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Abstract

Ribose-cysteine is a synthetic compound designed to increase glutathione (GSH) synthesis.

Low levels of GSH and the GSH-dependent enzyme, glutathione peroxidase (GPx), is asso-

ciated with cardiovascular disease (CVD) in both mice and humans. Here we investigate the

effect of ribose-cysteine on GSH, GPx, oxidised lipids and atherosclerosis development in

apolipoprotein E-deficient (apoE-/-) mice. Female 12-week old apoE-/- mice (n = 15) were

treated with 4–5 mg/day ribose-cysteine in drinking water for 8 weeks or left untreated.

Blood and livers were assessed for GSH, GPx activity and 8-isoprostanes. Plasma alanine

transferase (ALT) and lipid levels were measured. Aortae were quantified for atherosclerotic

lesion area in the aortic sinus and brachiocephalic arch and 8-isoprostanes measured.

Ribose-cysteine treatment significantly reduced ALT levels (p<0.0005) in the apoE-/- mice.

Treatment promoted a significant increase in GSH concentrations in the liver (p<0.05) and

significantly increased GPx activity in the liver and erythrocytes of apoE-/-mice (p<0.005).

The level of 8-isoprostanes were significantly reduced in the livers and arteries of apoE-/-

mice (p<0.05 and p<0.0005, respectively). Ribose-cysteine treatment showed a significant

decrease in total and low density lipoprotein (LDL) cholesterol (p<0.05) with no effect on

other plasma lipids with the LDL reduction likely through upregulation of scavenger recep-

tor-B1 (SR-B1). Ribose-cysteine treatment significantly reduced atherosclerotic lesion area

by >50% in both the aortic sinus and brachiocephalic branch (p<0.05). Ribose-cysteine pro-

motes a significant GSH-based antioxidant effect in multiple tissues as well as an LDL-low-

ering response. These effects are accompanied by a marked reduction in atherosclerosis

suggesting that ribose-cysteine might increase protection against CVD.
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Introduction

Atherosclerosis is the disease process occurring in arteries underpinning the development of

cardiovascular disease [1]. Elevated levels of LDL, Lp(a) and remnant lipoproteins have all

been established as major risk factors for the development of atherosclerosis in humans [2–4].

Furthermore, the amount of oxidised phospholipids (OxPL) present on these atherogenic lipo-

proteins associates with vascular disease [5, 6]. Oxidised phospholipids within lipoproteins

trapped in the artery promote the activation and infiltration of monocytes that subsequently

differentiate into pro-inflammatory macrophages which enable foam cell formation and ath-

erosclerosis development (1).

Oxidised phospholipids are catabolised by glutathione peroxidase (GPx; E.C. 1.11.1.9), an

enzyme that catalyses their reduction to lipid alcohols [7]. A low activity of erythrocyte

GPx1, the ubiquitous intracellular form of GPx, has been associated with cardiovascular dis-

ease in multiple clinical studies [8–10]. Furthermore, a recent meta-analysis of the rs1050450

polymorphism in GPx1 which reduces its activity, is associated with increased CVD risk

[11]. An age-related decline in the activity of GPx3, the extracellular form in plasma, has also

recently been reported to be associated with cardiovascular disease [12]. The activity of GPx

depends on the availability of its cofactor glutathione (GSH), an endogenous tripeptide

made from cysteine, glutamine and glycine that provides the reducing equivalents for many

redox reactions protecting the body from oxidative stress [13]. Low plasma levels of GSH

have been reported in cardiovascular disease patients [14] and in animal models of athero-

sclerosis [15].

