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Abstract: Large-scale metabolomic studies have become common, and the reliability of the peak
data produced by the various instruments is an important issue. However, less attention has been
paid to the large number of uncharacterized peaks in untargeted metabolomics data. In this study,
we tested various criteria to assess the reliability of 276 and 202 uncharacterized peaks that were
detected in a gathered set of 30 plasma and urine quality control samples, respectively, using capillary
electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). The linear relationship between the
amounts of pooled samples and the corresponding peak areas was one of the criteria used to select
reliable peaks. We used samples from approximately 3000 participants in the Tsuruoka Metabolome
Cohort Study to investigate patterns of the areas of these uncharacterized peaks among the samples
and clustered the peaks by combining the patterns and differences in the migration times. Our
assessment pipeline removed substantial numbers of unreliable or redundant peaks and detected
35 and 74 reliable uncharacterized peaks in plasma and urine, respectively, some of which may
correspond to metabolites involved in important physiological processes such as disease progression.
We propose that our assessment pipeline can be used to help establish large-scale untargeted clinical
metabolomic studies.

Keywords: cohort study; metabolomics; capillary electrophoresis-mass spectrometry

1. Introduction

Large-scale metabolomic studies using human samples, including cohort studies,
have been conducted to discover metabolites associated with specific biochemical or
physiological conditions. Identification and quantification of a large number of metabolites
are the most important procedures, and quality control of the observed data is also an
ineluctable process for obtaining reliable and reproducible data. Among the various
metabolite profiling technologies, nuclear magnetic resonance and mass spectrometry (MS)
have been commonly used in various cohort studies [1].

Two types of analytical approaches have been used for profiling metabolites. Targeted
analysis is an established approach that has been used to analyze pre-defined metabolite
sets. Usually, a standard compound for each metabolite is used to identify the correspond-
ing peak, and compound-based quality assessment methods have been developed [2,3].
Conversely, untargeted metabolomics approaches aim to analyze all observed signals
measured by an instrument [4]. However, this approach has two major challenges: (1) iden-
tifying the metabolite for each peak (uncharacterized peaks), and (2) quality control of the
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quantification accuracy of all observed data. In this study, we focused on the quality control
issue, which has been less of a focus in previous studies. We conducted a reliability assess-
ment of uncharacterized peaks from untargeted metabolomics data to determine whether
they can be used per se as surrogates for the biochemical or physiological conditions of a
given sample without the need to identify the corresponding metabolites.

The discovery of metabolites associated with important physiological processes is
greatly influenced by the numbers of samples and types of metabolites. With untargeted
metabolomics, huge numbers of peaks can be produced. Although some of the uncharacter-
ized peaks can be correlated with cellular conditions or physiology conditions, including
diseases [5–7], most studies have focused on analyzing characterized peaks, and unchar-
acterized peaks have been ignored [8]. This is because the biological interpretation of
characterized peaks is much easier, and usually they have higher priority when the number
of metabolites that can be investigated is limited.

To analyze uncharacterized peaks efficiently, the difficulties of quality assurance and
quality control of untargeted metabolomics data must be addressed, and the quantification
of as many metabolites as possible must be attempted. The large numbers of peaks detected
from untargeted metabolomics contain a lot of noise [1,9,10]. Additionally, because the
instruments are often sensitive to various factors, metabolite levels inferred from the peaks
in chromatograms or electropherograms can vary depending on the laboratory, machine,
or even the date when the measurement was made [11,12]. Therefore, how to assure
the quality of as many peaks as possible while monitoring their patterns over sets of
measurements (i.e., batches) is an important issue [13].

Automation of peak processing has been used to measure as many peaks as possible,
and various processing tools have been developed to automatically extract peaks from raw
data [14,15]. However, it has been argued that visual inspection and manual curation of
the peaks may be necessary to ensure their quality [16,17].

Pooled quality control (QC) samples have been prepared and measured regularly
within and across batches to ensure that measurements based on detected patterns of
peaks were stable [18]. Peaks in QC samples must be representative of the peaks in actual
samples to check that each of the peaks that usually exists in the actual samples is stably
detected in the QC samples. Therefore, the number of peaks that can be analyzed reliably is
restricted by the number of metabolites in QC samples and possibly by the peak extraction
method, that is, whether it is automated or manually curated. For targeted metabolomics,
the number of metabolites also is restricted by the available standard compounds. To
determine whether the number of target peaks, including uncharacterized ones, can be
expanded to increase peak coverage with reasonable reliability and without a curation
cost, we assessed the reliability of uncharacterized peaks from capillary electrophoresis
time-of-flight-mass MS (CE-TOFMS) that were extracted automatically from the samples.

In a preliminary study, we customized our pipeline for peak assessment to analyze
metabolome data from approximately 3000 subjects who participated in the Tsuruoka
Metabolome Cohort Study (TMCS). The study was initiated in April 2012 with approx-
imately 10,000 participants from Tsuruoka, Yamagata Prefecture, Japan, with the aim of
conducting a longitudinal investigation of the metabolome profiles of the participants.
Plasma and urine samples from the participants and the standard solution were measured
by CE-TOFMS. The obtained peaks were compared manually with those in the standard
solution to identify and quantify each metabolite in each sample. The reliability of the
characterized peaks from the plasma samples was assessed using the QC and actual sam-
ples [2], and several correlation analyses between metabolites and clinical values were
conducted [19]. However, because the numbers of available standard compounds and
analysts to curating peaks were limited, only approximately 115 metabolites have been
analyzed so far. In the present study, we developed a pipeline to assess reliabilities of
automatically extracted peaks from given samples (Figure 1).
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Figure 1. Overview of the pipeline used in the present study and determination of target peaks. (a) Overview of the data 
collection and peak processing/extraction pipeline. The routine used in the Tsuruoka Metabolome Cohort Study (TMCS) 
is labeled as “TMCS core”. The other procedures are specific to the present study. In the TMCS routine, the characterized 
peaks are manually curated, whereas in the present study, the peaks were processed automatically. (b) Determination of 
target peaks using 30 randomly selected quality control (QC) samples. The peaks in the 30 gathered QC samples were 
aligned and clustered to form “peak groups” that had similar m/z and migration times (MTs). Ideally, each peak will 
correspond to a specific metabolite. (c) Overview of the peak processing/extraction pipeline focusing on the data flow for 
filtering reliable uncharacterized peaks. Our proprietary software MasterHands was used for peak extraction. 

