure 1D).

Stimulus distance

The overall pattern of visual search performance was
broadly similar to Experiment 2a and is demonstrated
in Figure 4A. In the visual search task, there was again
a main effect of target-distractor distance, F(5,165)
= 140.83, p < 0.001, nf, = .810, and an interaction
between target-distractor distance and number of

distractors, F(5,165) = 11.91, p < 0.001, n; = .265.

However, there was no main effect of the number

of distractor items, F(1,33) = 0.90, p = .349, 5} =
.027. RTs were significantly slower for seven than two
distractors at a target-distractor distance of 10°, p =
0.001, and marginally slower at 15°, p = 0.069, with
each additional distractor increasing RTs by an average
of 70.7 ms and 17.8 ms respectively. There was no
effect at 20°, p = .761 suggesting a gradual decrease

in the effect of distractor items as target-distractor
distance increases between 10° and 15°, which then
completely dissipates at 20° (Figure 4C). Additionally,
we found a reversal of this effect, with slower RTs for
two than seven distractors, at target-distractor distance
of 180°, p = 0.001, with additional distractors reducing
RTs by 14.6 ms/item on average. Distractors did not
significantly affect RTs at 30° or 60°, p > 0.138, with
slopes <10 ms/item. Despite distractors no longer
slowing performance beyond 20°, overall RTs continued
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to improve, similar to Experiment la. With 2 distractors
RTs were significantly slower at 10° to 20° compared
to later distances (p < 0.001), whereas later distances
did not differ from one another (p > 0.06). In contrast,
with 7 distractors, RTs were significantly faster for each
increase in target-distractor distance (p < 0.024).

As in Experiment 1a, exponential model fits captured
performance well (Figures 4A, 4B). Model comparisons
based on target-distractor distance revealed that the
number of distractors in the display significantly
modulated the model intercept (A), X52 =94.0,p <

0.001, slope (L), Xlz = 257.4, p < 0.001, and floor (F),

X12 = 121.0, p < 0.001. The direction of the parameter
estimates indicated that more distractors resulted in
slower RTs at smaller target-distractor distances, steeper
slopes, and slightly faster RTs at higher target-distractor
distances. Fits using psychological dissimilarity were
again less steep than those using target-distractor
distance, consistent with psychological dissimilarity
accounting for some of the nonlinearity observed in the
search data.

Overall, these results indicate that target-distractor
distance impairs the efficiency of visual search only
at minimal distances across the color wheel: only
when targets and distractors were <20° apart in
stimulus-based distance around the color wheel, search
efficiency—operationalized as search slope—was
affected such that participants were slower to find the
target when more distractors were present. However,
we also found evidence that participants were faster
to detect targets when there were more high-distance
distractors in the display (Bravo & Nakayama,
1992), which may imply that more efficient texture
segmentation processes are involved on such trials (an
idea we return to in more detail in the Discussion).

In Experiment 3, we used a sustained feature-based
attention task to test if our findings generalize to other
tasks commonly used in the field of feature-based
selection. We implemented a feature-based attention
task that uses spatially overlapping random-dot
kinematograms (RDXKs). Participants were presented
on each trial with a RDK containing two sets of
spatially intermingled, differently colored dots, with
each dot moving independently in a random direction.
The colors of the two sets of dots were manipulated
from trial to trial, and a central fixation point indicated
the target color on a given trial. Participants were
instructed to attend selectively to the dots in the target
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color to detect a brief decrease in the luminance of
the dots, while ignoring distractor changes. Therefore
performance on this task indexes participants’ ability to
selectively attend to the target color as the distractors
are made more or less similar in color, independently of
spatial attention.

Method

Participants

Forty-three undergraduate students from the
University of California, San Diego subject pool
participated in this experiment for course credit. Five
participants were excluded from analyses based on
preregistered exclusion criteria (d’ < 0.5 with 180°
distractors). The final sample therefore consisted of 38
participants (24 women), aged 18-24 (M =199 + 1.5
years), with normal or corrected-to-normal vision, and
provides 80% power to detect a significant effect of nf,
> .258.

