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ABSTRACT Extracellular vesicles (EVs) are subcellular carriers of bioactive compounds
with a complex array of functional effects on target cells. In mammals, circulating bodily
fluid microbiota EVs (mbEVs) deliver cargo from source cells and adversely or favorably
alter the physiology of the same source, neighboring, and distant recipient cells in an
autocrine, paracrine, or endocrine fashion, respectively. Plant mbEVs may similarly medi-
ate these interactive effects within the holobiont framework. However, the majority of
plant EV research has focused on a small number of individual microbes, thus fail-
ing to reflect the importance of EVs in a community and consequently leaving a
wide gap in scientific knowledge. Addressing this gap should entail a systems-
level approach that combines vesicle characterization with microbiome analyses.
This would certainly usher in a new age in microbial biotechnology entailing EVs
as a microbiome manipulation strategy, a biomarker for stable microbiomes, and
a diagnostic tool for plant infectious diseases.
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One of the most pressing agricultural challenges of the 21st century is improving
crop yield and quality. Efforts to address this challenge vary but often entail the

use of microbiota (i.e., microbial consortia of commensal, symbiotic, and pathogenic
microorganisms). However, lifting the veil on microbial community dynamics to opti-
mize plant production is not straightforward since diverse factors, including plant
health and the environment, affect community composition. In turn, plant commu-
nity relationships rely heavily on intricate systems for effective resource allocation
and communication, one of which is embodied by extracellular vesicles (EVs).

EVs are lipid bilayer-enclosed nanoparticles of about 30 nm to several micro-
meters in diameter. They facilitate the intercellular transfer of molecules from source
cells over short and long distances, which are then absorbed by recipient cells via
membrane fusion and endocytosis. EV-based communication systems are well
understood in mammals, where their release can be deregulated in diseased but
not healthy cells (1), suggesting that EVs have tremendous therapeutic and diagnos-
tic potential.

Because EVs tend to mirror their donor cell features and functions, albeit to vari-
ous degrees (1), they are likely to have a lot in common with their donor microbiota.
As a result, microbiotic EVs (mbEVs) could aid in a variety of advantageous outcomes
in plants, including nutrient uptake, detoxification of harmful compounds, and the
secretion of antimicrobials and volatiles that inhibit infection. The study of EVs from
microbiomes is thus extremely relevant, especially given the intimate relationship
between microbiota and plant host cells.
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BIOGENESIS, COMPOSITION, SUBTYPES, AND ROLES OF VESICLES

For decades, EVs have been perceived as nothing more than disposal bags of cellu-
lar debris, but recent findings suggest they are, in fact, multifunctional shuttles of a
wide range of cargo destined to cross biological membranes (1). Cargo can be carried
both on the cell surface as transmembrane factors (e.g., tetraspanins, integrins, and
lipid rafts), and internally (e.g., proteins, polysaccharides, lipids, metabolites, and
nucleic acids). EV production has been reported from all domains of life but is well
understood in bacteria and eukaryotes. In bacteria, vesicles are generally released dur-
ing bulging-out of the outer membrane, resulting in outer membrane vesicles. The
same principle may apply during the release of eukaryotic EVs (microvesicles and apo-
ptotic bodies) from plasma membranes (1). However, intraluminal vesicles emerge by
reverse budding from late endosomal compartments, giving rise to EVs known as exo-
somes (1). Other types of EVs include a double membrane-bound exocyst-positive or-
ganelle identified in Arabidopsis thaliana and Nicotiana tabacum (2), pollensomes that
were described originally from germinating Olea europaea pollen grains (3), Ms-vesicles
produced by mycosomes of certain endophytic fungi during an apparent cell wall-less
protoplast phase (4), aflatoxigenic vesicles (aflatoxisomes) involved in extracellular
export of aflatoxin in Aspergillus parasiticus (5), exomeres, representing nonmembra-
nous nanoparticles of tumor cell lines (6), and mitovesicles, representing vesicles asso-
ciated with mitochondrial origin and dysfunction (7). This diversity in vesicle subtypes
clearly demonstrates that EVs impart diverse functions and have a complicated subcel-
lular origin.

EV functions stem from cargo internalized from source cells in a source-sink fashion,
which is then delivered to recipient cells. As such, cargo loading is tightly regulated by
the source cell (1), which can compositionally overlap the EVs it releases. However, fac-
tors such as uneven membrane invagination and genetics can result in selective cargo
loading and compositional differences between EVs and their source cells. Moreover,
EVs may be biased toward delivering certain types of cargos, such as in the case of
small RNAs (sRNAs), whereby such bias is partly due to sRNA size, high abundance, fre-
quent interaction with membranes, and cytoplasmic rather than nuclear localization
(8). Various other RNAs are also carried by plant and fungal EVs during trans-kingdom
bidirectional gene regulation (9), which is currently being exploited for practical pur-
poses such as field protection of crops against and prevention of postharvest losses
due to pests and pathogens (10, 11).

In addition to RNAs, other EV cargos have been identified, many of which promote
microbial pathogenesis, virulence, and microbial competition (12). Additionally, some
of the microbe-derived EV cargos are immunogenic and mimic microbe-associated
molecular patterns (e.g., EF-Tu and polysaccharide A). As such, upon EVs making con-
tact with host surface-localized pattern recognition receptors, these cargos can induce
defensive immunity and EV-induced defense-related gene expression (13), which in
turn keeps the plant immune system on high alert for future invaders. There are many
similar instances where EV-associated cargos exert effects on host immune responses
(12), hinting at the conserved immunomodulatory effects of EVs across microbial spe-
cies. Therefore, there is a good chance that mbEVs also carry some immunogenic car-
gos in addition to cargo generally involved in plant-microbe interactions.

