
fnins-15-765634 December 2, 2021 Time: 9:35 # 1

ORIGINAL RESEARCH
published: 03 December 2021

doi: 10.3389/fnins.2021.765634

Edited by:
Yuanpeng Zhang,

Nantong University, China

Reviewed by:
Paola Feraco,

University of Bologna, Italy
Gunther Helms,

Lund University, Sweden

*Correspondence:
Yongmei Li

lymzhang70@163.com

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 27 August 2021
Accepted: 01 November 2021
Published: 03 December 2021

Citation:
Yan Z, Liu H, Chen X, Zheng Q,

Zeng C, Zheng Y, Ding S, Peng Y and
Li Y (2021) Quantitative Susceptibility
Mapping-Derived Radiomic Features

in Discriminating Multiple Sclerosis
From Neuromyelitis Optica Spectrum

Disorder. Front. Neurosci. 15:765634.
doi: 10.3389/fnins.2021.765634

Quantitative Susceptibility
Mapping-Derived Radiomic Features
in Discriminating Multiple Sclerosis
From Neuromyelitis Optica Spectrum
Disorder
Zichun Yan1, Huan Liu2, Xiaoya Chen1, Qiao Zheng1, Chun Zeng1, Yineng Zheng1,
Shuang Ding1, Yuling Peng1 and Yongmei Li1*

1 Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 2 GE Healthcare,
Shanghai, China

Objectives: To implement a machine learning model using radiomic features extracted
from quantitative susceptibility mapping (QSM) in discriminating multiple sclerosis (MS)
from neuromyelitis optica spectrum disorder (NMOSD).

Materials and Methods: Forty-seven patients with MS (mean age = 40.00 ± 13.72
years) and 36 patients with NMOSD (mean age = 42.14 ± 12.34 years) who underwent
enhanced gradient-echo T2

∗-weighted angiography (ESWAN) sequence in 3.0-T MRI
were included between April 2017 and October 2019. QSM images were reconstructed
from ESWAN, and QSM-derived radiomic features were obtained from seven regions
of interest (ROIs), including bilateral putamen, globus pallidus, head of the caudate
nucleus, thalamus, substantia nigra, red nucleus, and dentate nucleus. A machine
learning model (logistic regression) was applied to classify MS and NMOSD, which
combined radiomic signatures and demographic information to assess the classification
accuracy using the area under the receiver operating characteristic (ROC) curve (AUC).

Results: The radiomics-only models showed better discrimination performance in
almost all deep gray matter (DGM) regions than the demographic information-only
model, with the highest AUC in DN of 0.902 (95% CI: 0.840–0.955). Moreover, the hybrid
model combining radiomic signatures and demographic information showed the highest
discrimination performance which achieved the AUC of 0.927 (95% CI: 0.871–0.984)
with fivefold cross-validation.

Conclusion: The hybrid model based on QSM and powered with machine learning has
the potential to discriminate MS from NMOSD.

Keywords: multiple sclerosis, neuromyelitis optica spectrum disorder, quantitative susceptibility mapping,
radiomics, discrimination

Abbreviations: MS, Multiple sclerosis; NMOSD, Neuromyelitis optica spectrum disorder; QSM, Quantitative Susceptibility
Mapping; PUT, Putamen; GP, Globus pallidus; HCN, Head of the caudate nucleus; THA, Thalamus; SN, Substantia nigra;
RN, Red nucleus; DN, Dentate nucleus; ROC, Receiver operating characteristic; AUC, Area under the receiver operating
characteristic curve; MRI, Magnetic resonance imaging; EDSS, Expanded disability status scale; DGM, Deep gray matter.
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INTRODUCTION

Multiple sclerosis (MS) and neuromyelitis optica spectrum
disorder (NMOSD) are two major inflammatory demyelinating
diseases of the central nervous system (Noseworthy et al., 2000;
Wingerchuk et al., 2007). The discovery of the aquaporin-4
antibody (AQP4-Ab) indicates that NMOSD is an inflammatory
demyelinating disease independent of MS (Sinnecker et al.,
2012; Jurynczyk et al., 2015; Liu et al., 2015; Wingerchuk et al.,
2015). NMOSD shows a high prevalence for Asian people. MS
and NMOSD share similar clinical manifestations and image
features because they both have damages in the optic nerve,
spinal cord, and brain, making it difficult to distinguish each
other in clinic practice (Huh et al., 2014). Although AQP4-Ab
is a common contributor for NMOSD, some NMOSD patients
may show a negative autoantibody in cerebrospinal fluid and
serum specimens, resulting in incorrect clinical diagnosis and
mistreatment (Lennon et al., 2004; Calabrese et al., 2012; Jarius
and Wildemann, 2013). In particular, NMOSD sometimes is
more serious than MS, and the recommended treatment for MS
could exacerbate NMOSD progression (Palace et al., 2010; Jarius
and Wildemann, 2013). Therefore, it is vital to diagnose between
these two diseases accurately.

