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Networks of protein–protein interactions (PPIs) link all aspects of cellular biology. 
Dysfunction in the assembly or dynamics of PPI networks is a hallmark of human dis-
ease, and as such, there is growing interest in the discovery of small molecules that 
either promote or inhibit PPIs. PPIs were once considered undruggable because of their 
relatively large buried surface areas and difficult topologies. Despite these challenges, 
recent advances in chemical screening methodologies, combined with improvements in 
structural and computational biology have made some of these targets more tractable. 
In this review, we highlight developments that have opened the door to potent chemical 
modulators. We focus on how allostery is being used to produce surprisingly robust 
changes in PPIs, even for the most challenging targets. We also discuss how interfering 
with one PPI can propagate changes through the broader web of interactions. Through 
this analysis, it is becoming clear that a combination of direct and propagated effects on 
PPI networks is ultimately how small molecules re-shape biology.

Keywords: multi-protein complexes, allostery, PPi inhibition

introduction

Multi-protein complexes are often assembled around a central enzyme, such as a kinase, phosphatase, 
protease, or nuclease. Interactions of the “core” enzyme with adaptor and scaffolding proteins often 
direct it to specific subcellular locations and/or regulating its enzymatic activity (Höhfeld et al., 2001; 
Young et al., 2009; Romero et al., 2011). For instance, protein A might trap a given conformer of the 
enzyme to favor a specific outcome, while interactions between the enzyme and a different partner, 
protein B, might change the activity (Figure 1). Many non-enzymes also control access of substrates 
to the core enzyme, shaping its selectivity. For example, protein A might bind a specific substrate 
for the enzyme and thereby accelerate turnover by increasing its local availability. The assembly 
of multi-protein complexes is often mediated by a combination of strong and weak interactions 
between the individual protein components. Weak interactions are used to provide facile exchange 
of components (Perkins et al., 2010). Expanding beyond these immediate binding partners, multi-
protein complexes often serve as “hubs” in a larger protein–protein interaction (PPI) network (Vidal 
et al., 2011). These ancillary interactions link the core and its partners to the broader cellular systems 
through a physical web of PPIs. It is becoming clear that chemical perturbations of a single node 
within the PPI network can have implications far beyond the immediate neighborhood (Conn et al., 
2009).
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Multi-protein complexes play critical roles in nearly all normal 
cellular functions, including gene expression, cell division, protein 
homeostasis, and signaling (Chari and Fischer, 2010; Good et al., 
2011). Conversely, dysfunction in the assembly, localization, or 
dynamics of multi-protein complexes is associated with many 
diseases, including cancer, autoimmune disorders, and neurode-
generation. In some diseases, a complex may be aberrantly active; 
for example, in acute leukemia the MLL gene is translocated, 
resulting in fusion proteins between an N-terminal fragment of 
MLL and over 50 different target proteins (Liu et al., 2009). In 
other diseases, the function of a multi-protein complex may be 
disrupted, such as occurs in some p53 mutations (Muller and 
Vousden, 2013). While targeting the enzymatic components of 
multi-protein complexes has traditionally been the norm in drug 
discovery and in chemical biology, it is increasingly appreciated 
that PPIs could offer several advantages as targets (Hopkins and 
Groom, 2002; Wells and McClendon, 2007; Gordo and Giralt, 
2009). For instance, this approach might allow disruption of some 
aspects of signaling cascades without completely shutting them 
down (Arkin and Whitty, 2009). Also, PPI interfaces tend to be 
more unique and varied than enzyme active sites, thus offering 
the possibility of greater selectivity (Bolanos-Garcia et  al., 
2012). As such, there is significant biological and therapeutic 
interest in developing chemical modulators of PPIs (Arkin and 
Whitty, 2009). Here, modulator is a term used to include both 
compounds that promote PPIs and those that inhibit PPIs. Such 
tools, provided they meet established criteria for chemical probes 
(Frye, 2010), are highly useful in revealing how specific PPIs are 
involved in normal function and pathobiology, as well as serving 
as starting points for therapies (Arkin et al., 2014).

