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Abstract: Biomolecular detection methods have evolved from simple chemical processes to laboratory
sensors capable of acquiring accurate measurements of various biological components. Recently,
silicon nanowire field-effect transistors (SiNW-FETs) have been drawing enormous interest due to
their potential in the biomolecular sensing field. SiNW-FETs exhibit capabilities such as providing
real-time, label-free, highly selective, and sensitive detection. It is highly critical to diagnose infectious
diseases accurately to reduce the illness and death spread rate. In this work, a novel SiNW-FET sensor
is designed using a semiempirical approach, and the electronic transport properties are studied to
detect the COVID-19 spike protein. Various electronic transport properties such as transmission
spectrum, conductance, and electronic current are investigated by a semiempirical modeling that
is combined with a nonequilibrium Green’s function. Moreover, the developed sensor selectivity is
tested by studying the electronic transport properties for other viruses including influenza, rotavirus,
and HIV. The results indicate that SiNW-FET can be utilized for accurate COVID-19 identification
with high sensitivity and selectivity.

Keywords: COVID-19; FET biosensor; semiempirical modeling

1. Introduction

For the last twenty years, various nanomaterials including nanogaps, nanotubes,
nanowires, nanoparticles, and nanoscale films [1–6] have attracted researchers’ interest due
to their potential for designing nanoscale sensors. Various nanoscale sensing methods have
been utilized in biological applications and research. Precise and rapid detection mecha-
nisms are required to monitor living systems. The major factors in designing and fabricating
the biomolecular sensors are a low cost, quick and accurate results, and high sensitivity
and selectivity. Field-effect transistors (FETs) have potential in sensor applications due to
their ability to translate the molecule’s interaction with the sensor to readable signals in
real time [7–9]. Recently, various semiconducting materials types such as nanowires [10,11]
and carbon materials [12,13] have shown promise in the fabrication of field-effect transistor-
based sensors. Carbon-based sensors have been developed for different applications such
as glucose concentration detection [14], DNA hybridization [15,16], antigen–antibody in-
teractions [10,17,18], and cancer biomarkers detection [19,20]. Despite the advantages of
carbon-based sensors such as carbon nanotube (CNT) FETs in biomolecular applications,
several limitations were identified in the fabrications processes and applications as well.
The fabrication of CNT-FETs with both metallic and semiconducting elements still requires
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enhancements in nanoelectronics. The sensing techniques involving field-effects are com-
plex [21,22], including Schottky barriers [23], and electron transfer [21]. On the other hand,
the sensing mechanism of silicon nanowire field-effect transistor (SiNW-FET) sensors is
straightforward [24,25] due to the direct interaction between the SiNW-FET and the target
in solution.

The silicon industry is well-developed, with mature processing and fabrication meth-
ods. Such a mature industry enables the fabrication of SiNWs with different shapes [26],
dopants [27], and sizes [28,29]. SiNWs performance shows a high reproducibility because
it can be monitored during the wire growth.

Silicon is vastly utilized in modern microelectronic devices. Various theoretical and
experimental works have been carried out to understand the properties and the structures
of silicon clusters doped with transition-metals (TM) [30,31]. These clusters are useful
for solar cells, lithium-ion batteries, silicon-based catalysts, and cluster assembled ma-
terials. Single TM-atom-doped silicon clusters have special geometric structures, novel
electronic properties, and special magnetic characteristics such as ferromagnetism and
anti-ferromagnetism. The electronic properties can be modified by varying the central
metal atom [30,31].

SiNWs’ doping, mobility, and density can be determined in advance. It is highly im-
portant to detect infectious diseases accurately to monitor their spread rate and implement
various methods of epidemiological control. One of the rapid virus detection techniques
is reverse transcription-polymerase chain reaction (RT-PCR) which requires less than one
day and provides a high sensitivity [32]. Moreover, the quick antigen detection test can be
used for influenza virus diagnosis within 30 min, but this method has a lower sensitivity in
comparison with RT-PCR. Biomolecular detection methods can be categorized based on
their labeling requirements.

All labeling techniques are considered expensive, cumbersome, and time-consuming [33].
Field-effect transistors have been attracting massive attention because of their label-free
detection, real-time response, high sensitivity, and compact size [32,34,35]. Lately, various
kinds of silicon-based sensors have been utilized for the various types of detection including
viruses, proteins, DNA, and ions [36–41]. One of the essential limitations of the mentioned
methods is the possibility of false positive results. In biological research, SiNW-FETs
are utilized for various types of detection including viruses, cancer biomarkers, small
molecules, and DNA sequence. Quick, cheap, and robust analytical methods that are
capable of detecting viruses accurately are critical for the enhanced control and prevention
of infections.