Stimuli

Participants completed this experiment in lab and
were seated at a distance of approximately 60 cm from
the display. A centered circular field of dots (5.8° visual
angle radius) was presented on a black background.
This field contained 200 dots moving independently and
randomly at 2.25°/s. Half of the dots were presented
in the target color, and half in the distractor color. A
square cue (0.5° x 0.5°) was presented in the target
color at the center of the dot field, indicating on each
trial which set of dots participants should attend. To
prevent participants from tracking single dots, each
dot had a limited lifetime and was redrawn at a new
random location every 300 ms.

Colors were drawn from the same set as Experiment 1.
A target color was randomly selected on each trial,
and the distance between target and distractor colors
was manipulated across 6 levels (15°, 30°, 45°, 60°,
90°, or 180°). Distractor colors were randomly chosen
clockwise or counterclockwise relative to the target.

Procedure

In the sustained attention task (Figure 5),
participants attended to dots in a particular color for
the duration of the trial. At the beginning of each trial,
the target was indicated by the color of the central cue,
which was presented for a random duration between
400 to 800 ms. After this time, the target and distractor
dots appeared on the display simultaneously and
remained onscreen until the end of the trial, 2000 ms
later. Participants were instructed to attend to the dots
in the cued color for the duration of the trial to detect
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Target color changed?

Figure 5. Example trial structure for Experiment 3. Participants were instructed to attend to dots in a particular color (indicated by the
square in the center of the display) to detect any decreases in luminance of the dots that could occur during the trial. Stimuli in the

figure are not presented to scale.

brief decreases in luminance (300 ms). The luminance
decrease could appear randomly throughout the trial
with the constraint that it could not occur in the first
or last 300 ms of the stimulus presentation. At the
end of each trial, participants indicated whether this
change occurred in the target dots by responding on the
keyboard (“m” for a target change, “n” for no target
change). The luminance change could occur in the
target dots (50% of trials), the distractor dots (25%), or
neither set of dots (25%). Participants completed 288
trials of this task (48 per distractor distance condition),
separated into six equally sized blocks.

The magnitude of the luminance decrease was
determined for each individual at the beginning of
the experiment session through a thresholding task.
Participants completed 32 trials per thresholding run,
in which the luminance decrease was adjusted using a
staircasing method: the change became smaller (less
detectable) after two consecutive correct responses, and
larger (more detectable) after an incorrect response.
The luminance decrement was initially set at 50% of the
maximum luminance of the dots and was adjusted by
2% with each step. During the thresholding task, the
target-distractor distance was set to 180°. Accuracy
was fit with a logistic curve using the Palamedes
toolbox (Prins & Kingdom, 2009) with a guess rate of
50%, and thresholds were selected as the luminance
decrement corresponding to 70% accuracy. Participants
completed 1-4 runs of the thresholding task until
performance was adequately estimated (M = 2.22 runs,
SD = 0.95).

After completing the main task, we assessed
perceptual similarity around the color wheel using a

color triad task (Schurgin et al., 2020, Torgerson, 1958).
On each trial, participants saw three colored circles (2.5°
radius): one target color, presented in the top half of
the display; and two test colors, presented side-by-side
in the lower half of the display. Participants were
instructed to select which of the two test circles was
most similar in color to the target circle using the left or
right arrow keys. The target color was chosen randomly
from one of 360 positions around the color wheel, and
the test colors varied systematically in their relationship
to the target so that we could estimate the psychological
similarity function. Specifically, the distances of the test
colors from the target could be 0°, 15°, 30°, 45°, 60°,
90°, 135°, or 180°. The two test colors were selected
such that they were at most three steps apart from each
other in this space (e.g., 45° vs. 90° was possible, but
15° vs. 180° was not). The correct response was always
the color that was closest to the target around the color
wheel and was equally often presented on the left or
right side of the display. We intended to collect data
from 216 trials of this task, however, due to a technical
error, half of the participants (21/42) only completed
144 trials. Additionally, we did not collect data for this
task from one participant because of time constraints.