PPIs have typically been challenging to disrupt with small 
molecules and, until relatively recently, these contacts have been 
classified as undruggable. It has become better appreciated that 
some PPIs may be more amenable to inhibition than others. For 
example, PPIs with relatively weak affinity and large surface areas 
(SAs) tend to be more challenging, while PPIs that rely on a few, 

FiGURe 1 | Common themes in multi-protein complex assembly. 
Multi-protein complexes are typically assembled around a core enzyme, while 
interactions with adaptor, scaffolding, and other partner proteins affect the 
overall function of the complex. Binding to ligands or macromolecules can 
trap one conformer of the complex. For example, binding to Protein A might 
alter the conformation of the enzyme to impact turnover or selectivity. 
Likewise, binding to Protein B (rather than Protein A) might be favored by a 
small molecule, changing the function and composition of the complex.

closely spaced amino acids to bind with high affinity are relatively 
easier to inhibit (Overington et al., 2006; Wells and McClendon, 
2007; Meireles and Mustata, 2011; Jubb et al., 2012). This point 
is demonstrated by the fact that of all known PPI modulators, 
the majority (>60%) target PPIs with affinity better than 1 μM 
and total buried SA less than 1800 Å2 (Figure 2). Another key 
observation is that, across many systems, orthosteric competitors 
are ideal for inhibiting the types of PPIs that are characterized 
by low SAs and tight affinity. For other types of PPIs, allosteric 
inhibitors tend to be more successful because they can exploit 
distal pockets that might have more favorable binding properties. 
Indeed, it is often the lack of defined binding pockets that makes 
it challenging to target small molecules to the PPIs that involve 
large, complex surfaces. In such cases, the free energy of binding 
is typically a summation of many low-affinity contacts, making it 
hard to design an effective competitor with low molecular weight 
(Smith and Gestwicki, 2012).

Another major theme of this review is that two (or more) 
chemical inhibitors that act on the same target can produce differ-
ent cellular responses because of the way that they alter local PPI 
networks. Extensive work on allosteric modulation of G-protein 
coupled receptors (GPCRs) has provided a blueprint for how 
this might be accomplished in other systems (Keov et al., 2011). 
GPCRs signal through a series of well-characterized downstream 
PPIs (Luttrell, 2008). Allosteric and biased compounds offer 
an opportunity to have greater control over signaling by “fine-
tuning” the response, illustrating the nuanced ways in which small 
molecules modulate the output of these systems (Christopoulos, 
2014). A key observation from these examples is that binding of 
distinct ligands, even to the same site, can produce dramatically 
different effects on downstream signaling (Galandrin and Bouvier, 
2006). For example, propranolol binds the β2 adrenergic receptor, 
although it is an inverse agonist for adenylyl cyclase signaling and 
an agonist for extracellular signal-regulated kinase activity. The 
field of kinase inhibitors may also provide another illustrative 
example. Kinase inhibitors fall into four general categories, the 
two most important of which are: type I and type II. Type I com-
pounds bind directly to the ATP binding site in the kinase domain. 
Type II inhibitors, on the other hand, interact preferentially with 
the closed or inactive conformation via binding to an allosteric 
site (Liu and Gray, 2006). While both Type I and Type II inhibitors 
block enzymatic activity, they appear to have distinct effects on 
downstream PPIs between the kinases and their effectors. Why is 
this categorization important? For the sake of this review, type I 
and type II inhibitors might be expected to have different effects on 
the interactions between the kinase and its downstream effectors, 
such as 14-3-3 proteins, which link it to broader PPI networks. 
Thus, the effects of the inhibitors on cells might reflect both the 
inhibition of the kinase itself, but also the changes in PPIs.

In this review, we discuss several strategies for targeting PPIs 
with small molecules, with a focus on small molecules that take 
advantage of allosteric networks within multi-protein complexes. 
In the first section, we describe lessons learned from natural PPI 
modulators. We also review examples of synthetic molecules that 
have been discovered by serendipity to control PPIs through inter-
esting mechanisms. In the second section, we survey a number of 
promising high-throughput screening (HTS) approaches that are 
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FiGURe 2 | Some protein–protein interactions may be more amenable to 
inhibition than others. (A) PPIs categorized according to the apparent affinity 
of the interaction and the surface area (SA) buried by assembly. Application of 
arbitrary criteria for affinity (greater or less than 1 μM) and buried SA (greater or 
less than 1800 Å2) generates four quadrants. Examples of each class are 
shown. High affinity, small SA: p53−MDM2 (3DAC), RGS4−Gαo (1AGR); high 
affinity, large SA: IL-2−IL-2Rα (1Z92), CBFβ−Runx1 (1E50); low affinity, small 
SA: GACKIX−pKID−MLL (2LXT), 14-3-3−RAF (3IQJ); low affinity, large SA: 