Magnetic resonance imaging (MRI) is considered a highly
sensitive imaging modality in identifying MS and NMOSD
patients. However, conventional MRI scans could not meet the
need for higher efficiency of differential diagnosis due to atypical
lesion distribution in MS and NMOSD. Therefore, advanced
neuroimaging techniques have been used to find more disease
characterization and improve optimal therapies. Iron is primarily
found in the deep gray matter (DGM) structures within the
brain, including globus pallidus (GP), putamen (PUT), head
of caudate nucleus (HCN), red nucleus (RN), substantia nigra
(SN), thalamic (THA), and the dentate nucleus (DN) (Haacke
et al., 2005; Chen et al., 2012). Particularly, previous studies have
demonstrated that quantitative susceptibility mapping (QSM), as
a novel image sequence, can help to distinguish MS or NMOSD
patients from healthy individuals due to the abnormal patterns
of iron deposition (Langkammer et al., 2013; Cobzas et al.,
2015; Doring et al., 2016; Hagemeier et al., 2017; Zivadinov
et al., 2018), which indicated that iron deposition was important
in MS and NMOSD pathology. The different QSM-derived
magnetic susceptibility values in the DGM between MS and
NMOSD were reported by Pudlac et al. (2020). Therefore,
QSM may serve as a useful imaging biomarker in guiding early
identification and differentiation between MS and NMOSD.
However, the mere magnetic susceptibility of the tissue does
not ideally account for its iron content because iron occurs
in forms of different magnetic properties, and related studies
are still limited.

Recently, radiomics extracts the abundant high-throughput
radiomic features from conventional medical images
and has been recognized as an emerging and attractive
research technology, which has shown remarkable success in
characterizing tumor phenotypes (Yip and Aerts, 2016). Using
hand-crafted features in the regions of interest (ROIs), radiomics
makes it possible to extract high-dimensional and mineable

features, which can be used for pathophysiology classification in
clinical practice (Lambin et al., 2012; Gillies et al., 2016; Yip and
Aerts, 2016). Therefore, the QSM sequence was applied to extract
radiomic features from DGM regions. Then, a discrimination
machine learning model that incorporates the QSM-derived
radiomic features and demographic information was performed
to classify between MS and NMOSD.

MATERIALS AND METHODS

Standard Protocol Approvals,
Registrations, and Patient Consents
This retrospective study has been approved by the Institutional
Review Board of the First Affiliated Hospital of Chongqing
Medical University, Chongqing, China, and written
informed consent was obtained from each participant before
MRI scans.

Participants
Patients diagnosed with MS or NMOSD were enrolled from
the Department of Radiology, the First Affiliated Hospital of
Chongqing Medical University, between April 2017 and October
2019 (Figure 1). Patients who met the following inclusion criteria
were chosen: (1) patients have received a confirmed diagnosis of
NMOSD based on the standard diagnosis criteria (Wingerchuk
et al., 2015) and confirmed MS according to the 2017 McDonald
criteria (Thompson et al., 2018); (2) patients have undergone
enhanced gradient-echo T2

∗-weighted angiography (ESWAN)
sequence imaging on the same 3.0-T scanner with standardized
study protocol; and (3) patients have been in remission (relapse-
free for at least 4 weeks) and have no treatment of disease-
modified medications within 4 weeks before MRI scans. The
exclusion criteria were (1) significant neurologic disease other
than MS or NMOSD; (2) image artifacts or incomplete clinical
information; and (3) contraindications for MRI scans.

Demographic and clinical data including patient age, sex,
disease duration, and Expanded Disability Status Scale (EDSS)
score were recorded.