Data analysis

Triad color similarity task: Psychological similarity
was calculated similarly to Experiment 1, using MLDS
with GLM adjusted for the triad task (Knoblauch &
Maloney, 2012).

Sustained feature-based attention task: To assess the
effect of target-distractor similarity on performance in
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Figure 6. Luminance discrimination performance for Experiment 3 as a function of (A) target-distractor distance around the color
wheel, (B) psychological dissimilarity, as measured with the triad color similarity task for each participant. Error bars are
within-subject SEM, whereas dashed lines correspond to exponential model fits.

the attention task, we conducted a repeated-measures
ANOVA across this factor with d’ as the dependent
variable. To calculate d’, we measured hit rate as the
proportion of trials in which a participant detected
luminance decreases in the target dots, and the false
alarm rate as the proportion of trials in which a
participant falsely reported a target change (i.e., the
distractor changed, or no change occurred). Follow-up
pairwise comparisons were conducted using FDR
correction (a < .05).

Modeling of exponential functions: As in the visual
search experiments, we fit individual subject d’ using
exponential functions. The model fitting procedure
was similar to Experiment la, as there was only

a single condition to fit. As on each trial we only
get a single hit or false alarm, rather than fitting
performance on single trial data we used estimated
d’ across trials as in the repeated-measures analysis.
The full model contained random effects for each
parameter, after which the random effect of L; was
removed because of high correlations with the other
random effects. For modeling with the dissimilarity
measure, data from one participant were excluded
due to large negative MLDS estimates for some
conditions.

Results

Performance on the triad task was high (M =
87.1%, SD = 6.9), and estimates from MLDS were
extremely similar with those obtained online with
the quad similarity task (Figure 1D). Comparable to
Experiments la and 2, the midpoint in psychological
distance occurred near 30° (distance = 0.49). In the
sustained attention task, there was a main effect of
target-distractor distance on d’, £(5,185) = 17.18,

p < 0.001, ni = .464, demonstrated in Figure 6A.
Pairwise comparisons revealed that performance
was significantly lower with 15° distractors than all
other distances, p < 0.001, while at 30° performance
was significantly lower than only at 180° distance,
p = 0.029. For all other comparisons, there was

no significant change in performance, p > 0.10.
This pattern is consistent with Experiment 1, where
improvement in RT flattened out at approximately 40°
to 50° distance. Overall, this confirms that selection
is more efficient as the distance between targets
and distractors increases. For both target-distractor
distance (Figure 6A) and psychological dissimilarity
(Figure 6B), exponential functions captured
performance reasonably well, providing another
link between the sustained attention task and visual
search.

To assess what changes in behavior contributed to
the effect on d’, we also tested changes in hit rates and
false alarm rates across target-distractor distances.
There was a main effect of target-distractor distance
on hit rate, F(5,185) = 15.54, p < 0.001, nf, = 420,
such that hit rates were lower at 15° than all other
distances, p < 0.001, and for 30° than other distances,
p < 0.012, but there were no differences at larger
distances, p > .51. The was also a main effect on false
alarms to distractor changes, F(5,185) = 8.16, p <
0.001, nf, = .221, such that false alarms were greater
at 15° than other distances, p < .004. There was a
marginal difference between false alarm rates at 45° and
180°, p = 0.071, but no significant difference for any
other comparisons, p > 0.33. There was no difference
in baseline false alarm rate (“no change” trials) across
target-distractor distance, F(5,185) = 0.56, p = 0.729,
1712, = .015. This response breakdown is also presented in
Supplementary Figure S6.
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Discussion