Hsp70−BAG1 (1HX1). (B) Known inhibitors of PPIs were collected from 2P2IDB 
and TIMBAL databases and plotted according to the affinity [reported in 
PDBbind (Wang et al., 2004)] and buried SA [calculated by InterProSurf (Negi 
et al., 2007)] of the target PPI. Inhibitors published since a similar analysis in 
2012 (Thompson et al., 2012a) are represented by hatched bars to highlight the 
most recent development and trends. Small molecules targeting PPIs with high 
affinity and small buried SA represent 66% of all known inhibitors, although 
56% of newly identified inhibitors target more difficult classes of PPIs.
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geared toward the purposeful discovery of PPI modulators with 
similar mechanisms. Finally, in the third section, we speculate 
on which new methods and ideas might be needed to take full 
advantage of future opportunities. The over-arching theme is 
that small molecules have both proximal (or direct) effects on 
PPIs (e.g., they block or favor specific PPIs), while also having 
less well-appreciated effects on downstream interactions within 
PPI networks.

Lessons Learned: Natural and Synthetic 
examples of Allosteric Regulation of 
Protein Complexes

Allostery, in which binding of a ligand at one site affects protein 
conformation at a distant site, enables small molecules to produce 
dramatic effects on protein structure and function, even at a dis-
tance (Lindsley and Rutter, 2006; Weinkam et al., 2012). Classic 
work in this area was performed on the hemoglobin system, 
revealing that action at one binding site can propagate confor-
mational changes that impact other sites more than 25 Å away 
(Monod et  al., 1965). This theme has been observed countless 
times in biology, with allosteric control observed for both small 
molecule- and protein-mediated interactions. To name just one 
example, the activity of the histone deacetylase enzyme HDAC3 
requires recruitment to a co-repressor SMRT complex (Li et al., 
2000; Guenther et al., 2001). However, when expressed in bacte-
ria, recombinant HDAC3 and SMRT do not interact, leading to 
speculation that an assembly factor was missing (Guenther et al., 
2002). It was subsequently found that the deacetylase activa-
tion domain (DAD) of SMRT undergoes substantial structural 

rearrangement upon binding to HDAC3 and that an inositol 
tetraphosphate molecule was essential for this transition (Watson 
et al., 2012). The inositol molecule stabilizes the HDAC3–SMRT 
complex through conformational transitions involving both pro-
tein–protein and protein–small molecule contacts. What can be 
learned from these natural examples? In the HDAC3–SMRT case, 
a cascade of conformational changes occurs following the small 
molecule interaction. Thus, the small molecule needs to not only 
bind its target protein, but also alter the conformer of the target 
in the right way to enable subsequent binding to the downstream 
partner(s). In a broader sense, it seems possible that whenever 
a protein is bound by a small molecule, a specific subset of con-
formers is captured and those conformers might have important 
implications for what happens next.

One illustrative example of these concepts is the case of 
the retinoic acid receptor (RAR). In this system, gene expres-
sion is repressed when RAR is bound to a co-repressor, while 
gene expression is activated when RAR recruits a co-activator 
(Gronemeyer et al., 2004). The key structural feature is a switch 
between an extended β-sheet and α-helix in RAR, which occurs 
in a region that is important for binding to both co-repressors and 
co-activators (le Maire et al., 2010). Chemical agonists of RAR 
promote co-activator binding by stabilizing the correct, permis-
sive conformation (Perissi and Rosenfeld, 2005), while inverse 
agonists convert the α-helix to an extended β-strand, promoting 
binding to co-repressors. Finally, neutral antagonists stabilize a 
conformer in which neither co-activators nor co-repressors are 
bound (Germain et al., 2009). Thus, depending on the chemical 
cue that is encountered (e.g., agonist, neutral antagonist, etc.), 
there are dramatic and important changes in PPIs that dictate 
downstream signals (le Maire et al., 2010). Such systems can be 
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FiGURe 3 | Mechanisms of small molecule inhibition of protein–protein 
interactions. Several different binding modes for small molecule inhibitors of 
PPIs are shown. Orthosteric inhibitor directly competes with one partner for 
binding. Orthosteric inhibitor taking advantage of an adaptive protein interface 
stabilizes a protein conformer such that the interaction surface is no longer 
amenable to binding. An allosteric inhibitor binds a site distal from the PPI 
interface, resulting in structural rearrangement in the target protein.
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considered pharmacological “switches,” in which the local PPI 
network is re-wired by the small molecule.