VESICLES CONTRIBUTE TO PLANT-MICROBIOME FUNCTIONING

EV-mediated benefits to plant-microbiome functioning, some of which are briefly
discussed in Table 1, can be uncovered primarily through EV isolation and characteriza-
tion. EV composition may mirror the physiochemical impacts of microbiomes on
plants, and its analysis can enhance our understanding of how microbial communities
boost fitness and competitiveness over nutrients and favorable plant microniches
remotely from EV donor microbes. A similar event occurs in mammals whereby circu-
lating tumor-derived EVs remotely alter the behavior of neighboring cells to aid pro-
gression (14). Therefore, isolation and manipulation of biodistributed EVs from
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microbial communities can be a useful tool for studying diverse community functions
in complex eukaryotic systems.

EVs further facilitate beneficial communication between eukaryotic hosts and their
microbiomes. For instance, colonic epithelial cell-derived vesicles facilitate the produc-
tion of host-beneficial compounds by gut microbial communities (15). It is likely that
mammalian mbEVs produced by gut flora microbes also distribute vital resources via
body fluids to influence important host physiological functions (12). Indeed, microbe-
derived EVs reportedly distribute vital resources within microbial communities, and
this enhances certain virulence factors, including biofilm formation (16). This means
that plants may similarly undertake EV-mediated communication with resident
microbes. This was demonstrated with ginger-derived EVs that affect the composition
and location of gut microbiota, as well as host physiological functions (17). EV-medi-
ated communication also has been observed in microbes thriving at the extremes (18),
suggesting communities containing these and apparently unculturable microbes, too,
may launch EVs into plant tissues, thereby enabling remote modification of their
microenvironments. This suggests that EV characterization is crucially relevant for
studying microbiomes thriving at extreme environments, especially from unculturable
microbial species presenting a significant hurdle to fully functionalizing microbiomes.
The convergence of EV and microbiome analyses will therefore enrich our knowledge
of mechanisms underlying plant-microbiota interaction.

ENDOPHYTES AS A CASE STUDY IN PLANT-MICROBIOTA-VESICLE LINKS

Plants and endophytes have a mutually beneficial relationship, but precisely how
EVs mediate this relationship is undocumented. We aim to address this gap in knowl-
edge by investigating EV-mediated interactive strategies employed by plants and their
endophytes, which is motivated in part by the following factors: (i) it is not novel to
find EVs during plant-endophyte interaction, and in fact, several ultrastructural analy-
ses have detected late endosomal EVs at the plant-endophyte barrier (19), which impli-
cates EVs in the bidirectional trans-kingdom movement of cargo; (ii) mbEVs from

TABLE 1 Overview of extracellular vesicle functions that can be exploited in agricultural biotechnology
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endophytes colonizing the root apoplast can be isolated using protocols typically
adapted for EV isolation from the leaf and root apoplast (20, 21); and (iii) these mbEVs
will potentially coisolate with plant apoplastic EVs since their donor microbes also
occupy the apoplast (e.g., 22). These mbEVs may contain molecular marker genes that
enable microbial identification, such as 16S rRNA and internal transcribed spacer (ITS)
regions (12). Indeed, microbial taxa have been successfully delineated up to the genus
level using EV-associated 16S rRNA from biofluids (23), highlighting the utility of EVs in
species identification. As a result, characterizing root-isolated EVs will allow us to iden-
tify endophytes participating in EV-mediated communication with plants. In this way,
isolation of endophytic mbEVs represents an important step toward gaining functional
insights into endophytes’ contribution to plant survivorship and the partners’ coevolu-
tionary trajectories.

EMERGING OPPORTUNITIES

Expanding upon the EV link between plants and their associated microbiomes for
ultimately facilitating broad implementation of microbiome-based biotechnology in agri-
culture represents an intriguing opportunity. The extensive signal exchanges between
microbial communities and plant host cells would certainly be reflected in community-
released EVs. Therefore, integration of microbiome with EV studies would not only
enhance microbial community profiling through molecular “omics” (e.g., genomics, pro-
teomics, transcriptomics, and metabolomics), but would also fuel a cascade of agricul-
tural applications (Table 1). This is particularly feasible since mbEVs characterized from
microbiota can be manipulated for exogenous use by exploring a range of benefits,
including using mbEVs as vaccines against plant infectious diseases, as priming agents
for enhanced field performance, or as EV transplants for microbiome manipulation
(Table 1). However, although mbEVs are worthy of examination, reliably forecasting the
caveats and opportunities for their future in microbiome science is not yet possible. Also,
before the application side of this proposition is in full swing, certain issues (e.g., repro-
ducibility, precision targeting, scalability, and EV production formats) must be addressed.
Nevertheless, the vast majority of studies daring to venture into plant-microbiota-EV
links will contribute to unleashing the inherent microbial community potential. This
would facilitate a dialogue between scientists across regional and international borders
actively involved in the study of EVs and microbiomes to sustainably contribute to the
quality of life using agricultural biotechnology.
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