Figure 1. Overview of the pipeline used in the present study and determination of target peaks. (a) Overview of the data
collection and peak processing/extraction pipeline. The routine used in the Tsuruoka Metabolome Cohort Study (TMCS) is
labeled as “TMCS core”. The other procedures are specific to the present study. In the TMCS routine, the characterized peaks
are manually curated, whereas in the present study, the peaks were processed automatically. (b) Determination of target
peaks using 30 randomly selected quality control (QC) samples. The peaks in the 30 gathered QC samples were aligned and
clustered to form “peak groups” that had similar m/z and migration times (MTs). Ideally, each peak will correspond to a
specific metabolite. (c) Overview of the peak processing/extraction pipeline focusing on the data flow for filtering reliable
uncharacterized peaks. Our proprietary software MasterHands was used for peak extraction.

Assessment of variations between curated and characterized peaks over different
batches has been reported previously [2]. In the present study, we evaluated the reliability
of the uncharacterized peaks using multiple approaches including rates of peak detection
in 30 randomly chosen QC samples, accuracy of quantification according to independently
pooled/diluted samples, and whether the uncharacterized peaks in the 30 randomly chosen
QC samples reflect those in the actual samples regarding the signal-to-noise (S/N) ratio.
We also investigated patterns in peak areas among the samples to find clusters of peaks
with similar patterns and therefore likely corresponding to single metabolites. Automatic
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peak extraction was one of the important procedures for our pipeline (Figure 1c), and we
used our proprietary software MasterHands [6,20] for this purpose. The computational
accuracy of the automatic peak extraction was estimated by comparing the area of char-
acterized peaks that were extracted and manually curated with those that were extracted
automatically.

Although our assessment pipeline estimated that there were a substantial number
of unreliable uncharacterized peaks, it identified 35 and 74 reliable peaks that were ex-
tracted automatically from plasma and urine samples, respectively, thus expanding the
current number of characterized peaks (approximately 115) that have been investigated
in the TMCS so far. The increased number of reliable peaks will increase the chances of
discovering other important peaks.

2. Materials and Methods
2.1. Data Collection and Computational Analyses Pipeline

An overview of the data collection and computational analyses pipeline is shown in
Figure 1a. Plasma and urine samples were collected from the participants in the TMCS.
Participants were asked for an overnight fasting (12 h) in the night immediately before the
sample collection to avoid variation due to fasting state and circadian rhythm. Plasma sam-
ples were collected in the morning with ethylenediaminetetraacetic acid-2Na (EDTA-2Na)
as an anticoagulant and kept at 4 ◦C immediately after collection. The samples were
centrifuged for 15 min (1500× g at 4 ◦C) within 3 h of collection, divided into aliquots, and
preserved at 4 ◦C until extraction of metabolites. Metabolite extraction from plasma was
finished within 6 h after collection to reduce any metabolic reactions in plasma, and then
the extract was stored at −80 ◦C.

To extract metabolites from plasma samples, 50 µL aliquots were put into 450 µL of
methanol that contained internal standards (20 µmol/L each of methionine sulfone and
camphor 10-sulfonic acid). The internal standards were used to normalize the extraction
efficiency of the metabolites during sample preparation and to calculate the concentration
for each metabolite. The solutions were mixed well, and 500 µL of chloroform and 200 µL
of Milli-Q water were added, followed by centrifugation at 4600× g for 5 min at 4 ◦C.
Then, 150 µL of the aqueous layer was transferred to a 5-kDa cutoff centrifugal filter tube
(Human Metabolome Technologies, Yamagata, Japan) to remove proteins. The filtrate was
concentrated centrifugally at 40 ◦C and reconstituted with 50 µL of Milli-Q water that
contained reference compounds (200 µmol/L each of 3-aminopyrrolidine and trimesic
acid) immediately before CE-TOFMS analysis. These reference compounds were added to
eliminate the variation in migration time of individual peaks in electropherograms among
multiple datasets.