Cysteine-delivery agents such as N-acetylcysteine (NAC) and D-ribose-L-cysteine (ribose-

cysteine) can promote the synthesis of GSH [16, 17]. While NAC increases GSH levels at single

high doses in humans (around 1.0 g/kg body weight), toxic side effects have been reported

[18]. In comparison, ribose-cysteine generates a slower more sustained release of L-cysteine

than NAC increasing GSH levels in multiple tissues without any toxicity when administered in

a single high dose to mice (2.0 g/kg body weight) [19]. A recent study showed that ribose-cys-

teine given daily for 8 weeks at a dose of 0.16g/kg/day significantly increased both the liver and

plasma GSH levels in a mouse model of hyperlipidaemia without toxicity [20]. Furthermore,

this was associated with a significantly increased activity of GPx in the liver and blood and a

reduction in the level of oxidised lipids in arteries [20].

The apoE-deficient (apoE -/-) mouse is the most widely used mouse model for atherosclero-

sis studies with the defective remnant lipoprotein clearance in these animals promoting the

spontaneous development of atherosclerotic lesions within 20 weeks [21]. Multiple studies

have shown that oxidative stress is a fundamental mechanism underlying the development of

atherosclerosis in this model. Plasma and aortic isoprostanes are elevated in these animals [22]

and proteomic studies of aortic tissue show the animals lose their ability to mount an antioxi-

dant response with the onset of atherosclerosis [23]. Furthermore, Biwas et al [15] showed a

reduction in GSH synthesis and GPx1 activity in the aortae of apoE-/- mice before the onset of

oxidative stress and atherosclerosis development. The importance of Gpx1 in protecting

against atherosclerosis has been established in this model with a knockout of GPx1 accelerat-

ing atherosclerosis progression [24].

Here we investigated the effect of ribose-cysteine supplementation on GSH-based antioxi-

dant activity and atherosclerosis development in the apoE-/- mouse. We hypothesised that

ribose-cysteine would increase the supply of L-cysteine to the liver, blood and arteries result-

ing in the promotion of GSH synthesis and increased GPx activity (Fig 1) which may, in

turn, reduce atherosclerosis development through a reduction in OxPL content in the

arteries.
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Materials and methods

Mice

Female apoE-/- mice on a C57BL/6 background were obtained from the Animal Resource

Centre (Murdoch, WA). Ethical approval for this study was granted by the Otago University

Animal Ethics Committee. Mice were fed a normal chow-diet (Ruakura 86 Sharpes, Carterton,

New Zealand) and housed in a specific pathogen free (SPF) facility on a 12 hour light/dark

cycle at 22˚C with free access to water and food. Daily water intake and weekly body weights

were recorded. Fifteen 12-week old female apoE-/- mice were treated with 1 mg/mL ribose-

cysteine in the drinking water (made fresh every 2–3 days) for 8 weeks receiving an average

dose of 4–5 mg/day/mouse (0.16–0.21 g/kg body weight) based on water intake. The stability

of ribose-cysteine in water was analysed by HILAC-MS analysis as described in section 2.3. Fif-

teen 12-week old apoE-/- without ribose-cysteine in their drinking water were used as

untreated controls. Ribose-cysteine was prepared by Chemica Inc. (Los Angeles, CA) and pro-

vided by Max International, LLC (Salt Lake City, UT).

Blood and tissue collection

After supplementation, mice were sacrificed by CO2 inhalation and whole blood collected via

cardiac puncture into EDTA and plasma and erythrocytes were isolated. Samples were either

used fresh or stored at -80˚C with 0.05% butylhydroxytoluene (BHT) until use. Tissues were

perfused with heparin 40 U/ml in phosphate buffered saline (PBS) through the left ventricle.

Livers from all animals and the aortae from five animals were harvested and either used fresh

or frozen in liquid nitrogen and stored at -80˚C with 0.05% BHT until use. The aortae in ten

animals of each group were further perfused with 4% (w/v) paraformaldehyde (pH 7.5), care-

fully dissected out and further fixed in 4% (w/v) paraformaldehyde overnight. The aortae were

then washed in PBS and stored in 70% (v/v) ethanol for histological assessment. The aortae

from the remaining 5 animals in each group were harvested without fixation and stored at

-80˚C with 0.05% BHT until use.