Coronavirus disease 2019 (COVID-19) is a rapidly spreading virus that causes an acute
respiratory syndrome in humans and can cause death. COVID-19 infection was classified
as a pandemic by the World Health Organization (WHO). The early diagnosis of COVID-19
is critical to contain the outbreak. COVID-19 consists of four structural proteins: spike
protein, nucleocapsid, matrix, and envelope [42]. The spike protein is the target molecule
since it decorates the exterior of the COVID-19 virus, and it is the first part that will interact
with the biosensor.

The overall aim of our current research was to develop a SiNW FET sensor for COVID-
19 detection, study the electronic transport properties (i.e., transmission spectrum, conduc-
tance, and current) while interacting with COVID-19 in comparison with other types of
viruses. The specific aim of the current simulation work was to assess the feasibility of a
SiNW-FET biosensor for the detection of COVID-19 viral particles before proceeding to
its fabrication.

The semiempirical modeling approach was used to capture the COVID-19 viral par-
ticles on the sensor surface. A specific antibody was used to detect the COVID-19 spike
protein. We demonstrate that the SiNW-FET biosensor should be capable of detecting
COVID-19 viral particles with high sensitivity.
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This study is a proof of concept that the designed SiNW-FET can be used as a sensor
for COVID-19 virus detection. This work was able to find a unique electronic signature and
detect COVID-19 antigen using the designed sensor.

The novelty in this article is based on the use of the SiNW-FET for the first time as a
sensor to detect the COVID-19 spike antigen. Moreover, a semiempirical model was used,
which was an extension of the extended Hückel approach with a self-consistent Hartree
potential. The semiempirical model has the advantage of a lower computational cost and
the possibility to use it in parallel with an experiment where the model can be fitted to get
accurate results [43].

2. Materials and Methods
2.1. Sensor Setup and Configuration

The Quantumwise Atomistix ToolKit (ATK) with the graphical user interface Virtual
NanoLab (VNL) was used to set up the SiNW-FET [44]. The simulation and modeling of
the SiNW-FET with a gate dielectric of silicon dioxide was generated.

Figure 1 illustrates the sensor configuration, which consisted of three regions, the
source, drain, and channel, and the gate electrode placed underneath the channel. The
silicon nanowire edges were saturated with hydrogen. The silicon nanowire was oriented
in the (100) direction where the two ends of the nanowire were doped to get an n-type
doping concentration of 4 × 1019 cm−3 in the source and drain regions.
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Figure 1. (a) Schematic representation of SiNW-FET composed of source, drain, channel, and gate
underneath the channel. The source and drain are doped with n-type dopants and the gate consists
of two layers: a dielectric layer and a metallic layer. (b) ATK-VNL view of the SiNW-FET. Silicon—
yellow; hydrogen—white.

The gate was made of two layers: a dielectric layer of SiO2 with a relative dielectric
K = 3.9 and a metallic layer. The metal layer can be made of palladium, platinum, iridium,
or rhodium. However, ATK-VNL does not provide the option to select the metal type. The
SiNW-FET channel had an approximate width of 57 Å and length of 75 Å. These dimensions
were selected due to the number of atoms and the size of the COVID-19 target molecule. A
pair of 12 Å electrodes was connected at the edges of the channel.

Moreover, it is worth noting that QuantumATK provided computational details for
nanoscale sensors, which could be used as a proof of concept to support the experiment
based on bigger size sensors.
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For the simulation, the Si crystal orientation (111) in the orientation of the nanowire
was used. All atomic locations and the lattice constant were optimized. The reactive
dangling bonds on silicon atoms were passivated with hydrogen to enhance the material’s
stability and lifetime [45]. These dangling bonds can modify the bandgap energy of the
material, which affects its semiconductor properties.

Figure 2 shows the SiNW-FET with the spike protein and a top view of the channel
to study the variation on the electronic transport properties. The atomic coordinates and
structure factors for the virus and antibody are taken from the RCSB Protein Data Bank [46,47].

Figure 2. (a) Schematic diagram of the SiNW-FET for the detection of the spike protein. (b) ATK-VNL
view of the SiNW-FET with spike protein placed on top of the channel.