Urine samples also were collected in the morning between 8:30 am and 10:30 am after
overnight fasting. They were frozen at −80 ◦C after collection and thawed before sample
preparation. The samples were initially vortexed for 30 s, followed by centrifugation at
2300× g for 5 min at 4 ◦C. The supernatants were transferred and diluted according to the
creatinine concentration with Milli-Q water and Milli-Q water containing internal standards
(2 mM each of methionine sulfone, camphor-10-sulfonic acid, 3-aminopyrrolidine, and
trimesic acid). The diluted samples were filtered through a 5-kDa cutoff centrifugal filter
tube (Human Metabolome Technologies). We found that a creatinine concentration of
<10 mg/dL did not cause ion saturation in the mass spectrometer. Hence, we set this
as the upper limit for diluting the urine. Additional details of sample processing and
metabolome analyses by CE-TOFMS have been described previously [5,6,21,22]. Target
peaks corresponding to approximately 115 metabolites were manually curated by two
analysts as part of the general routine in TMCS (referred to as “TMCS core” in Figure 1a)
that is described in [19]. For the present study, we organized the baseline metabolome
profiles of approximately 3000 of the participants and used them in our pipeline for
automatic extraction and assessment of uncharacterized peaks. Information related to
the metabolome analyses, including information about samples, batches, and peaks, is
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stored in our in-house database (SQLite3, available on a collaboration basis). The sample
information includes specimen type (plasma or urine). The batch information includes
measurement dates, analysts, modes of CE (cation or anion), and ID of the instrument used
for the CE-TOFMS. The stored peak features includes m/z, migration time, intensity, area,
area relative to the area of internal standards (RelArea), and S/N ratios. Manually curated
and automatically extracted peaks with their annotations were imported into the database.
A simple web-based graphical user interface was implemented using the Django interface
to browse data in the SQLite3 database. Scripts for data processing and statistical analyses
were written in Python or R.

2.2. Determining the Target Peaks

To define target peaks with a focus on uncharacterized peaks, we collected CE-TOFMS
data from 30 randomly chosen QC samples (referred to as gathered QC samples) all
from different batches (Figure 1b). The gathered QC samples were prepared by pooling
the plasma or urine samples from 10–20 participants and dividing them into aliquots;
therefore, the metabolic profiles of the QC samples could be identical. The QC samples
were intended to be used to monitor the stability and variances of the measurements. The
peaks with intensities above the S/N threshold (S/N >5) in the gathered QC samples
were detected using our proprietary software MasterHands [6,20]) and matched (aligned)
among the samples to form peak groups (Figure 1b). This procedure was done manually for
cation and anion CE modes in the plasma and urine samples. After curation, the detected
peak groups were used as the initial list of target peaks in this study. We estimated the
reproducibility of each peak as reflected by the rate of the peak detections in each peak
group. Then, we compared the average m/z and migration time of each peak group with
the list of migration times and m/z values of the metabolites that were determined using the
standard compounds to find peak groups that match the peaks of known metabolites. The
matched peaks were considered “known”, and the peaks without matches were considered
“uncharacterized peaks”; the migration times and m/z values were included in the peak
annotations. Using the MasterHands software, peaks detected with their isotope or adduct
ion peaks were considered “parent peak”, and these isotopes and adduct ion peaks were
removed from further analyses.

2.3. Automatic Peak Extraction

After the target peaks had been determined, the peaks in each sample were extracted
automatically without manual curation to obtain as many peaks as possible while saving
time. This step is important for scalability, especially for projects that generate a large
number of samples and metabolites. The automatic peak extraction procedure follows the
standard procedure of raw data processing in metabolomics [23] using the MasterHands
software, which also has been used in other studies [24,25]. A detailed description of the
MasterHands algorithm was provided in [6]. Briefly, electropherograms are extracted from
measurements based on m/z of target peaks, and peaks with S/N ratios above the threshold
are chosen from each electropherogram. Then the electropherograms from the samples
and standard solution in each batch are aligned to those of the reference sample using the
normalization function for CE-migration [26] after optimization [27–29], and the detected
peaks are matched across the samples to form peak groups. For each group, averaged
migration times and m/z values are calculated and matched to those of target peaks so that
the groups that correspond to target peaks can be identified. For semi-quantification, the
peak area relative to the peak areas of internal standards (relative peak area, RelArea) was
calculated for each peak. RelArea was used to reflect the metabolite level in the samples.

To assess the quantitative accuracy of this automatic procedure, we used the RelAreas
of the known metabolites that were manually curated and had accumulated in the TMCS.
We compared the RelAreas of the known metabolites calculated using this automatic
procedure with the RelAreas of metabolites that had been manually curated.
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2.4. Dilution of Independently Prepared and Pooled Samples

If a peak originated from a sample, not from noise, then the area of that peak should
inversely decrease with dilution of the sample (i.e., the relationship between the amount of
sample and the peak area should be linear and positive). To confirm this relationship, the
eight prepared plasma samples were pooled and diluted as follows: ×10, ×20, ×39, ×83,
and ×167; the corresponding amounts of samples were 50, 25, 13, 6, and 3 µL, respectively.
Dilution of samples was conducted before any other sample preprocessing so that only
metabolites in the samples, not in reagents (i.e., buffers), were diluted. This procedure
is summarized in Figure 1a (upper-right) and Supplemental Figure S1. Similarly, urine
samples from 15 subjects were pooled (Supplemental Figure S2) and diluted as follows: ×5,
×10, ×20, ×40, and ×100; the corresponding amounts of the samples were 40, 20, 10, 5, and
2 µL, respectively. Each diluted sample was measured in triplicate. Pearson’s correlation
coefficients between the amounts of samples and peak areas were then calculated to assess
the authenticity of each peak. Pearson’s correlation coefficient also can be an indicator of
how well the peak area reflects the metabolite level.

2.5. Clustering Peak Fragments

A single metabolite may be fragmented during ionization, and peaks that originated
from a single metabolite may have similar migration times. Because the areas of these
peaks reflect the amount of the single metabolite in a sample, the areas of these peaks are
expected to be positively correlated over the samples. Therefore, we clustered peaks that
had similar migration times and relative areas that correlated over the samples. Complete
linkage hierarchical clustering with the distance metric max (1—correlation coefficient, the
difference in average migration time × weight) was calculated to generate clusters based
on the threshold of linkage score.