Magnetic Resonance Imaging
Acquisitions
All patients underwent an MRI scan of the brain on a 3.0-T
system (GE Medical Systems, Milwaukee, WI, United States)
using an eight-channel phased-array head coil. The standard
protocol for MS studies was performed including a conventional
axial 2D dual-echo proton density (PD)-T2-weighted imaging
(T2WI) [repetition time (TR) = 2,900 ms, echo time
(TE)1 = 25 ms, TE2 = 93 ms, echo train length [ETL) = 12,
matrix size = 256 × 192] and 2D fluid-attenuated inversion
recovery (FLAIR) (TR = 2,050 ms, TE = 24 ms, TI = 750 ms,
matrix size = 256× 256). All axial scans were taken from the roof
of the skull to the foramen magnum [slice thickness = 5 mm,
slice skip = 0 mm, field of view (FOV) = 24 cm× 24 cm].

ESWAN data were acquired with eight echoes using the
following parameters: TR = 60 ms, TE = 6 ms, number of
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excitation (NEX) = 0.75, FOV = 22 cm × 22 cm, matrix
size = 448 × 320, receiver bandwidth = + 62.5 kHz, and
flip angle = 20◦. The sequence was acquired with 2-mm-thick
contiguous sections and no space. All scans were oriented
parallel to the anterior–posterior commissural (AC-PC) line with
56–64 locations on the middle sagittal plane and covered the
entire brain area.

Quantitative Susceptibility Mapping
Reconstructions
QSM reconstructions were performed using a MATLAB
R2013a-based susceptibility imaging software (STISuite1). The

1https://people.eecs.berkeley.edu/~chunlei.liu/software.html

FIGURE 1 | The flowchart shows the enrollment of MS and NMOSD patients.

FIGURE 2 | The representative unilateral outlines of the defined ROIs. The ROIs included the putamen (PUT), globus pallidus (GP), head of the caudate nucleus
(HCN), thalamus (THA), substantia nigra (SN), red nucleus (RN), and dentate nucleus (DN) bilaterally.
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corrected and combined phase images were acquired by
weighting the magnitude of the corresponding channel with
the vendor-provided combination method and were unwrapped
using a Laplacian-phase method. Then, phase-unwrapped images
were used to remove the background field using the V-SHARP
method (Schweser et al., 2011). In order to reduce extreme
streaking artifacts caused by large veins, susceptibility maps
were generated in the process of field-to-susceptibility inversion
by using an improved sparse linear equation and least-square
algorithm (streaking artifact reduction for QSM, STAR-QSM).

Quantitative Susceptibility Mapping Atlas
Registration and Regions of Interest
Segmentation
The QSM atlas is available in the STISuite V3.0 software package
and can be downloaded at, (see text footnote 1) (Zhang et al.,
2018). The original QSM data for each participant were registered
to the QSM atlas by using the FMRIB Software Library (FSL2).
Furthermore, seven ROIs for each patient, including bilateral
PUT, GP, HCN, THA, SN, RN, and DN, were segmented on QSM
images by using Statistical Parametric Mapping (SPM) software
based on MATLAB R2013a. Figure 2 shows the representative
unilateral outlines of the defined ROIs.

Feature Extraction and Selection
Before the feature extraction, an isotropic voxel was resampled
into 1 mm × 1 mm × 1 mm with linear interpolation

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

for the purpose of normalizing the geometry of MR images.
A total of 874 radiomic features were extracted by using
the in-house software AK (Artificial Intelligence Kit, version
3.3.0, GE Healthcare, Chicago, IL, United States), including
four different sets of features: (1) shape features, (2) first-
order features, (3) textural features, and (4) transform features
including wavelet and Laplace of Gaussian. The shape-
based features were measured using the shape descriptors
of three-dimensional size and shape of the ROI. First-order
statistical features were applied to describe the distribution of
voxel intensities. Texture features used a matrix to represent
the spatial heterogeneity of the intensity level. To further
investigate the intra-ROI heterogeneity, wavelet filters and
Laplace transformation were applied to the original images to
convert original images to versions focused on information
at different scales. Most of the extracted features obey the
imaging biomarker standardization initiative (Zwanenburg et al.,
2020). Before the feature selection, the abnormal or missing
data were replaced by the median, and the standardization
was performed to eliminate dimension differences. Firstly, the
univariate analysis was applied to choose the significant features
with a p-value less than 0.05. Next, the spearman correlation
analysis between features was used with the cutoff of 0.9,
reducing the features redundancy. Then, the multivariate logistic
analysis with the Akaike information criterion was used to
select the most representative features. Finally, the multivariable
logistic regression model with fivefold cross-validation was
established. The flowchart of the processing steps is shown in
Figure 3.