HILIC-LCMS analysis of ribose-cysteine and related metabolites in plasma

Polar metabolites were extracted from 20 μL of mouse plasma with 180 μL of acetonitrile:

methanol (2:2, v/v) containing 5 μM of stable-isotope-labeled (13C) internal standards. LCMS

analysis of the extracted metabolites was performed as previously described [25]. Briefly,

Fig 1. Proposed mode of action of ribose-cysteine. Ribose-cysteine releases L-cysteine via hydrolysis in the plasma compartment which is taken up by the liver and

utilised to promote GSH synthesis. The increase in GSH promotes an increase in GPx activity to give a reduction in oxidised lipid content. Excess GSH is exported by

the liver.

https://doi.org/10.1371/journal.pone.0228415.g001
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metabolites (7 μL) were separated on a SeQuant ZIC–pHILIC column (5μm, 150 × 4.6 mm,

Merck Millipore) using the Agilent 1200 LC system (Agilent Technologies, Santa Clara, CA)

coupled to an Agilent 6545 QTOF mass spectrometer. Ribose-cysteine and its metabolites (D-

ribose/any 5-carbon sugar and L-cysteine, see Fig 1) were targeted for analysis. Peak area inte-

gration and targeted data matrix was generated on the retention time and molecular masses

matching to the authentic standards for each metabolite using MassHunter TOF Quantitative

Analysis Software (Agilent Technologies). The stability of ribose-cysteine (20 μM) in water

and in plasma ex vivo up to 48 hours was tested following the same targeted pHILIC-LC-MS

analysis.

Plasma ALT measurements

Levels of alanine transferase (ALT) were measured in mouse plasma as a marker of hepatotox-

icity using the Infinity TM ALT (GPT) Liquid Stable Reagent (Thermo Fisher Scientific, Wal-

tham, MA) according to the manufacturer’s instructions.

GSH measurement

Fresh liver tissue (10–20 mg) was homogenised in 400 μL PBS and following centrifugation,

the supernatant was diluted 1:60 with de-ionized water. Fresh plasma was diluted 1:10 with de-

ionized water. One hundred μl of diluted homogenate or plasma was mixed with 100 μl of 20

mM NEM to protect thiol groups from oxidation. An isotopically-labelled internal standard of

GSH-NEM was added to the alkylated samples, the protein was precipitated by adding ice-

cold ethanol (80% v/v) and the protein pellet removed by centrifugation at 12000 g for 5 min.

GSH-NEM was measured in the supernatant by stable isotope dilution liquid chromatography

tandem mass spectrometry assay (LC-MS/MS) as described before [26]. The GSH content of

tissue and plasma was normalized to the amount of homogenized tissue and the protein con-

centration measured in plasma based on the method by Bradford [27].

GPx activity

The GPx activity in liver, erythrocytes and plasma was measured using a commercial kit

(RS504, Randox Laboratories, Crumlin, UK) with samples prepared according to Kader et al.
[20]. Plasma was diluted in PBS (1 in 20) before GPx activity measurement.

Oxidised lipid analysis

Total 8-isoprostanes (free and esterified) were measured in the livers and in the aortic arches

pooled from five animals using the EIA kit (Cayman Chemical, Ann Arbor, MI) with samples

prepared according to the manufacturer’s protocol. Free 8-isoprostanes were measured in

plasma using the same kit.

Lipid analysis

Plasma total cholesterol and triglycerides concentrations were measured using enzymatic

reagents from Roche Diagnostics (Mannheim, Germany). High density lipoprotein (HDL)

cholesterol concentrations were measured according to Purcell-Huynh et al. [28]. The LDL

cholesterol concentrations were calculated using the Friedewald equation [29].