3. Results
3.1. Defining Target Peaks Using the Gathered QC Samples

In the general routine of the TMCS (TMCS core in Figure 1a), one batch comprised
approximately 100 samples, and one QC sample was placed in every 10 actual samples for
the measurements. In the present study, we used QC samples that were collected from 30
randomly selected batches. Peaks with S/N ratios >5 in the samples were extracted and
their electropherograms were aligned (Figure 1b). We detected 340 and 282 peak groups in
plasma and urine samples, respectively. Then, we compared the average migration times
and m/z values of these peak groups with the values of known metabolites to find peak
groups that matched the known metabolites. A total of 64 and 80 peak groups in the plasma
and urine samples, respectively, matched those of known metabolites, and 38 and 51 of
them were assigned unambiguously to single metabolites and considered known peaks.
The remaining 276 and 202 peak groups in the plasma and urine samples, respectively,
were considered uncharacterized peaks. We checked the spectrum of each uncharacterized
peak to determine whether neighboring peaks that could represent isotope ions or adduct
ions of a metabolite could be found. Peaks that matched such ions were considered parent
peaks, and the remaining peaks were classified as singletons.

Because the QC samples were identical, the expected detection rate of each peak
among the gathered QC samples was 100%. However, the actual detection rate varied
between 0.4 and 1.0 (Figure 2) because of the inefficiency of alignment caused by large
variance in migration times or mis-extraction of peaks because of noise in the electrophero-
gram. Still, about half of the peaks had detection rates of >90%. The uncharacterized
peak groups tended to have lower peak detection rates, which reflects the observation that
uncharacterized peaks were less reproducible than known peaks. Furthermore, the peak
groups that had the higher detection rates tended to have higher S/N ratios (Supplemental
Figure S3).

Among the known peaks, parent peaks tended to have higher peak detection rates,
whereas this tendency was weaker for uncharacterized peaks. Therefore, detection of po-
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tential isotope or adduct ions may not be effective for finding reproducible uncharacterized
peaks.
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3.2. Dilution of Independently Prepared Pooled Samples

We evaluated the reproducibility of each uncharacterized peak in the gathered QC
samples using independently prepared pooled samples. Among the 276 and 202 unchar-
acterized peaks, 181 and 180 of them were found in the independently prepared pooled
plasma and urine samples, respectively, with S/N >5. There was a linear relationship
between the average S/N ratios in the gathered QC and independently pooled samples
(Supplemental Figure S4), which implies that the signal strengths of the peaks were similar
in these two independent sets of pooled samples.

Next, we assessed whether the area of the peaks was quantitative, that is, whether
there was a linear relationship between the area of the peaks and the number of correspond-
ing metabolites in a sample, which implies that the areas of the peaks that originated from
metabolites in the sample were proportional to the metabolite concentrations. To confirm
this linear relationship, we diluted the independently prepared pooled samples and calcu-
lated Pearson’s correlation coefficients between the amounts of samples and peak areas to
the area of internal standards for each peak (relative peak area, RelArea). The correlation
coefficients for known peaks were concentrated around 0.8 for plasma, and 0.6 and 1.0 for
urine (Figure 3a). The correlations coefficients for uncharacterized peaks had a broader
distribution, although for most of the peaks with positive correlations, the coefficients were
>0.3. In particular, the areas of 115 out of the 181 peaks in the independently prepared
pooled plasma samples and 153 out of the 180 in the independently prepared pooled urine
samples had correlation coefficients >0.3 with the amounts of plasma and urine samples,
respectively.

The results for some representative examples are shown in Figure 3b. One of the
known metabolites, histidine, was detected in the three types of standard solutions as
expected, and the relative area increased as the amount of sample increased (Pearson’s
correlation coefficient = 0.758). For the uncharacterized peak mz106.95mt5.8, its relative
peak areas in the standard solutions were low, which suggests that the standard solutions
were unlikely to contain mz106.95mt5.8, which implies that this peak was unlikely to be
one of the known metabolites. A positive linear relationship was detected between the
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amounts of sample and relative peak areas (Pearson’s correlation coefficient = 0.662), and
thus mz106.95mt5.8 was quantitative. Conversely, no positive linear relationship was
detected between the amounts of sample and relative peak areas for mz115.0682mt9.72,
and thus mz115.0682mt9.72 was considered to be unreliable.
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Figure 3. Relationships between the amounts of samples and relative peak areas. (a) Distribution of
Pearson’s correlation coefficients (PCCs) between the amounts of samples and relative peak areas.
Only peaks with signal-to-noise (S/N) ratios >5 in the independently pooled samples were included
in this analysis. (b) Relationships between the amounts of samples (determined by dilution rates)
and the peak areas. PCC and SCC (Spearman’s correlation coefficient) values are shown. Three types
(“All”, “Cohort”, “QC”) of standard solutions (STDs) measured together are shown for comparison.
“All” contains 278 standard compounds (cations) whereas “Cohort” and “QC”, contain 62 standard
compounds (cations). They are also measured in the TMCS routine.

3.3. Automatic Peak Extraction from Actual Samples

Using our initial list of target peaks, we automatically extracted peaks from the
approximately 3000 samples in the TMCS. The list included known metabolites with S/N
ratios above the threshold. To estimate the accuracy of the automatic extraction, relative
peak areas of known metabolites that were extracted automatically were compared with
those that were manually curated. We found that 20 out of 27 metabolites and 35 out
of 37 metabolites had Spearman’s correlation coefficients >0.8 in the plasma and urine
samples, respectively (Table 1), which indicated the accuracy of our automatic procedure
was comparable to that of manual curation. The results for one of the known metabolites,
serine, is shown in Figure 4a. For some metabolites, no remarkable positive correlations
were found (e.g., phenylalanylphenylalanine, Phe–Phe, in plasma), indicating that it was
very difficult to correctly identify peaks of these metabolites, mostly because of low peak
height, high surrounding noise, or variations in migration times. Other metabolites, such
as malate or 5-oxoproline in plasma, had high Spearman’s correlation coefficients but low
Pearson’s correlation coefficients mainly because of outliers in the data. In such cases,
there was great discrepancy between the peak chosen automatically and the peak chosen
manually from a given electropherogram. Thus, the risk of picking a wrong peak when
multiple peaks are present in a single electropherogram should be considered.