FIGURE 3 | The schematic flowchart of processing steps. Step 1: QSM reconstructions were performed. Step 2: after QSM atlas registration, seven ROIs were
segmented on QSM images. Step 3: four sets of most representative features were chosen for generalizing and optimizing the model. Step 4: after feature selection,
the prediction model for differentiating MS and NMOSD was built by combining radiomic features and clinical information. Furthermore, the classification
performance was assessed with AUC using fivefold cross-validation.

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 765634

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-765634 December 2, 2021 Time: 9:35 # 5

Yan et al. Radiomics Features in Discriminating

Model Establishment and Performance
Evaluation
The prediction models for differentiating MS and NMOSD were
built with the logistic regression by the radiomic features only,
demographic information (patient age, sex, disease duration, and
EDSS score) and combining both above, respectively.

The area under the curves (AUC), sensitivity, specificity, and
accuracy were used to evaluate the classification performance
of the models. The classification performance was assessed with
AUC using fivefold cross-validation. The DeLong test was used to
compare the different radiomics models.

Statistical Analysis
Statistical analysis was performed by using the in-house software
IPMs (IPM Statistics, version 2.4.0, GE Healthcare). Discrete
data encoding the sexes of the patients were analyzed using
Pearson’s chi-square test. Two-sided two-sample t-tests or Mann–
Whitney U tests were used to assess between-group differences
for continuous demographic or clinical data, depending on
whether they were normally distributed using the Lilliefors test.
A two-tailed p-value < 0.05 represents the significant difference.

RESULTS

Demographic Data Analysis
The demographic and clinical characteristics of the enrolled
patients are summarized in Table 1. Demographic information
was collected at the time of visit including patient age, sex, disease
duration, and EDSS score.

The NMOSD patients showed a greater female predominance,
and higher EDSS scores, than the MS patients.

Radiomic Feature-Only Selection and
Model Building
In this study, 874 radiomic features were extracted from the ROIs.
First, with univariate analysis, the seven DGM regions (HCN,
DN, GP, PUT, RN, SN, and THA) remained 51, 59, 206, 49,
78, 9, and 192 features, respectively. Next, the number of the
19, 21, 57, 27, 33, 7, and 67 features were then selected with
the Spearman correlation analysis. Finally, with the multivariate
analysis, the radiomic features were reduced to several most

TABLE 1 | The demographic and clinical data of participants.

Characteristics MS NMOSD p-value

No. of patients 47 36

Sex (male/female) 18/29 6/30 0.031a

Age (years) 40.00 ± 13.72 42.14 ± 12.34 0.464b

Disease duration (years) 5.42 (2.07, 9.19) 3.88 (1.29, 9.06) 0.301c

EDSS 2.00 (1.00, 3.00) 2.50 (2.00, 4.78) 0.002c

EDSS, Expanded Disability Status Scale; MS, multiple sclerosis; NMOSD,
neuromyelitis optica spectrum disorder.
ap-values obtained using the Pearson’s chi-square test.
bp-values obtained using two-sample two-tailed t-tests.
cp-values obtained using two-tailed Mann–Whitney U-test.

predictive features (HCN: 4, DN: 4, GP: 3, PUT: 3, RN: 5, SN: 2,
THA: 3) in each region. Moreover, the selected radiomic features
in different regions are shown in Table 2. The machine learning
models with logistic regression were established with fivefold
cross-validation.

Model Evaluation
The performance of the prediction models assessed with the
AUC, sensitivity, specificity, and accuracy were calculated. The
DGM regions except for SN (AUC: 0.702, 95% CI: 0.603–
0.793) had a better discrimination performance than the
demographic data-only model and were more than 0.80. The
model comparisons with the DeLong test were performed, as
shown in Table 3; the results showed a significant difference that
the p-value was 0.002 between DN and SN, 0.016 between GP and
SN, and 0.004 between RN and SN, and there were no significant
differences between other models. The DN reflected the best
performance in all DGM regions with the AUC of 0.902 (95%
CI: 0.840–0.955), a sensitivity of 0.851, a specificity of 0.889, and
an accuracy of 0.867. All radiomics-only models’ discrimination
performance including AUC, sensitivity, specificity, and accuracy
are shown in Table 4. The receiver operating characteristic curve
(ROC) of all DGM regions is shown in Figure 4.