Western blot analysis of LDLR

Liver homogenates (40 μg) were separated by SDS PAGE on 7.5% polyacrylamide gels under

reducing conditions and subject to western blot analysis using an anti-low density lipoprotein
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receptor (LDLR) antibody (Abcam, Cambridge, ab30532), an anti-HMGCoA reductase anti-

body (Abcam, ab174830), an anti-SR-B1 antibody (Novus Biologicals, Littleton, CO, NB400-

113) and an anti-actin antibody (Sigma, St Louis, MI). Blots were washed and then incubated

with a goat anti-rabbit IgG-hrp antibody (Thermo Scientific, Waltham, MA). Membranes

were developed using enhanced chemiluminescence (ECL) on the LI-COR Odyssey (LI-COR

Biosciences Inc, Lincoln, NE). Protein quantification was performed by Image Studio Lite

(LI-COR Biosciences, Inc) with protein normalised against actin.

Histological assessment of aortae

The aortic arch from the aortic ring to the first intercostal branch was separated from the rest

of the paraformaldehyde-fixed aorta. The aortic sinus, from the aortic ring to midway along

the ascending aorta, was paraffin embedded for transverse sectioning and the remaining aortic

arch embedded separately for longitudinal sectioning. Sequential serial transverse 4-μm sec-

tions were made from both the aortic sinus and aortic arch. For the aortic sinus, the transverse

section that included at least two of the three leaflet commissures (point of wall attachment)

was used for quantification to ensure a similar anatomical site was used for all animals. For the

brachiocephalic branch, the longitudinal section with the maximal vessel diameter in each ani-

mal was used to avoiding oblique section artefacts and to ensure that a similar anatomical loca-

tion was used for comparison. Sections were stained with Verhoeff’s elastic stain and Curtis’

modified van Gieson stain and plaque area quantified, by a blinded assessor, to avoid selection

bias as previously described [30].

Statistical analysis

All statistical analysis except the metabolomics analysis was performed using GraphPad Prism

v7 (GraphPad, San Diego, CA). Statistical analysis for the effect of ribose-cysteine on GSH,

GPx, oxidised lipids, plasma lipids and lesion area were assessed using an unpaired student t-
test. All values are expressed as means ± SEM unless specified. A difference with p< 0.05 was

considered as significant. The metabolomics MS data were processed with Agilent Mass

Hunter Software. The data was pre-treated before statistical analysis to account for biological,

experimental and instrument variations by performing a natural log transformation and each

metabolite was median normalised to the median of each sample. The resulting data (groups)

were analysed using a student t-test for unpaired data with p< 0.05. Results of the t-test were

controlled for false positives using the Benjamini-Hochberg method. The above statistical test

and the generation of box plots of metabolites were performed using the in-house Metabolo-

mics R package.

Results

Ribose-cysteine is rapidly metabolised

Ribose-cysteine was shown to be stable up to 48 hours in water and plasma ex vivo (S1 Fig).

Ribose-cysteine was undetectable in the plasma of treated and control animals suggesting a

rapid metabolism in treated animals. The expected metabolites of ribose-cysteine, L-cysteine

and D-ribose, were detectable in the plasma with L-cysteine levels unchanged between treated

and untreated control mice. While D-Ribose levels appeared to be decreased in treated mice

(p = 0.03, S2 Fig), this result should be treated with caution since the metabolomic analysis

could not distinguish D-ribose from other 5 carbon sugars.

Ribose-cysteine protects against the development of atherosclerosis
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No evidence of liver toxicity

There was no significant difference between the body or liver weights of ribose-cysteine treated

versus untreated control mice (Table 1). Plasma ALT measurements showed the ribose-cyste-

ine treated mice to have significantly lower ALT activity compared to controls (6.46 ± 1.40 vs
13.04 ± 0.88 U/mL, p< 0.0005, Table 1).

Ribose-cysteine increases GSH levels in the liver

Liver GSH was significantly increased in ribose-cysteine treated mice compared to controls

(6.85 ± 0.43 vs 5.48 ± 0.47 μmol/g of tissue, p< 0.05, Fig 2A). There was no significant differ-

ence in plasma GSH between treated mice and control mice (p = 0.44, Fig 2B).