We investigated the effect of target-distractor
similarity on the efficiency of attentional selection
using visual search and sustained attention tasks.
Interestingly, the results from all experiments were
strikingly comparable: feature similarity had a
nonlinear effect on performance that plateaued at
moderate distances in color space (~40°-60° across
all experiments), and the number of distractors
only impacted performance when targets and
distractors were highly similar (search was affected
at 10° and 15°, but not at 20° or beyond). That is,
even after search slopes reached zero, we still saw
significant improvements in overall RT with increasing
dissimilarity. Furthermore, across all experiments,
exponential functions provided a decent fit to the
data when performance (RT or d’) was predicted
by both measures of similarity (in stimulus space,
or in psychological similarity estimates). Thus our
results are not restricted to one particular task or
manipulation, but generalize across visual search and
sustained attention tasks that are commonly used
when studying feature-based attention. Additionally,
we found comparable psychological dissimilarity
functions across our online and in-lab experiments
(Figure 1D), confirming the generalizability of our
tasks across different testing environments. Overall, our
study provides important novel data on the similarity
structure of feature representations, in particular color,
and demonstrates that attentional performance can in
part be explained by non-linearities in the psychological
dissimilarity functions. Thus these data indicate that
considering the psychological similarity structure of
a given stimulus space is important to understand
capacity limits of attention, as it can explain some of
the variance observed in behavior. The results also
reveal that psychological similarity is only one part
of the puzzle, and that other factors, presumably
of attentional nature, are necessary to explain the
nonlinearities in search and sustained attention task.

Feature similarity constrains current models of visual
search

Theories of attention agree that similarity between
target and nontarget items has a significant impact on
performance (Duncan & Humphreys, 1989; Geng &
Witkowski, 2019; Wolfe & Horowitz, 2004), supported
by a number of previous findings (Arun, 2012; Becker
et al., 2013; Buetti et al., 2019; Nagy & Cone, 1996;
Nagy & Sanchez, 1990; Reijnen et al., 2007; Wolfe
et al., 1999). Our study extends on this research by
estimating attentional performance across a wide range
of target-distractor similarity levels and quantifying the
interaction between similarity and the number of visual
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search distractors. Furthermore, we independently
estimated psychological similarity and compared

this to similarity in the underlying stimulus space.
Previous theories have considered in detail the different
processing stages involved in attentional selection,

and visual search in particular. In most theories,

the distinction between serial and parallel search is
based on target-distractor similarity: search is parallel
and efficient when similarity is low, but serial when
similarity is high. Our findings argue that similarity

is not the distinguishing factor between these two
proposed stages, given that we found two distinct effects
of similarity on behavioral measures: We found a
rapid reduction in the effect of additional visual search
distractors (small or non-significant search slopes,
generally thought to be indicative of serial processing)
at low target-distractor distance (e.g., <20°), but with a
plateau in performance (no decrease in RTs or increase
in detection sensitivity) at relatively moderate levels of
target-distractor distance.

Recent work has shown that the small or seemingly
flat search slopes reported by many previous studies
actually reflect logarithmically increasing processing
time as a function of the number of distractor items
during efficient search (Buetti et al., 2016; Lleras et al.,
2020), and so it is likely that extending the number of
distractors in our displays (e.g., from a maximum of
seven to 15 or 31) would result in small increases in
response times for target-distractor distances beyond
20°. However, the dissociation in the point at which
search slopes are effectively eliminated and RTs reach
a minimum is, to our knowledge, a novel contribution
of our study and is something that several models of
visual search do not anticipate—or are agnostic to. This
suggests that perceptual similarity between target and
distractor items has at least two distinct impacts on
feature-based selection.

Our data also indicate that psychological dissimilarity
metrics in particular offer a way to unify findings from
attention studies that use different stimuli. Different
studies use a range of stimulus sets, ranging from basic
features such as color and orientation to complex
multidimensional object sets, with no simple way
of comparing between these directly. Even within a
single stimulus space, researchers may pick different
subsets of stimuli for their experiments. Effects of
target-distractor similarity might appear completely
different when compared across the dimensions of each
stimulus space, but psychological dissimilarity, which
is based on perceptual judgments in an independent
task, provides a single dimension on which different
stimulus sets can potentially be directly compared.