In the simulation, the antibody–antigen binding structure was utilized. The PDB
ID of (Spike protein) is 2IEQ [46] while the PDB ID of (COVID-19 virus spike receptor-
binding domain complexed with a neutralizing antibody) is 7BZ5 [47]. The second structure
consisted of neutralizing antibodies binding to the spike glycoprotein receptor of COVID-19
virus. Moreover, the SiNW-FET selectivity was studied where the whole virus was used for
HIV, rotavirus, and influenza. The PDB ID for each of the viruses is as the following: for
HIV, 4XFZ [48]; for rotavirus, 3MIW [49]; and for the influenza virus,1EA3 [50].

The concentration of the antibody and antigen on the SiNW-FET was kept low (one
molecule) to reduce the required time to conduct the simulation. Although a low concen-
tration of the target molecules was used in the simulation, each one of the IV curves took
more than three weeks to generate with HPC. The current variation and sensitivity was
expected to be more obvious with a higher concentration of the target molecules as shown
in our previous work [51].

Figure 3 shows the SiNW-FET coated with an antibody against the spike protein of
the COVID-19 virus to detect the binding of the spike protein to the antibody by analyzing
the variation in the electronic transport characteristics. The spike protein separately and
the spike protein bound to the spike antibody were detected via SiNW-FET. During the
electronic transport calculation of the simulated biosensor, a 1 V gate potential was fixed
and a DC bias voltage of 0.1 V, 0.2 V, 0.3 V, and 0.4 V was applied to the source and drain.

This study was a proof of concept that the designed SiNW-FET could be used as a
sensor for COVID-19 virus detection. The antibody was only used with the COVID-19
spike target and it was not added for the other viruses such as HIV and rotavirus due to the
complexity of calculations and time required. The results indicated that the sensor showed
the highest variation in current due to the COVID-19 spike protein antigen in comparison
to the other types of viruses such as HIV, rotavirus, and influenza virus. Moreover, the
variation in current due to the binding between the spike protein antigen and antibody
of the COVID-19 virus was studied. In the experiment, the COVID-19 spike antibody
was used to ensure the sensor selectivity to the COVID-19 spike antigen [42,52,53]. It was
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expected that the target molecules of COVID-19 spike antigen would bind to the COVID-19
spike antibodies, whereas the other viruses would not bind to the antibodies.

Figure 3. (a) Schematic diagram of the SiNW-FET coated with spike antibody for the detection of the
spike protein. (b) ATK-VNL view of the SiNW-FET with a spike antibody bound to the spike protein.

2.2. Computational Methodology

In this work, ATK with VNL was used to design the SiNW-FET sensor and to conduct
the study. ATK-VNL has various built-in calculators which use various methods to generate
the electronic parameters of the simulated sensors. The simulation work was performed by
utilizing a semiempirical modeling.

To generate the biosensor electronic transport characteristics, NEGF+SC-EH simula-
tions were performed via the ATK-SE semiempirical model. The utilized semiempirical
model is an extension of the extended Hückel method [43]. The sensor performance was
analyzed using the nonequilibrium Green’s function combined with the self-consistent
extended Hückel (NEGF+SC-EH) method. Several electronic properties were studied in-
cluding conductance, transmission spectrum, and the electrical current of the sensor before
and after placing COVID-19 on its surface. This study produced a unique current for each
virus placed on the sensors’ surface.

A high-performance computing (HPC) environment was used to speed up the simula-
tion process. Seven computing nodes were used, each one having 36 cores. In total 252 cores
were used to conduct the simulation. The ATK-VNL workflow started by using the ATK
builder tool to form the device structure. Then, the designed structure was generated as
a python script via the script generator. The script generator enabled the addition of an
inbuilt calculator with the required parameters to analyze the nanodevice. The scripts were
generated as a python code that could be modified and edited to conduct the required
simulations. In the last step, the python script was sent to the job manager to be run on the
HPC environment. The output files generated were analyzed and viewed.

The various electronic transport characteristics of the sensor can be generated, after
obtaining the self-consistent nonequilibrium density matrix. The transmission spectrum
is one of the most notable transport properties of the system from which the current
and conductance are calculated. The transmission coefficient T at electron energy can be
obtained from the retarded Green’s function [54].