The demographic information-only model was built and
showed an AUC of 0.733 (95% CI: 0.639–0.818), a sensitivity
of 0.511, a specificity of 0.861, and an accuracy of 0.663. We
used QSM-derived radiomic features, plus four demographic
variables: sex, age, disease duration, and EDSS score to build
a regression model to differentiate MS from NMOSD. The
combined model showed a greater discrimination performance
than the models mentioned above with an AUC of 0.927 (95%
CI: 0.871–0.984). The ROC of the demographic information-only
model, radiomics-only model of DN, and combined model are
shown in Figure 5.

DISCUSSION

In the present study, we investigated the great performances
of QSM-derived radiomic features in discriminating MS from
NMOSD. Combining the radiomic features and demographic
information to establish the hybrid model, it showed a
higher discrimination performance, which can help the clinical
differential diagnosis of these two diseases.

The diagnostic criteria of MS and NMOSD are constantly
updated and recognized by the public, but MS showed
inflammation, axonal loss, oligodendrocyte damage, gliosis,
macrophage infiltration, microglia, and neurodegeneration,
while NMOSD presented a perivascular immunoglobulin
deposition and complement activation. Thus, it is still
challenging to differentiate and diagnose these two diseases
in clinical practice. Radiomics methods can provide us with
more information. In previous studies, radiomics methods were
based on traditional MRI techniques to differentiate MS from
NMOSD. Liu et al. (2019) extracted radiomic features from
the spinal cord lesions on sagittal T2WI, and Ma et al. (2019)
extracted the radiomics from lesions on T2WI to differentiate
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TABLE 2 | The selected radiomic features with different regions.

ROIs Features

DN original_glrlm_GrayLevelNonUniformity
wavelet–LHH_glszm_GrayLevelVariance
wavelet–HLL_glszm_GrayLevelVariance
log–sigma-1–0-mm–3D_glszm_GrayLevelNonUniformity

GP wavelet–LLH_glrlm_ShortRunHighGrayLevelEmphasis
wavelet–LHL_gldm_DependenceEntropy
wavelet–HLL_glszm_ZoneVariance
log–sigma–1–0–mm–3D_glszm_ZoneEntropy

HCN wavelet–HLH_glcm_JointAverage
wavelet–HHL_glszm_HighGrayLevelZoneEmphasis
wavelet–LLH_gldm_SmallDependenceHighGrayLevelEmphasis

PUT wavelet–HHL_glrlm_ShortRunHighGrayLevelEmphasis
wavelet–HHL_glcm_Imc1
wavelet–LLH_glszm_SizeZoneNonUniformityNormalized

RN wavelet–LHH_gldm_SmallDependenceHighGrayLevelEmphasis
wavelet–HLL_firstorder_Kurtosis
wavelet–HLL_gldm_SmallDependenceHighGrayLevelEmphasis
wavelet–HHL_glrlm_HighGrayLevelRunEmphasis
wavelet–HLL_glszm_GrayLevelNonUniformity

SN wavelet–LLH_glrlm_ShortRunHighGrayLevelEmphasis
wavelet–HLL_firstorder_Skewness

THA wavelet–LHL_glrlm_HighGrayLevelRunEmphasis
wavelet–LLL_glrlm_ShortRunHighGrayLevelEmphasis
wavelet–HHL_firstorder_Range

DN, dentate nucleus; GP, globus pallidus; HCN, head of the caudate nucleus; PUT,
putamen; RN, red nucleus; SN, substantia nigra; THA, thalamus.

TABLE 3 | The DeLong test for the model comparisons.

Model DeLong test

GP HCN PUT RN SN THA

DN 0.434 0.187 0.216 0.754 0.0018* 0.289

GP 0.662 0.599 0.596 0.016* 0.727

HCN 0.877 0.312 0.083 0.891

PUT 0.289 0.107 0.743

RN 0.0042* 0.406

SN 0.042

*Represents significant comparison differences between models.

TABLE 4 | Comparison of the different radiomics models.

Model AUC (95% CI) Sensitivity Specificity Accuracy

DN 0.902 (0.84, 0.955) 0.851 0.889 0.867

GP 0.856 (0.773, 0.928) 0.766 0.861 0.807

HCN 0.830 (0.759, 0.899) 0.681 0.861 0.759

PUT 0.821 (0.737, 0.901) 0.851 0.722 0.795

RN 0.885 (0.823, 0.941) 0.894 0.722 0.819

SN 0.702 (0.603, 0.793) 0.447 0.833 0.614

THA 0.838 (0.763, 0.906) 0.617 0.917 0.747

AUC, area under the receiver operating characteristic curve.