Another useful example is the scaffolding protein family 14-3-
3. These versatile adaptor proteins bind to hundreds of individual 
partners through a conserved amphipathic binding groove (Yaffe 
et al., 1997; Hermeking and Benzinger, 2006). 14-3-3 proteins are 
able to adopt many distinct conformations that allow them to inter-
act with different binding partners (Johnson et al., 2010). Inhibitors 
exploit this property. For example, the natural product fusicoccin 
A promotes 14-3-3 complex assembly with some partners (Würtele 
et al., 2003; Ottmann et al., 2007), while the pyridoxal-phosphate 
derivative FOBISIN101 inhibits interactions with specific partners 
(Zhao et al., 2011). In these cases, the compound produces a spe-
cific cellular effect because it traps a conformation of the 14-3-3 
protein and alters its PPI interfaces (Milroy et al., 2013).

Other examples drive home this idea, such as the case in 
which small molecules have been found to tune the activity of 
the important molecular chaperone, Hsp70. Dihydropyrimidines 
were identified that bind at the interface between Hsp70 and its 
PPI partner, Hsp40. The dihydropyrimidine remodels the PPI 
surface, such that some analogs strengthen the Hsp70–Hsp40 
complex, while others inhibit it (Wisén et  al., 2010). Similar 
concepts have been proposed for the transcriptional co-activator 
proteins, including the master co-activator CBP and components 
of the Mediator complex, in which allosterically coupled binding 
interfaces mediate interactions with transcriptional activators 
(Novatchkova and Eisenhaber, 2004; De Guzman et  al., 2006; 
Vojnic et al., 2011). The theme in these systems is that the small 
molecule does not just alter enzyme activity – it impacts the way 
in which the protein partners recognize the target. Thus, we sug-
gest that one of the most important features of a small molecule is 
how it traps a specific protein conformer. The ultimate biological 
output of a small molecule will be a product of the changes in both 
enzyme activity and its effects on PPIs networks.

inhibition of Protein–Protein interactions
Significant progress has been made toward identifying orthosteric 
inhibitors of PPIs over the past 15–20 years (Wells and McClendon, 
2007; Meireles and Mustata, 2011; Jubb et al., 2012; Arkin et al., 
2014). Classic success stories include inhibitors of p53–MDM2 
(Vassilev et al., 2004) and inhibitors of BCL2/BCL-XL (Oltersdorf 
et al., 2005) and IAPs (Cai et al., 2011). In these cases, a molecule 
binds at the surface and directly prevents the most important 
“hotspot” side chains from interacting (Figure 3). In addition, the 
search for orthosteric inhibitors has revealed important features of 
the dynamics of PPI surfaces. For example, Tilley and coworkers 
reported the discovery of a small molecule that inhibits binding 
between the cytokine IL-2 and the IL-2 α receptor (IL-2Rα) (Tilley 
et  al., 1997). Subsequent structural analysis suggested that this 
compound binds to IL-2 in a region that is critical for productive 
binding to IL-2Rα. Importantly, the unliganded IL-2Rα binding 
interface on IL-2 is dynamic and samples many distinct conforma-
tions, and binding of the small molecule restricts the total number 
of conformations sampled by IL-2, effectively “trapping” the 
protein in a conformation distinct from either the apo or IL-2Rα 
bound structures. Furthermore, the adaptive protein interface 
was more amenable to inhibitor discovery via disulfide tethering 