The zero-bias transmission spectrum between the source and the drain was calculated
using Equation (1) [55,56]:

T(E) = Tr
{

ΓD(E)G(E)ΓS(E)G†(E)
}

(1)
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where E is the energy, Tr is the trace, ΓD, S(E) = i [∑L, R(E)− ∑†
S, D(E) ] describes the

broadening level because of the coupling to the electrodes, and ∑L, R(E), ∑†
S, D(E) are the

self-energies presented by the electrodes.
The charge transport properties were computed by the semiempirical model based

on SE-EHT [57] to acquire valid results. The semiempirical model has the advantage of a
low computational cost and low computational time [58]. The two main quantities that
illustrate the electron transport efficiency were the conductance and current, which were
proportional to the transmission probability between the source and the drain based on the
Landauer formula [59]. The total current was expressed by Equation (2) [56]:

I =
2e
h

∞∫
−∞

T(E, Vb)[ fL(E − µL)− fR(E − µR)] dE. (2)

E refers to the energy, T(E, Vb) refers to the transmission matrix which could be
generated from the molecular energy levels and their coupling to metallic leads. fL refers
to left electrode Fermi function, while fR refers to the right electrode Fermi function. E
refers to the energy in the conducting level, µL and µR are the energy potentials released
or absorbed during the electron transition phase or chemical potential at the left and right
electrodes, and the factor 2 relates to the spin degeneracy.

The conductance could be calculated from the transmission spectra as shown in
Equation (3) [55,56]:

G =
2e2

h
T (3)

where T refers to the overall transmission probability which is the summation of all possible
transmission channels. h refers to Planck’s constant, and e refers to the electron charge.

A geometry optimization was performed before generating the electronic transport
properties for the developed sensor. The density functional theory was employed for
the geometry optimization where a Perdew–Burke–Ernzerhof parameterization of the
generalized gradient approximation was used. The cut-off energies were set to 125 Ha and
the k-points sampling were set to 1 × 1 × 11.

To generate the biosensor electronic transport characteristics, NEGF+SC-EH simu-
lations were performed via the ATK-SE package. To take into consideration the applied
bias voltage effect, the SC Hartree potential was used [43] in the conventional EH model.
The NEGF+SC-EH model in the ATK-SE package was illustrated in [43]. The Fermi level
of the left and right electrodes was generated self-consistently. The grid mesh cut-off
energy was 20 Hartree, while 2 × 2 × 50 k-points were selected. The Poisson equation was
employed, where the Dirichlet boundary condition was used in the C direction and the
Neumann boundary conditions were employed in the A and B directions [60]. A, B, and C
are indictors for the A-, B- and C-direction as displayed in Figure 1b.

2.3. Sensing Methodology

Figure 4a shows the SiNW-FET which consists of three terminals (source, drain, and
gate) and a semiconducting channel. The channel connects the source and drain electrodes
while the gate modulates the conductance via an applied electrical potential. The sensing
element of the SiNW-FET is the channel that alters the current due to the placement of
the target molecule. The SiNW-FET has a recognition molecule (spike antibody) attached
to the channel surface as displayed in Figure 4b, which specifically detects the target
molecule (spike protein) as displayed in Figure 4c leading to variation in the sensor current
as displayed in Figure 4d. Before generating the current, it is highly critical to modify the
sensor surface to enhance the nanodevice sensitivity. The SiNW-FET channel was modified
and coated with the COVID-19 spike protein antibody.
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Figure 5 displays the working principle of the developed sensor. Figure 5a displays the
n-type SiNW-FET where the electrodes are n-doped, while the channel is semiconducting.
The COVID-19 spike protein antibody is immobilized to the SiNW-FET channel to capture
the target COVID-19 spike protein molecule. Figure 4b shows that when the negatively
charged target molecule binds the n-type SiNW-FET biosensor, a depletion of the charge
carriers occurs leading to a decrement in the electrical current.
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3. Results

To investigate the selective identification of the COVID-19 spike protein using the
SiNW-FET biosensor, the COVID-19 spike protein antibody was immobilized on the SiNW-
FET channel. The current was then generated for the SiNW-FET with and without the
COVID-19 spike protein. The electronic transport behavior was investigated as below.
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3.1. Transmission Spectrum

The transmission coefficients T(E) was generated for an energy range between −2
and 2 eV, and four biases V = 0.1, 0.2, 0.3, and 0.4 V at a 1 V gate potential, with results
presented in Figure 6. The energy domain −2 to 2 eV has 200 sampling points. For the
Hückel basis set, the empirical potentials “Cerda. Silicon [GW diamond]” basis sets were
chosen for silicon. They were fitted to GW calculations, which gave an excellent description
of the silicon band structure including the value of the bandgap.
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The transmission spectra at different biases are displayed in Figure 6 as a function
of the electronic energy for the SiNW-FET with and without the required molecules. The
green curves show the SiNW-FET transmission spectra while the red curves show the
SiNW-FET transmission spectra due to the COVID-19 spike protein (Figure 6a) and due to
the bounding between the spike antibody and spike protein (Figure 6b). The SiNW-FET
has enhanced transmission for the charge carriers before placing the target molecules. The
spike protein is negatively charged, which results in the depletion of the charge carriers for
the SiNW-FET.