If the same critical points—such as flattening of the
search slope or overall RT—emerge for different stimuli
along the psychological dissimilarity axis, this could
provide support for a general principle for feature-based
selection based on this perceptual dissimilarity metric,
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unifying work done across many different stimulus
spaces. While we do not test this here, we believe our
study lies the groundwork for such studies in the
future.

Bridging findings from visual search and sustained
feature-based attention tasks

The results of Experiment 3, where the pattern of
performance during sustained feature-based attention
was comparable to the visual search experiments,
suggests that previous models based on analysis of
visual search tasks may generalize to other attention
tasks. Notably, this raises the question of how the
traditional “two-stage” distinction between parallel
and serial processing applies outside of the context of
visual search. Sustained feature-based attention tasks
have generally been conceptualized as demonstrating
the global nature of feature-based attention, with all
stimuli that match the target feature receiving the
benefits of attention (Andersen et al., 2013; Saenz et
al., 2002, 2003; Serences & Boynton, 2007), and this
global enhancement has been shown to occur rapidly
during visual processing (Andersen & Miiller, 2010;
Martinez-Trujillo & Treue, 2004; Schoenfeld, Hopf,
Merkel, Heinze, & Hillyard, 2014). This suggests that
the effects of sustained feature-based attention may be
more in line with the parallel processing stage of visual
search models. Consistent with this idea, we found that
the rate of false alarms in Experiment 3 (i.e., mistaking
distractor luminance changes as target changes) was
significantly increased only when target-distractor
distance was 15°, the same distance below which
we found effects of the number of distractors in
Experiment 2, suggesting that decreased performance
in sustained attention tasks may reflect the inability of
attention to efficiently separate target and distractor
representations at this stimulus distance.

However, although our findings might justify
surface-level comparisons between sustained attention
and visual search tasks, many aspects of current
models are specific to visual search and do not readily
translate across tasks. Because sustained attention
tasks focus on isolating aspects of selection, rather
than the guiding of attention to targets, they may
not be sensitive to manipulations targeted at serial
stages of processing, such as those analogous to
varying the number of visual search distractors. Indeed,
because sustained feature-based attention tasks usually
utilize target displays consisting of an array of many
stimuli (such as the dot-motion displays we use in
Experiment 3) they appear to be particularly sensitive
to perceptual grouping of items. For example, dividing
attention across displays is easier when the targets
in each display share features than when they are in
opposition (Saenz et al., 2003). Perceptual grouping
can also affect performance in visual search, such as
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when distractor items act as a texture “background”
from which the target can be easily identified against
(Rangelov, Miiller, & Zehetleitner, 2013). In such cases,
increasing the number of distractors in the display
can counterintuitively improve performance (Bravo

& Nakayama, 1992; Buetti et al., 2016). Additionally,
having more distractors may increase the saliency of
the target item, aiding search (Itti & Koch, 2000).

We observed such a pattern for 180° distractors in
Experiment 2, suggesting that such effects might occur
in instances only when targets are sufficiently distinct
from distractors. However, while segmentation can
facilitate parallel visual search, it is not the same thing
as perceptual grouping (Wolfe, 1992), meaning that it
is unclear whether perceptual grouping can bridge the
gap between visual search and other tasks or whether
the similarities between tasks are driven by additional
factors that are outside the scope of visual search
models. Nevertheless, our findings indicate it would
be valuable for researchers to consider how models of
attention could be generalized to encapsulate findings
from multiple different tasks.