than an IL-2 subsite that is more conformationally restricted 
(Arkin et al., 2003). Many protein–protein interfaces are similarly 
adaptive, and while thought to be relatively flat and featureless, 
such binding interfaces can nonetheless sample conformations 
that allow for the formation of a small molecule binding pocket 
(Figure 3) (Brown and Hajduk, 2006; Wilson and Arkin, 2013). 
Why is it worth considering classic and adaptive orthosteric 
inhibitors as different classes? While both types ultimately inhibit 
the PPI by occluding the site of interaction, medicinal chemistry 
efforts to optimize them will depend on their mechanism. For 
example, classic orthosteric inhibitors do not induce substantial 
conformational rearrangement of the binding site, and therefore 
the apo structure of the protein can be used to guide the synthesis 
of new analogs. On the other hand, adaptive inhibitors require a 
conformation of their protein target that is distinct from the apo 
structure. Thus, structure-guided medicinal chemistry campaigns 
must be undertaken with this in mind.

Binding of small molecules at allosteric sites can also produce 
robust inhibition of PPIs (Figure  3). The interaction between 
Runx1 and CBFβ mediates formation of the heterodimeric tran-
scription factor CBF (Speck et al., 1999). In some cases of acute 
myeloid leukemia, CBFβ is fused to the smooth muscle myosin 
protein, favoring formation of the CBFβ-Runx1 complex and 
resulting in dysfunction in CBF transcription (Liu et  al., 1993; 
Castilla et  al., 1996; Lukasik et  al., 2002). Thus, inhibition of 
CBF heterodimer formation represents an attractive therapeutic 
strategy. Unfortunately, this interface is relatively large and fea-
tureless, characteristic of the difficult PPIs described previously. 
While attempts to discover orthosteric inhibitors of CBFβ-Runx1 
binding have been unsuccessful, a combination of computational 
and NMR screens identified a class of 2-aminothiazoles that bind 
to an allosteric site on CBFβ distinct from the Runx1 binding 
interface and block CBFβ-Runx1 complex formation in vitro and 
in HEK293 cells (Gorczynski et  al., 2007). Importantly, NMR 
chemical shift perturbations revealed that compound binding at 
the allosteric site produces changes in CBFβ conformation and/
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 TABLe 1 | Summary of protein–protein interaction inhibitors.

Compound PPi interface Mechanism Discovery method

  

Allosteric FCPIA

 

Adaptive Tethering

  

Orthosteric FP

 

Allosteric FP

 

Adaptive Tethering

 

Allosteric NMR

(Continued)
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or dynamics at the heterodimerization site. Similarly, irreversible 
binding of a small molecule at an allosteric site on the regulator of 
G-protein signaling protein 4 (RGS4) produces more robust inhi-
bition of binding to Gαo than covalent modification within the 
binding interface (Roman et al., 2010). Temperature-accelerated 
molecular dynamics and NMR spectroscopy revealed how small 
molecule binding at an allosteric site on RGS4 is transmitted to 
the G-protein binding site in order to destabilize the PPI and 
block its GTPase accelerating activity (Vashisth et al., 2013).

Together, these studies suggest that allostery is a powerful 
approach for PPI inhibition and that it is particularly advantageous 
in circumventing the difficulties associated with challenging PPI 

interfaces, namely those with weak affinity and/or large SAs. This 
idea is illustrated in Table 1, in which the chemical structure of 
a subset of PPI inhibitors is listed next to the method used for 
their discovery, their mechanism of inhibition, and the class of 
the targeted PPI. This summary emphasizes the idea that allostery 
is a common property exploited by inhibitors of difficult targets 
and that certain discovery methods appear to be geared toward 
finding such molecules (as discussed below).

Promoting Protein Complexes
Small molecules can also be used to stabilize (rather than inhibit) 
PPIs, as described for the HDAC3–SMRT complex (Watson et al., 
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Compound PPi interface Mechanism Discovery method

 

Allosteric NMR

 

Adaptive Medicinal chemistry

  