Moreover, the transmission spectra show the central semiconducting SiNW-FET chan-
nel where the transmission has low values between −1.4 and 0.02 eV of energy due to
the absence of energy levels within this area. The change in the transmission spectra due
to the addition of the COVID-19 spike protein has changed the total electric current of
the SiNW-FET.
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3.2. Conductance and Current

The presence of the spike protein can be detected as a function of the change in con-
ductivity and current of the SiNW-FET biosensor. Th SiNW-FET sensor was tested for
different types of viruses. The variation in the current was used to evaluate the sensor
performance. The change in the current was calculated as the current for the sensor due
to the placement of the target molecule minus the current of the bare sensor. The drop of
the drain current of the SiNW-FET sensor after placing the target molecule was due to the
negatively charged spike protein, which induced excess hole carriers. Figure 7a reveals that
the bare SiNW-FET has higher conductance than the SiNW-FET + COVID-19 antigen or the
SiNW-FET + COVID-19 antibody + COVID-19 antigen. The addition of the antigen or anti-
gen and antibody together modifies the surface of the SiNW-FET resulting in a conductance
reduction. The decrement in the SiNW-FET mobility occurred due to additional sources of
dispersion of the charge carrier. This variation in conductance results in a unique signature
due to the physical and chemical structures of the target molecule. The COVID-19 spike
protein is negatively charged, which binds with the antibody resulting in a decrement in
the conductance and current response. SiNW-FET shows a maximum conductivity at 0.2 V.
Thereafter, the conductivity gets reduced. The reduction in conductance at 0.3 V is due
to the negative differential resistance. Figure 7a shows the conductance while Figure 7b
shows the current–voltage curves for the SiNW-FET at 0.1, 0.2, 0.3, and 0.4 V before and
after placing the COVID-19 spike protein. The variation in current due to the COVID-19
placement on the biosensor channel indicates the successful detection of the COVID-19
virus. The adsorbed spike protein interacts with the SiNW-FET channel and modifies its
conductivity by modifying the carrier’s concentration.

Figure 7b shows the drain current (Id) versus the drain–source voltage (Vds) for the
SiNW-FET at room temperature before and after placing the COVID-19 spike protein.
The gate potential was fixed at 1 V while the Vds was set to 0.1, 0.2, 0.3, and 0.4 V. The
simulated sensor was an n-type transistor where fixing a positive gate potential increases
the conduction of electrons within the transistor channel leading to an increment in the
drain current.

A nonlinear resistance results in a nonlinear IV curve. Examples of passive nonlinear
devices are diodes, transistors, and thyristors. The nonlinear relation is due to using
silicon as the semiconducting material, which results in a nonlinear resistance leading to a
nonlinear IV curve. Moreover, the reduction in conductance at 0.3 V caused by the negative
differential resistance.

Figure 8 shows the variation of current at Vds = 0.1, 0.2 0.3, and 0.4 V at Vg = 1 V
when the sensor was exposed to the COVID-19 spike protein. It is observed in Figure 7b
that the current drops due to the placement of the COVID-19 spike protein. This variation
of current is utilized to inspect the sensor performance. The current drop is due to the
negatively charged spike protein, which induces excess hole carriers. Various studies have
reported that the adsorption of the COVID-19 spike protein by the channel reduces the
current since the holes concentration increases compared to the electrons [25,32,42]. Thus,
the SiNW-FET electrical resistance increases due to holes trapping the electrons, leading to
a current decrement. The difference in drain current (∆I) is larger when the bias voltage
is increased. Figure 8 depicts that the ∆I increase is due to an increment of bias voltage.
Moreover, Figure 8 shows that functionalizing the SiNW-FET channel with the COVID-19
antibody results in a higher variation in current and a higher sensitivity to the COVID-19
spike protein.

Both the negative charge of the antibody and antigen and the adsorption of the
molecules (antibody and antigen) lead to a unique variation in the electrical current of
the SiNW-FET. Each molecule has a unique electronic state, size, and interaction with
the SiNW-FET channel. Each molecule density of states contribution at the Fermi level is
unique due to the different spatial extension of the molecule.
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Figure 8. Variations in the electrical drain current due to the COVID-19 spike protein.