We checked whether the features of uncharacterized peaks in the gathered QC samples
were similar to those in the actual samples. In particular, we expected that the intensities of
peaks in the gathered QC samples would, on average, reflect those in the actual samples. If
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they did not, then the peak profiles in the QC samples may be very different from those in
the actual samples. We found a strong positive correlation between average S/N ratios
of the uncharacterized peaks in the gathered QC samples and those in the actual samples
(Figure 4b). This result confirmed that the S/N ratios of the peaks in the QC samples were
representative of those in the actual samples, which implies that peaks found in the QC
samples also were likely to be found in the actual samples.

To check whether the areas of uncharacterized peaks in QC samples measured in
batches with the actual samples were fairly constant, we calculated within-batch and
inter-batch coefficients of variations (CVs) of the peaks (Figure 4c). For plasma, 28 out
of 38 known peaks (73.7%) had both within-batch and inter-batch CVs <0.2, whereas
only 43 out of 276 uncharacterized peaks (15.6%) had both CVs <0.2. For urine, 31 out
of 51 known peaks (60.8%) had both within-batch and inter-batch CVs <0.2, whereas 53
out of 202 uncharacterized peaks (26.2%) had both CVs <0.2. Thus, the relative areas of
known peaks in the QC samples were much more stable than those of the uncharacterized
peaks. However, this result is expected because in the general TMCS routine, the results
of the metabolome measurement for a batch is discarded and the samples in the batch
are re-measured if the area variations of the specific set of known peaks are outside the
mean ± two standard deviations.

Table 1. Correlation coefficients between corresponding automatically detected and manually curated peak areas. SCC,
Spearman’s correlation coefficient; PCC, Pearson’s correlation coefficient, Tyr, Tyrosine; Pro, Proline; Trp, Tryptophan; Gln,
Glutamine; Ser, Serine; His, Histidine; Phe, Phenylalanine; Gly, Glycine; Lys, Lysine; Met, Methionine; Asp, Aspartic acid;
Phe-Phe, Phenylalanylphenylalanine. (*) Internal standard.

Plasma SCC PCC Urine SCC PCC

o-Acetylcarnitine 0.978 0.978 Carnitine 1.000 1.000
Tyr 0.967 0.973 Proline betaine 0.999 1.000
Pro 0.966 0.976 Lys 0.999 0.999
Trp 0.957 0.963 Gly 0.999 1.000

Choline 0.949 0.951 Guanidinoacetate 0.999 0.999
Ornithine 0.948 0.980 o-Acetylcarnitine 0.999 0.999
Carnitine 0.944 0.953 His 0.999 0.999
Citrulline 0.944 0.959 1-Methylnicotinamide 0.998 0.998

Gln 0.932 0.941 Gln 0.998 0.999
3-Aminopyrrolidine (*) 0.932 0.905 Ser 0.998 0.999

Ser 0.932 0.977 Hypoxanthine 0.997 0.998
Cystine 0.924 0.927 Choline 0.997 0.999

His 0.920 0.963 N6, N6, N6-Trimethyllysine 0.996 0.998
Phe 0.915 0.933 Trp 0.996 0.998
Gly 0.910 0.908 Tyr 0.996 0.998
Lys 0.906 0.917 Guanidinosuccinate 0.995 0.997

Malate 0.867 0.103 Hippurate 0.994 0.981
Met 0.863 0.870 1-Methyladenosine 0.994 0.995

5-Oxoproline 0.849 0.145 Cystine 0.992 0.999
Succinate 0.849 0.108 Homovanillate 0.986 0.983

Guanidinoacetate 0.712 0.267 3-Indoxyl sulfate 0.979 0.972
Taurine 0.585 0.364 Quinate 0.977 0.985

Asp 0.533 0.972 Taurine 0.976 0.986
Proline betaine 0.234 0.634 Pimelate 0.971 0.977

Phe–Phe 0.021 0.121 3-Aminopyrrolidine (*) 0.969 0.989
2-Hydroxypentanoate −0.099 0.023 2-Hydroxypentanoate 0.963 0.970

Hypoxanthine −0.194 −0.064 Succinate 0.956 0.971
N-Acetylaspartate 0.956 0.958

Uridine 0.939 0.905
4-Pyridoxate 0.930 0.983
5-Oxoproline 0.916 0.934

N-Acetylneuraminate 0.913 0.917
Isethionate 0.911 0.922
Threonate 0.896 0.899

3-Hydroxy-3-methylglutarate 0.856 0.866
Gluconate 0.772 0.729

Pro 0.062 −0.008
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Figure 4. Characteristics of peaks automatically extracted from actual samples and quality control (QC) samples that
were measured together within the same batches. (a) Plots of relative peak areas that were determined automatically
against peak areas that were curated manually. The results for serine are shown. (b) Plots of average signal-to-noise (S/N)
ratios of uncharacterized peaks in the QC samples against the corresponding S/N ratios in the actual samples. (c) Plots
of within-batch coefficient of variations (CVs) against inter-batch CVs of relative areas of known and uncharacterized
peaks among QC samples. The points at (0,0) indicate the internal standard. SCC, Spearman’s correlation coefficient; PCC,
Pearson’s correlation coefficient.