MS from NMOSD. There are different levels of iron in the
brain. Therefore, the traditional MRI scans are based on the
demyelination and inflammation of the lesions, but the iron
deposition is also the pathological change of MS and NMOSD.

FIGURE 4 | The curves of the different model were shown. Different colors
represented the model of different DGM regions.

FIGURE 5 | The ROCs of the demographic information-only model,
radiomics-only model of DN, and the combined model are shown.

Therefore, iron deposition is also essential in the differential
diagnosis of these two diseases. Iron is an essential trace
element for the human body which keeps many enzymes active,
such as neurotransmitter synthesis, myelin formation, and
mitochondrial energy metabolism. Its homeostasis is crucial
for the normal physiological function of the brain. However,
excess free iron catalyzes the generation of a large number
of free radicals, which enhances oxygen toxicity and leads to
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oxidative hyperactivity, thus participating in the pathogenesis
of MS and NMOSD (Doring et al., 2016; Carocci et al., 2018;
Zivadinov et al., 2018). As an advanced MRI technique for
quantitative iron deposition, QSM-related studies (Chen et al.,
2012; Langkammer et al., 2013; Rudko et al., 2014; Cobzas
et al., 2015; Doring et al., 2016; Elkady et al., 2017; Hagemeier
et al., 2017; Zivadinov et al., 2018; Pudlac et al., 2020) have also
studied and confirmed the differences between the two diseases.
Therefore, the differences in iron deposition are highly likely to
change the image characteristics of QSM.

Previous studies have not reported the differences in
quantitative susceptibility between the two diseases. To our
knowledge, this is the first study that provides a comprehensive
difference quantification of MS and NMOSD using QSM-derived
radiomic features of the DGM. In our study, we extracted the
most important radiomic features to establish the radiomics-
only models. Furthermore, after fivefold cross-validation, we
found that the DGM regions except for SN can differentiate
the two diseases accurately with the AUC superior to 0.80.
It indicated that the QSM-derived radiomic features do have
the differences between MS and NMOSD patients and provide
complementary information for clinical differential diagnosis of
these two diseases.

In addition, the radiomics-only models based on the DN had
the highest discrimination performance with an AUC of 0.902,
using four radiomic features after feature selection. The gray-
level run length matrix (GLRLM) gives the size of homogeneous
runs in four directions for each gray level, and the gray-level
zone length matrix (GLZLM) provides information on the size
of homogeneous zones for each gray level in two dimensions.
As the largest nucleus in the cerebellum, DN is located deep
in the white matter of the cerebellum and has the functions
of regulating body balance, regulating muscle tension, and
coordinating voluntary movement. In MS patients, evidence has
been found that the brain iron level is abnormal because iron
accumulates in the basal ganglia area. Thus, we speculated that
MS and NMOSD patients might have significant differences in
athletic performance. Although the radiomic feature differences
have been shown by DN in QSM images, there is no evidence
that the two diseases have significant differences in the values of
iron deposition in this area, which may be due to the long-term
accumulation of iron deposition resulting in the changes in the
images. However, due to the similarity of damage between the
two diseases, the differences in quantitative susceptibility were
not shown in previous studies.

The demographic information including patient age, sex,
disease duration, and EDSS score was also collected in this work.
The NMOSD patients showed a greater female predominance
and higher EDSS scores than the MS patients. The demographic
information-only model showed a lower AUC of 0.733 than
any radiomics-only models in DGM regions except for SN.
Combining the demographic information and QSM-derived
radiomic features, we built a hybrid model that improved
the discrimination performance and achieved the highest
AUC of 0.927, highlighting the importance of comprehensive
consideration of clinical and imaging features. Future work needs
to clarify the underlying pathophysiological mechanism of the

difference in QSM radiomic features between these two diseases,
verify the effectiveness of this model, and promote the application
of this model in clinical practice.

Several limitations also exist in this work. First, although
we have extracted highly correlated radiomic features and
obtained a relatively accurate discrimination performance, the
pathophysiological mechanism is unclear. Second, our study only
adopted QSM images reflecting iron deposition characteristics
but did not include other sequences. Future work can use
more sequences to obtain more information to identify MS and
NMOSD. Finally, the relatively small sample size would affect the
results of the discrimination model.

CONCLUSION

In conclusion, we have investigated the performance of QSM-
derived radiomic features of the DGM to distinguish MS
from NMOSD. The results of our study indicate that the
discrimination model with the QSM-derived radiomic features in
combination with demographic information has the potential to
classify MS and NMOSD.
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