Ribose-cysteine increases GPx activity in the liver and erythrocytes

The GPx activity in liver tissue was significantly higher in ribose-cysteine treated mice com-

pared to controls (0.98 ± 0.04 vs 0.44 ±0.05 U/mg protein, p< 0.0001, Fig 2C). Erythrocyte

GPx activity was also significantly higher in the treated mice (8.60 ± 1.13 vs 3.97 ± 0.56 U/mg

protein, p< 0.001 respectively, Fig 2D). Plasma GPx activity was not altered in ribose-cysteine

treated mice (p = 0.22, Fig 2E).

Ribose-cysteine reduces oxidised lipid levels in the liver and arteries

Analysis of total 8-isoprostanes as a marker of oxidised lipids in the liver showed a significant

reduction with ribose-cysteine treatment (118.4 ± 9.7 vs 177.8 ± 26.0 pg/mg protein in con-

trols, p< 0.05, Fig 2F). Free-8-isoprostanes in plasma were not altered with ribose-cysteine

treatment (p = 0.33, Fig 2G). Analysis of a pooled sample of five aortic arches also showed a

significant reduction in 8-isoprostanes in treated mice (1.26 ± 0.10 vs 3.77 ± 0.15 ng/mg pro-

tein in control, p< 0.005, Fig 2H).

Ribose-cysteine lowers LDL cholesterol levels

Total plasma and LDL cholesterol concentrations were significantly lower in the ribose-cyste-

ine treated mice compared to control mice (6.15 ± 0.26 vs 7.33 ± 0.27 mmol/L, p< 0.005 and

5.57 ± 0.23 vs 6.68 ± 0.27 mmol/L respectively, p< 0.005, Fig 3A and 3B. The concentrations of

plasma triglycerides and HDL cholesterol were not significantly different between the two

groups (Fig 3C and 3D).

Ribose-cysteine increases SR-B1 but has no effect on LDLR or HMGCoA

reductase protein levels

Western blot analysis of the LDLR and HMGCoA reductase protein showed no difference in

protein amounts in the livers of treated versus control mice (S3 Fig). Western blot analysis of

the SR-B1 protein showed an increased level in the livers of treated mice (S4 Fig).

Table 1. Body weight, liver weight and ALT measurements after 8 weeks of ribose-cysteine treatment.

Control Ribose-cysteine p value

Body weight (g) 22.87 ± 0.31 22.80 ± 0.33 0.8828

Liver weight (g) 1.16 ± 0.05 1.07 ± 0.05 0.2457

ALT (U/mL) 13.04 ± 0.88 6.46 ± 1.40 0.0005

https://doi.org/10.1371/journal.pone.0228415.t001
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Ribose-cysteine reduces atherosclerotic lesion area

Histological analysis of arteries showed the ribose-cysteine treated animals to have a significant

reduction in the number and size of atherosclerotic lesions in the aortic sinus compared to

controls (Fig 4A and 4B). The atherosclerotic lesion area in the brachiocephalic branch of the

treated animals was also reduced compared to controls (Fig 4C and 4D). Quantitative analysis

showed a significantly reduced lesion area (>50% reduction) in the treated mice compared to

Fig 2. Ribose-cysteine increases liver GSH and GPx activity and decreases total 8-isoprostanes in liver and aortae of apoE-/- mice. ApoE-/- (12-week old) were

treated with 4–5 mg/day ribose-cysteine in their drinking water for 8 weeks with control apoE-/- mice given normal drinking water (n = 15 per group). The GSH

content of tissues and plasma was measured by LC-MS. The GPx activity in liver, erythrocytes and plasma was measured by spectrophotometric assay. Total

8-isoprostanes in liver, aortae and plasma were measured by an 8-isoprostane EIA kit. (A) Liver GSH (n = 15), (B) Plasma GSH (n = 15), (C) Liver GPx activity (n = 15),