3.4. Clustering Peaks Based on Inferred Origin Metabolites

A single metabolite can generate multiple fragments during the ionization process,
which appear as fragment peaks with similar migration times. Their peak areas also
are likely to be correlated among the samples because they originated from the same
metabolite. To capture the characteristics of this relationship, we calculated correlations of
relative area (RelArea) of peak pairs over the samples and differences in their migration
times (dMTs) for all peak pairs. Figure 5a shows the relationship between the correlation
coefficients and dMTs. For plasma, the distribution of dMTs was broad for peak pairs with
correlation coefficients of their areas among the samples of <0.5. However, for peak pairs
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with correlation coefficients ≥0.6, most of the dMTs suddenly dropped to <0.75. Thus,
peak pairs with correlation coefficients ≥0.6 were likely to have close migration times,
presumably reflecting that each peak pair originated from the same metabolite, which
fragmented at a specific migration time before their m/z was analyzed by mass spectrometry.
For urine, most of the dMTs dropped to <0.2 at correlation coefficients >0.95. The results for
representative uncharacterized peak pairs with close migration times and high correlations
among samples are shown in Figure 5b.
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correlations among samples.
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We clustered the peaks on the basis of these results so that peaks in the same cluster
had similar migration times (dMT < 0.75 for plasma and <0.2 for urine) and their peak
areas were correlated (correlation coefficient > 0.6 for plasma and >0.95 for urine). Among
the 115 and 153 peaks that were initially uncharacterized and whose areas were positively
correlated with the amounts of samples, 13 and 8 of them clustered with known peaks from
plasma and urine, respectively. Among the rest of the peaks, 53 and 114 formed clusters
with other peaks from plasma and urine, respectively. Overall, approximately 67% and 34%
of the uncharacterized peaks clustered with other peaks in plasma and urine, respectively.

3.5. Peak Reliabilities and Their Relevant Factors

Finally, we conducted comprehensive analyses of possible factors that may influence
the peak reliabilities. Reliability was evaluated based on two aspects: one was the linearity
of the relationship between the amounts of samples (determined by dilution rates) and
the corresponding relative peak areas (RelAreas) as measured by Pearson’s correlation
coefficient; and the other was an assessment of how well the variations of relative peak
areas in the QC samples were restrained both within each batch and across the batches
(inter-batch) when the QC samples were measured with actual samples in the batches.
The restrained coefficient of variation was defined as −1 × CV, where a high CV indicates
the variation is restrained at a high level. Assuming that these factors (linearity of the
relationship between the amounts of samples and the corresponding relative peak areas,
and variations of relative peak areas in the QC samples restrained both within-batch
and inter-batch) represent peak reliabilities, we calculated the influence of other factors
potentially related to peak reliabilities on these factors by Spearman’s correlation coefficient
(Figure 6). Overall, known peaks contributed to peak reliability, as was expected.

For plasma, all the factors shown in Figure 6 positively influenced the linearity of peak
area by dilution, with detection rates being slightly prominent. For urine, such a tendency
was not observed.

Restraining within-batch variations contributed to restraining inter-batch variations
and vice versa (Figure 6). For known peaks, the variations seemed to be well restrained, but
this result largely reflects the known metabolite analysis procedure used in the TMCS; that
is, for every batch, area variations of the specific set of known peaks in the QC samples are
monitored, and if the variation is too large (beyond mean ± two standard deviations), the
corresponding batch is re-analyzed by CE-TOFMS to control the variations. Peak detection
rates in the gathered QC samples had a large effect on how variations were restrained,
probably because both the peak detection rates and variations reflect how each peak is
stably detected. We observed moderate effects of linearity of peak area on restrained
variation in plasma but not in urine. The effect on the reliability of whether a peak was
clustered with other peaks was not clear.

In summary, using some of these factors as criteria for reliability assessment of peaks,
we counted the number of uncharacterized peaks that could be recognized as reliable ones
(Table 2). Starting with the 276 and 202 uncharacterized peaks, we obtained 115 and 153
reliable peaks that were clustered into 53 and 114 groups in plasma and urine, respectively.
We investigated whether the detected peaks matched known metabolites based on the two
procedures described above. First, average migration times and m/z values of peak groups
in the gathered QC samples (Figure 1b) were compared with those of known metabolites
(Table 2, filtering order 2). Second, we checked whether the peaks clustered with known
peaks according to the dMTs and the correlation of their peak areas among the samples
(Table 2, filtering order 5). In addition, we checked whether the uncharacterized peaks
were observed in the standard solution (labeled as “All STD”, which contains 278 and 240
standard compounds for cation and anion, respectively), which is expected to contain most
of the available standards (approximately 500 standards), according to migration times
and m/z values. We found that 18 and 40 peaks with S/N ratios >5 from plasma and urine,
respectively, were detected in the standard solution, leaving 35 and 74 peaks that are still
uncharacterized (Table 2, filtering order 7).
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We used an S/N ratio of >5 as the threshold to extract peaks from the gathered QC
samples in the beginning (Table 2, filtering order 1). Among the uncharacterized peaks we
finally obtained at the end (Table 2, filtering order 7), 35 (100%) and 69 (93%) of them had
S/N ratios >10 in the gathered QC samples, which further confirms their reliability.
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Figure 6. Correlations between factors that may be related to the reliability of the peaks. Spearman’s correlation coefficients
(SCCs) between three main reliability factors and other factors were calculated to assess the influence of the other factors
on the major factors. The three main reliability factors were linearity of relationship between the amounts of samples
(determined by dilution rates) and peak areas (denoted as “Linearity of peak area by dilution”), and how well within-batch
and inter-batch variations were restrained. Linearity of peak area by dilution was defined as Pearson’s correlation coefficient
between the amounts of samples and the peak areas. The restrained coefficient of variation was defined as −1 × coefficient
of variation (CV). The “Known peak” variable was 1 if the peak is known one; otherwise it was 0. “Small MT” was defined
as −1 × (migration time). The “Parent peak” variable was 1 if its potential isotope or adduct ion was observed; otherwise it
was 0. The “Clustered with other peaks” variable was 1 if the peak was clustered with other peaks; otherwise it was 0. The
SCCs are shown as bars with 95% confidence intervals. The filled bars indicate positive SCC values.
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Table 2. Number of reliable uncharacterized peaks detected using seven filtering conditions.