Orthosteric Gray-box

High affinity, small SA (gray); low affinity, small SA (green); high affinity, large SA (blue); low affinity, large SA (purple).
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2012). In some cases, such potentiation can be therapeutically 
beneficial. Natural PPI stabilizers have been identified that nicely 
illustrate this idea (Giordanetto et  al., 2014). The immunosup-
pressant cyclosporin A acts as a “molecular glue” between the 
peptidyl-prolyl cis-trans isomerase cyclophilin A and the protein 
phosphatase calcineurin (Huai et  al., 2002). Similarly, FK506 
stabilizes the interaction between the peptidyl-prolyl isomerase 
FKBP and calcineurin (Griffith et al., 1995). Another immuno-
suppressant, rapamycin, uses a similar approach to inhibit mTOR 
kinase (Brown et al., 1994). An example critical in plant develop-
ment is the hormone auxin, which binds to TIR1 F-box proteins 
and stabilizes their interactions with Aux/IAA transcriptional 
repressor proteins (Delker et al., 2008). Finally, acyl-homoserine 
lactone (AHL) molecules are used by photobacteria in quorum 
sensing-mediated bioluminescence. AHL binding facilitates 
dimerization of LuxR-type transcription factors, increasing their 
DNA binding capacity and expression of target genes (Geske 
et al., 2008; Churchill and Chen, 2011). Importantly, in all cases, 
ternary complex formation is essential for function; that is, in 
the absence of small molecule, protein complex formation is 
negligible.

A number of synthetic stabilizers of PPIs have also been 
identified in recent years. For example, the murine double minute 
proteins MDM2 and MDMX are often overexpressed in cancer 
and negatively regulate p53-dependent gene expression (Marine 
et al., 2006; Toledo and Wahl, 2006). The tumor suppressor p53 
controls pro-apoptotic and growth suppressing genes, and thus 
activation of p53-dependent transcription could have utility in 
cancer therapy (Wade and Wahl, 2009). However, inhibition of 
either the p53–MDM2 or p53–MDMX interaction alone was 

not sufficient to fully restore p53 signaling, and simultaneous 
inhibition of both PPIs is necessary for full activity (Tovar et al., 
2006; Brown et  al., 2009). Unfortunately, structural differences 
in the p53 binding sites of MDM2 and MDMX have hindered 
development of dual antagonists (Vassilev, 2005). Graves and 
coworkers at Roche Research Center instead identified a class of 
small molecules that inhibit both p53–MDM2 and p53–MDMX 
binding by inducing MDM2–MDMX protein dimerization, 
occluding the p53 binding site (Graves et  al., 2012). While 
most reported examples of PPI stabilizers bind directly to the 
protein–protein interface, establishing contacts with both bind-
ing partners (those discussed in this review are summarized in 
Table 2) (Giordanetto et al., 2014), it is reasonable to speculate 
that small molecules might also be identified to stabilize specific 
PPIs through allosteric regulation, in which compound binding 
at a distal site would modulate the protein interface such that 
binding affinity is increased.

Methods for Finding Modulators of 
Protein–Protein interactions

Recent reviews have discussed the specific need for new methods 
in finding modulators of PPIs (Meireles and Mustata, 2011; 
Higueruelo et  al., 2013). One identified challenge is that many 
traditional HTS methods rely on the measurement of direct bind-
ing between two protein partners. Such methods may not be suit-
able for finding potent inhibitors of some categories of PPIs, such 
as weaker ones. Another challenge is that very few methods are 
available that provide insight into the effects of a small molecule 
on broader PPI networks. This is particularly important for PPI 
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TABLe 2 | Summary of protein–protein interaction stabilizers.
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FiGURe 4 | Considerations for choosing the best approach for protein–
protein interaction inhibitor discovery. Central questions to consider 
include: Can the multi-protein complex be reconstituted in vitro with 
recombinant proteins? How stable is the interactions between individual 

components? Is there any precedent for sites to perturb? It is important to note 
that the “rules” for matching methods to targets are still in their infancy. Often, 
the best solution is to advance multiple platforms until the “best” solution is 
identified.
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inhibitor campaigns because screens must be specifically geared 
toward the discovery of molecules with the most suitable features, 
such as disrupting a subset of PPIs or favoring others (Kenakin, 
2010). In other words, you get what you screen for.