Attentional performance is nonlinearly related to
target-distractor similarities

Across all experiments, we found that performance
was non-linearly related to both the stimulus-based
distance between targets and distractors, and
importantly also to psychological dissimilarity, and
was well described by an exponential function of
similarity (see also, Blough, 1988). It would have been
plausible that the commonly observed nonlinearities
between attentional performance and target-distractor
similarity (e.g., Arun, 2012; Nagy & Sanchez, 1990)
are mostly driven by nonlinearities in perception (i.c.,
psychological dissimilarity function), but here we
demonstrate that this is not the case. In the context
of theories of generalization (Shepard, 1987; Sims,
2018), this implies that “similarity” between stimuli
within attention tasks differs from similarity measured
in perceptual tasks, like we used in this study. This
suggests that while target and distractor features may
be a particular distance apart in psychological space,
which can be assessed in simple psychophysical tasks
as used here, this distance is not per se ‘fixed’ but
changes depending on how these features are processed.
Specifically, when a target is presented among similar
nontargets, the perceived target-distractor dissimilarity
may be exaggerated for most efficient selection. This
interpretation is analogous to findings in spatial
attention, in which attention has been found to increase
the perceived distance between stimuli (Suzuki &
Cavanagh, 1997) and is consistent with models that
describe the effects of attention through shifts of
tuning or enhancement of off-tuned features (Geng
& Witkowski, 2019; Navalpakkam & Itti, 2007;
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Scolari, Byers, & Serences, 2012; Scolari & Serences,
2009; Yu & Geng, 2019). In particular, these accounts
highlight that enhancement of off-tuned features best
differentiates representations when stimuli are highly
similar, consistent with our finding that performance
reaches a plateau with only moderate distance between
targets and distractors. Of course, this is only one
possible explanation for the nonlinearities we observe
after accounting for psychological dissimilarity, and
further research is necessary to test this interpretation.

Summary and conclusion

In summary, our study adds in important ways
to the literature on feature-based attention: (1) We
compared performance across visual search and
sustained attention, which bridges across different
tasks and experimental designs. Similarity between
targets and distractors has not been manipulated in
a systematic way in sustained feature-based attention
tasks, so our findings in Experiment 3 are novel in this
regard, in addition to allowing direct comparisons with
visual search. (2) We varied target-distractor similarity
at an extremely high resolution, revealing the exact
relationship between attentional performance and
similarity and at different set sizes (for visual search). (3)
By measuring psychological similarity, we assessed how
nonlinearities in visual search RTs change with different
metrics. It would have been plausible that psychological
similarity was linearly related to search RT, and while
our findings rule out that strong hypothesis, we do
find that it accounts for nonlinear search functions
to some extent. This is an important and novel piece
of evidence that will contribute to models of visual
attention. (4) Finally, our approach showcases a novel
way to measure and potentially equate similarity
spaces across distinct feature dimensions, or testing
environments (e.g., in-lab and online) which will be
useful for future studies on attention and cognition
more broadly. We believe that this has potential to
bridge across distinct stimulus spaces. While orientation
and color are essentially impossible to compare in
their native dimensions (orientation being a 180°
space and a color wheel being 360°, e.g.) performance
could be compared in psychological similarity space
instead. This is also true for stimuli that do not
have easy to measure dimensions, such as real-world
objects.

Overall, our study demonstrates that the non-linear
relationship between target-distractor dissimilarity
and attentional performance can be in part explained
by non-linearities in the underlying representational
similarity structure; however, psychological dissimilarity
does not fully explain the non-linearities observed
during selection. Thus we hypothesize that selective
attention may enhance performance by modulating the
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similarity structure to pull target and distractor features
further apart. Most broadly, our data demonstrate

the importance of understanding the underlying
representational structure of the feature space to inform
models of selection.

Keywords: feature-based attention, visual search,
sustained attention, similarity, generalization
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I(In this article, we use the term “feature” to refer to specific values that
occur within a feature dimension [e.g., “red” or “upward motion”] rather
than to the underlying dimensions themselves [e.g., “color” or “motion
direction”]).

2(Attentional engagement theory also posits that similarity among
distractors also affects search performance, such that more diverse sets of
distractors decrease performance. However, this aspect of the model was
not the focus of the current study, and distractors did not differ from one
another within each trial.)
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