Filtering Order Filtering Condition Plasma Urine

1 Number of peaks with S/N > 5 in the gathered QC samples 340 282

2 Number of peaks whose MTs and m/z’s do not match with those of
known metabolites 276 202

3 Peaks that are detected in independently prepared QC samples (S/N > 5) 181 180

4 Pearson’s correlation coefficient (PCC) between amounts of samples and relative
peak areas is above 0.3 115 153

5
Peaks that are not clustered with known peaks based on the differences in the

migration times (dMTs) and the correlation between peak areas among
the samples

99 145

6 Inferred fragment clusters based on the differences in the migration times
(dMTs) and the correlation between peak areas among the samples 53 114

7 S/N of peak < 5 in the standard solution (labeled as All STD) which contains 278
and 240 standard compounds for cation and anion, respectively 35 74

4. Discussion

We developed a pipeline to assess the reliability of uncharacterized peaks in CE-
TOFMS data. Although plasma and urine samples obtained from participants in the
Tsuruoka Metabolomic Cohort Study (TMCS) were used in the present study, the developed
methods should be applicable to any large-scale metabolomics study that uses clinical
samples.

Our pipeline removed a substantial number of unreliable peaks and retained reliable
ones. In the first step, peaks were extracted from the gathered QC samples, and a relia-
bility assessment was conducted to estimate the reproducibility of each peak according
to the detection rate of the peak in the gathered QC samples. There are several expla-
nations for why some peaks were not reproducible. One of them is noise. Instruments,
including those used for liquid chromatography–mass spectrometry (LC–MS) and capil-
lary electrophoresis–mass spectrometry (CE–MS), generate noise in the data from various
sources such as random fluctuations in electricity and contaminating chemicals that may be
dispersed randomly in the analytes. Noise can generate spurious peaks that may be picked
as the real ones or hide authentic peaks that may not be detected. Both cases will reduce the
reproducibility of the peaks. Sophisticated algorithms to filter noise from authentic peaks
can be useful; however, the most commonly used algorithm relies on the assumption that
authentic peaks have Gaussian-like shapes [23,30]. A more empirical approach is need for
analyzing CE–MS data, which have peaks with complicated and skewed shapes because
of, for example, insufficient sample stacking conditions or fluctuations of electric current
during the measurements [29,31]. The incomplete separation of multiple peaks also can
impact the reproducibility. For example, ionized isoleucine and leucine have the same m/z
(132.1019), and their migration times in CE–MS are very similar. Therefore, the two peaks
may not be well separated and can be assumed to be a single peak during the peak-picking
process. Related to this is variations in retention times (LC) or migration times (CE), espe-
cially for CE–MS, where data reliability is greatly affected by variations in migration times
for a single metabolite [32]. This will make the accurate alignment (i.e., peak matching)
among the samples difficult. Inappropriate alignment may result in incorrect detections of
the peaks in some of the samples, thereby reducing the reproducibility.

Next, we assessed whether there was a linear relationship between the amounts of
samples and relative peak area, because we expected that this may be useful to distinguish
the peaks that originated in actual biological samples from peaks that originated in reagents
or from electrical noise. The prominent distributions of correlation coefficients between
the amounts of samples and peak areas was located between 0.3 and 1.0 (Figure 3a). We
used the value (0.3) as the threshold to filter reliable peaks that may be a quantitative
indicator of metabolite concentrations. Although this threshold may be too lenient for
small-scale studies, we expect that for large sample sizes, the lenient threshold will pose
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less of a problem for subsequent statistical analyses using relative peak areas as surrogates
for metabolite concentrations.

We also assessed the relationships between the peaks. In particular, correlations of
the relative area between pairs of peaks over the samples were calculated, which showed
that pairs with high correlation tended to have similar migration times (Figure 5a), which
implies that fragmentation of a single metabolite occurred at a specific migration time
for each sample. We used this information to cluster peaks according to the inferred
fragmentations from a single metabolite and found that areas of peak pairs from plasma
showed lower correlations than those from urine. The areas of a peak pair may show a
high correlation by factors that include biochemical/biophysical factors and the properties
of analytical methods. Because blood flows all around the body, metabolites in blood can
be influenced by many different tissues, thus obscuring co-regulation of metabolites in a
single tissue. Therefore, we consider that for plasma, biochemical/biophysical factors will
be less reflected in peak correlations, and as a result, the effect of metabolite fragmentation
will be prominent.

Furthermore, plasma generally contains diverse contaminants (e.g., proteins and
lipids) for CE-TOFMS, which potentially could add more noise to the peaks. Additionally,
according to the results shown in Table 2, plasma seemed to have more unreliable peaks
than urine, and our criteria for removing unreliable peaks were more effective for plasma
than they were for urine. We noted that plasma contained a set of peaks with areas that
showed inappropriate correlations (correlation coefficient <0) with the corresponding
amounts of samples (Figure 3a, plasma).