(D) Erythrocyte GPx activity (n = 15), (E) Plasma GPx activity (n = 15), (F) Total 8-isoprostane in the liver (n = 15), (G) Free 8-isoprostanes in the plasma (n = 15), (H)

Total 8-isoprostane in a sample of 5 pooled arteries analysed in triplicate. �p< 0.05, ��� p< 0.001, ���� p< 0.0001, ns; not significant. Error bars indicate means ± SEM.

https://doi.org/10.1371/journal.pone.0228415.g002
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controls both in the aortic sinus (127.16 ± 30.64 vs 217.38 ± 27.74 103μm2, p< 0.05, Fig 4E)

and brachiocephalic branch (5.74 ± 1.75 vs 41.6 ± 17.1 103μm2, p< 0.05, Fig 4F).

Discussion

Decreased GSH and GPx activity is associated with cardiovascular disease in humans and has

been documented in mouse models of atherosclerosis [14, 15]. Here, we show that the cysteine

analogue, ribose-cysteine, can enhance GSH and GPx activity in the apoE-/- mouse model of

atherosclerosis resulting in protection from disease development. Furthermore, ribose-cyste-

ine showed both hepatoprotective and LDL-lowering effects.

Fig 3. Ribose-cysteine decreases total plasma and LDL cholesterol in apoE-/-mice. Total plasma cholesterol, HDL cholesterol and triglyceride levels were measured in

ribose-cysteine treated and control apoE-/- mice (n = 15 per group) by enzymatic assay. LDL cholesterol levels were calculated by the Friedewald equation. (A) Total

cholesterol, (B) LDL cholesterol, (C) HDL cholesterol, (D) Triglycerides. �� p< 0.005. Error bars indicate means ± SEM.

https://doi.org/10.1371/journal.pone.0228415.g003
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Ribose-cysteine was developed based on its predecessor NAC, a prodrug for delivering L-

cysteine, a limiting factor for GSH synthesis in the liver [31]. Elevating GSH protects the liver

from damage in situations of acute oxidative stress such as paracetamol overdose [31, 32].

Although still mainly used as an antidote to paracetamol overdose, NAC is currently registered

as in use for over 300 trials [33]. Ribose-cysteine is a registered therapeutic goods approved

dietary supplement which gives a slower more controlled release of L-cysteine than NAC

reducing the potential for toxicity [19]. However, studies on ribose-cysteine are limited and its

affect mainly only studied in acute oxidative stress conditions in rodents where it has been

shown to increase GSH levels in multiple tissues without toxicity [34, 35]. Only one study has

investigated the longer term effect of ribose-cysteine showing that daily supplementation (4

mg/day) in the Lp(a) mouse model of hyperlipidaemia for 8 weeks promotes a significant

increase in GSH and GPx in the liver and blood, without toxicity [20].

The current study looked at the effect of 8 weeks supplementation (4–5 mg/day) with

ribose-cysteine in the apoE-/- mouse model of atherosclerosis over a time period (20 weeks of

age) at which disease develops [21]. ApoE-/- mice of a similar age also display elevated levels of

plasma ALT [36] with older mice developing hepatotoxicity and fatty livers [37]. Here we

showed that ribose-cysteine is rapidly metabolised (either via hydrolysis in the gut or in circu-

lation) with no accumulation of either L-cysteine or D-ribose in the plasma of treated animals.

The released L-cysteine appeared to be readily taken up by the liver to promote GSH synthesis

as indicated by the increased liver GSH levels in treated animals. The increased GSH levels

may protect against the development of hepatotoxicity as indicated by a significant reduction

in plasma ALT levels. This was likely driven by the increase in GPx activity lowering 8-isopros-

tanes and the potential for oxidative damage of hepatocytes. The increase in liver GSH in the

apoE-/- mice, however, unlike the Lp(a) mice [20], did not translate to an increase in plasma

GSH levels. The apoE-/- mice displays a more severe lipid phenotype than Lp(a) mice, promot-

ing oxidative stress that likely drives a higher GSH utilisation in the liver leaving less GSH

available for export into plasma. Alternatively, an increased requirement for GSH in other tis-

sues under oxidative stress could drive an influx of GSH into other tissues.