Previous experimental work showed that functionalizing the transistor with antibody
resulted in a slight variation in current [42]. Thus, the simulation work did not include the
results of SiNW FET + antibody, to avoid the computational cost. The effect of functionaliz-
ing the sensor with antibody was expected to be small, which would result in slight changes
in the current [42]. The spike antibody was essentially added to ensure the selectivity of the
sensor to COVID-19 spike antigen. Moreover, it resulted in a slight increment in current
variation, which meant a higher sensitivity. Thus, the addition of the COVID-19 spike
antibody resulted in a higher sensitivity and selectivity.

The field-effect transistor’s temperature-dependent conductance displayed in Figure 9
shows an initial decrease in conductance as a function of temperature. The conductance
increases at the Fermi level due to the electron tunneling. At higher temperatures, the
conductance increment starts stabilizing. Figure 9 shows that at 300 K and higher, the FET
conductance is stable.
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In the designed sensor, the optimal results were generated when the bias potential
was fixed among the left and right electrodes (+0.15 and −0.15 eV). Fixing the bias voltage
at 0.3 V resulted in the best sensitivity readings. The orientation effect of the protein and
of the antibody was expected to be very small and should not affect the readings. Each
molecule had a unique chemical and physical structure, which affected the sensor current
in a unique way resulting in a unique signature. This study was a proof of concept that
the designed SiNW-FET could be used as a sensor for COVID-19 virus detection. The
results were obtained by using the most common orientation where the antibody was on
the channel surface and the antigen was bound to the antibody. This led to a distinctive
current for each type of virus.

The SiNW-FET was tested against other viruses such as influenza, rotavirus and
HIV to analyze its selectivity. The sensor’s response (variation in current) is displayed in
Figure 10. The highest change in electrical signal was when the sensor was exposed to
COVID-19. These results demonstrate a high selectivity for the SiNW-FET to COVID-19.
The electrical potential and charge changes at the SiNW-FET surface are due to their binding
or adsorption of charged target molecule, which alters the density of charge carriers in the
channel. Thus, the channel current and conductivity among the source and drain change [7].
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COVID-19 consists of four structural proteins: the envelope, spike, matrix, as well as
the nucleocapsid. Among these four proteins, the spike protein is the best part to detect
because it is highly immunogenic, and a major transmembrane protein [42]. Moreover, the
spike protein enables the specific detection of the COVID-19 virus since it has amino-acid
sequence diversity [42,61]. Thus, a spike antibody was designated as a receptor to detect
the virus in this work. Receptor molecules (spike antibodies), immobilized on the SiNW(s),
were used to recognize a particular target with a SiNW FET biosensor. The binding of the
negatively charged spike protein antigen to spike antibodies changed the conductance of
the semiconducting channel. For an n-type SiNW FET biosensor, the negatively charged
target spike protein antigen produces a depletion of charge carriers within the whole
cross-section of the device leading to a low source–drain current. The antibody molecule is
immobilized to the channel surface and can selectively detect and capture the target spike
protein antigen. The negatively charged spike protein antigen binds to the receptor (spike
antibody) on the channel of the n-type sensor leading to a depletion of the charge carriers
inside the SiNW, leading to a decrement in electrical current [24,25]. It is noticed that
the current variation was slightly higher for the spike protein antigen bound to the spike
antibody compared to the spike protein antigen only. The spike protein antigen bound
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to the spike antibody had a higher negative charge than the spike protein antigen only,
resulting in a higher variation in current. This novel biosensor used the change in current,
conductance, and transmission spectra to detect the target molecule. The simulation results
showed significant variations in the current, conductance, and transmission spectra in the
presence of the spike protein target molecule. These variations in the mentioned parameters
were utilized as the identification signal to design a physical biosensor.

4. Conclusions

In this work, a silicon nanowire field-effect transistor (SiNW-FETs)-based biosensor
was developed and functionalized with anti-COVID-19 spike protein antibody for the
detection of COVID-19 viral particles using a semiempirical modeling approach. The
SiNW-FET consisted of two electrodes, a channel, and a gate, where the charge transport
properties were studied and analyzed. The simulation results showed a significant variation
in the current, conductance, and transmission spectra in the presence of the COVID-19
spike protein as the target molecule. Moreover, the designed sensor should be able to
differentiate the COVID-19 spike protein from other viruses such as influenza, HIV, and
rotavirus. The results demonstrated that the SiNW-FET biosensor had the potential to
successfully detect the COVID-19 virus.
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