The efficiency of our proposed criteria and their relationships seem to be complicated
(Figure 6). Despite this, we found that, in addition to traditional S/N ratios, the detection
rate of each peak in the gathered QC samples may be an efficient criterion for the reliability
of the peaks. Linearity between the amounts of samples and peak areas was not always
an index of restrained variation and vice versa, which implies that these two criteria are
somewhat orthogonal. How to compensate for the variations of uncharacterized peaks
(batch corrections) is another problem that needs to be solved.

We focused on the peaks that appeared in the gathered QC samples. Thus, the focus
was on peaks that appeared in a broad population. One of our epidemiological interests
is to determine how the levels of these metabolites change depending on physiological
conditions (i.e., diseases). As an alternative strategy, we can look for peaks that appear
specifically in a small subset of a population. However, we speculate that few metabolites
are synthesized exclusively in a population subset because, to our knowledge, few reports
have shown the existence of such metabolites. This implies that most metabolites are
common to a whole population, although their concentrations may greatly differ among
individuals depending on their physiological condition.

In the present study, we conducted peak detection from the samples and their align-
ments automatically without curation. Therefore, the resulting peak areas do not rely on
the intuition of curators and should be objective. Additionally, our methods can be applied
to metabolomic projects without the need for expert curators. Although the accuracy of
the automatic extractions and quantifications of the peaks was a concern, we found a high
correlation between the peaks obtained by automatic peak detection and those that were
manually curated. Therefore, for peaks with S/N ratios >5 in the gathered QC samples,
the accuracy of automatic peak detection and alignment seemed reasonable. We used our
proprietary software MasterHands for the automatic peak extraction and annotation, and
we are currently improving the software to extract peaks more accurately. For large-scale
studies, errors in peak processing may be compensated by the law of large numbers, and
better configuration of the instruments may be more important than slightly improving
the software performance. In any case, with improvements of the instruments and algo-
rithms, additional peaks with lower intensities that are uncharacterized but reliable may
be identified.
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The purpose of the current study was to assess reliability of uncharacterized peaks,
and we constructed a pipeline for the assessment. There are numerous possible options
for the configurations and parameters used in the pipeline, and the selection of software
(MasterHands in the current study) or algorithm for the peak extraction is only one of
them (Figure 1c). Changing the parameters, such as S/N threshold for peak extraction
or distance threshold for clustering peaks, will affect the current results, and we do not
consider that the current parameters of our pipeline are optimal for reliable peak extraction.
Therefore, the current study is at an exploratory step that will help to optimize the pipeline
for future studies. This study also will provide new ideas for the development of other
pipelines, especially those in which little attention is paid to the reliable assessment of
uncharacterized peaks. The next step in the development of our pipeline will be designing
an appropriate evaluation function for reliability assessment of uncharacterized peaks and
optimizing its parameters.

Cross-sectional studies of plasma and urine metabolomes have been conducted in the
TMCS, and changes in metabolomic profiles associated with alcohol intake [19], metabolite
syndrome in postmenopausal females [33], physical activity [34], and diabetes [35] have
been reported. However, because the manual curation of peaks is very time consuming,
only approximately 115 peaks have been investigated so far. It is likely that many peaks
associated with important phenotypes have been overlooked, so expanding the number of
peaks, including uncharacterized peaks, that can be investigated may increase the chance
of discovering peaks related to important physiological conditions such as disease risks
and progressions.

To date, most of the cohort metabolomics studies have used nuclear magnetic res-
onance, LC–MS, or GC–MS [1]. For example, the Tohoku Medical Megabank Organi-
zation (ToMMo), which is geographically close to the TMCS, established a protocol for
metabolomic profiling using LC–MS for their cohort study to quantify 270 metabolites [3,36].
The CE-TOFMS that was used in the TMCS has the advantage of identifying ionic metabo-
lites, which are major metabolites in cells. However, the reliability of metabolome data
from CE–MS has been of great concern, and recently the data have been investigated from
various aspects including migration timing (electrophoretic mobility) [32], and quantifi-
cation of metabolites at the inter-laboratory [37] and cohort [2] levels. In this study, we
described an approach to evaluate the reliability of automatically extracted peaks using the
cohort study and proposed a pipeline to filter reliable peaks efficiently.

One of the goals of longitudinal cohort studies using metabolomics is to predict future
disease risks based on current metabolomic profiles. The results of this study will contribute
to the discovery of uncharacterized peaks that can predict such risks. Identification of
metabolites corresponding to uncharacterized peaks is usually very difficult, but the peaks
may still be useful for risk prediction even without metabolite identification.

5. Conclusions

Our developed pipeline removed substantial numbers of unreliable or redundant
peaks and filtered reliable uncharacterized peaks in plasma and urine samples, some of
which may correspond to metabolites involved in important physiological processes such
as disease progression. We believe that this pilot study gives an idea of the reliability of the
peaks when designing large-scale metabolomics studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10091826/s1, Supplemental Figure S1. Procedure used to dilute pooled plasma samples;
Supplemental Figure S2. Procedure used to dilute of pooled urine samples; Supplemental Figure
S3. Relationship between detection rates of the peaks among the gathered quality control (QC)
samples and their signal-to-noise (S/N) ratios; Supplemental Figure S4. Correlation between average
signal-to-noise (S/N) ratios of the peaks in the gathered quality control (QC) samples and those in
independently prepared and pooled samples
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