ApoE-/- mice show a marked depletion in GSH in the aortic arch before the onset of ath-

erosclerosis due to reduced GSH synthesis [15]. This is associated with a downregulation of

GPx1 and increase in lipid peroxidation markers [15]. Mice deficient in GPx1 also have

increased levels of aortic isoprostanes along with endothelial dysfunction and structural

changes in the artery [38]. GPx1 is expressed in macrophages in the aorta and its expression in

peripheral macrophages protects against oxidised LDL-induced foam cell formation [39]. The

importance of Gpx1 activity is very apparent in apoE-/-/Gpx1-/-mice which display greatly

accelerated atherosclerosis development [24], which is attenuated by treatment with the GPx

mimetic, ebselen [40].

In the current study, we show that supplementation with ribose cysteine is associated with a

significant reduction in atherosclerotic plaque area in both the aortic sinus and the brachioce-

phalic arch of apoE-/- mice. This atheroprotective effect is likely attributed to an attenuation

of the GSH/GPx depletion previously established in the aortae of these mice as evident by a sig-

nificant reduction in aortic 8-isoprostanes.

Fig 4. Ribose-cysteine reduces atherosclerotic lesion area in the apoE-/-mice. Aortae from apoE-/- mice (20 weeks) were harvested and sectioned for

histological staining and measurement of atherosclerotic lesion area. (A, B) Representative staining of the aortic sinus from control and treated mice,

respectively. (C, D) Representative staining of the brachiocephalic branch from control and treated mice, respectively. Arrows indicate atherosclerotic

lesion area. (E, F) Quantitation of total lesion area in the aortic sinus (n = 9) and brachiocephalic branch (n = 9). �p< 0.05. Error bars indicate

means ± SEM.

https://doi.org/10.1371/journal.pone.0228415.g004
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Our study is in keeping with previous studies showing that NAC inhibits atherosclerosis in

apoE-/- mice [41, 42]. A more recent study in LDLR-/- mice has shown that NAC effectively

inhibits in vivo oxidation of LDL [43]. Furthermore, the study showed that NAC was capable

of significantly decreasing the level of oxLDL in hyperlipidaemic patients [43]. One effect we

established in the ribose-cysteine treated apoE-/- mice, which was not reported for NAC, was

that of a significant LDL-lowering effect. This effect had been noted previously in Lp(a) mice

treated with ribose-cysteine [20] and seemed to be due to an upregulation in the LDLR. How-

ever, in the apoE-/- mice, there were no changes in the protein levels of either LDLR or

HMGCoA reductase with ribose-cysteine treatment, suggesting no effect on LDL uptake or

cholesterol synthesis via the SREPB2 pathway. These results indicate that an alternative mecha-

nism for LDL-lowering with ribose-cysteine treatment might exist in the apo E-/- model. As a

previous study had shown that overexpression of the scavenger receptor, SR-B1, significantly

lowered LDL cholesterol levels in chow and fat-fed mice [44], we investigated the protein levels

of SR-B1. We saw a significant increase in SR-B1 levels in the ribose-cysteine treated mice

which could underpin the reduction in LDL cholesterol levels seen in our study. The LDL-low-

ering effect of ribose-cysteine may provide further atheroprotection secondary to the GSH-

based antioxidant effect.

Conclusions

In summary, ribose-cysteine is utilised in the circulation to increases GSH levels and GPx

activity and appears to provide protection against the development of atherosclerosis. It also

displays cholesterol-lowering properties and hepatoprotective effects that could provide fur-

ther health benefits. Clinical trials of this dietary supplement are needed to evaluate whether

these results translate to humans.
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