Due to the inherent complexity of multi-protein systems, it is 
difficult to provide a “one-size fits all” approach for future work, 
as a given HTS campaign must necessarily be geared for the 
complex of interest (Figure  4). For instance, many biophysical 
methods demand little advance knowledge of the complexities 
of a given system and require only purified recombinant protein. 
In addition, these approaches can quickly provide valuable infor-
mation on protein and ligand-binding sites, allosteric networks, 
and druggable interfaces. On the other hand, cellular screening 
methods are well suited for multi-protein complexes composed of 
transient interactions that cannot be reconstituted in vitro. In this 
section, we highlight several successful approaches to discovering 
PPI modulators and comment on needs for the future.

Biophysical Methods
Some PPIs are difficult to directly measure, although assays based 
on fluorescence polarization (FP), surface plasmon resonance 
(SPR), fluorescence energy transfer (FRET), bioluminescence 

energy transfer (BRET), differential scanning fluorimetry (DSF), 
hydrogen-deuterium exchange, AlphaLisa, and NMR spectros-
copy have been developed and each has its strengths (Holdgate 
et al., 2010; Makley and Gestwicki, 2012). FP is typically effective 
when the PPI involves a small SA (Nikolovska-Coleska et al., 2004); 
however, many PPIs occur over large, flat surfaces that lack such a 
discrete binding site. In these instances, a flow cytometry-based 
protein interaction assay (FCPIA) has proven to be a powerful, 
versatile alternative for PPI inhibitor discovery. In this method, 
one partner is biotinylated and attached to avidin beads, while the 
other partner is labeled with a fluorophore. A flow cytometer is 
used to measure bead-associated fluorescence, providing a quan-
titative measurement of protein binding (Sarvazyan et al., 1998; 
Sklar et al., 2002; Simons et al., 2003). FCPIA was used to discover 
inhibitors of the high-affinity interaction between a regulator of 
G-protein signaling protein RGS4 and Gαo (KD ~ 4 nM) (Roman 
et  al., 2007). Importantly, RGS4 accelerates GTPase activity of 
Gαo, and inhibitors of the PPI also block GTPase stimulation. 
FCPIA has also been used to identify inhibitors of weaker PPIs, 
including that between Hsp70 and the BAG family of nucleotide 
exchange factors (KD ~ 1 μM) (Rauch et  al., 2013; Rauch and 
Gestwicki, 2014).
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Another technique used to study protein complexes is capil-
lary electrophoresis (CE). This method allows for separation of 
complexes from their individual components based on their 
size and charge. Labeling one or more of the individual pro-
tein partners enables sensitive detection of bound:free ratios 
(Schultz and Kennedy, 1993; Chu et  al., 1995). CE has been 
used to identify inhibitors of a number of macromolecular 
complexes, including those between SH2 domains and short 
phosphorylated peptides (Yang et al., 2007) and Hsp70–BAG 
(Rauch et  al., 2013). One advantage of CE is that it allows 
for easy detection of aggregators, a common problem in PPI 
inhibitor screens. Finally, both CE and FCPIA are compatible 
with multi-color fluorescent labeling, which facilitates the 
ready detection of ternary and higher order complexes in 384-
well plate format.

NMR spectroscopy-based strategies are particularly useful 
for the detection of ligand binding to protein interfaces, even 
that those that involve modest affinity (e.g., high micromolar 
or millimolar dissociation constants) (Wendt et  al., 2007). 
Furthermore, these experiments often illuminate the ligand-
binding modes by chemical shift perturbations. This approach 
has been particularly powerful for fragment-based screens. 
Protein-observed NMR screening requires homogenous 15N or 
13C isotopically labeled protein that has high solubility and sta-
bility even at high concentrations (Renaud and Delsuc, 2009). 
Isotopic labeling can be costly, and data acquisition for NMR 
spectra is often time-consuming. One alternative is ligand-
based NMR screening and another is protein-observed fluorine 
NMR spectroscopy (PrOF NMR), an attractive approach with 
high sensitivity and rapid data collection. The 19F nucleus is 
highly responsive in NMR experiments and accounts for 100% 
of naturally occurring fluorine, eliminating the need for isotopic 
labeling (Kitevski-LeBlanc and Prosser, 2012). Native tyrosine 
residues are replaced with singly labeled fluorinated tyrosine, 
allowing for sensitive detection of protein conformation in 
simplified 1D-NMR spectra. This approach is particularly 
useful in the discovery of inhibitors of PPIs due to the enrich-
ment of aromatic amino acids at PPI interfaces and has been 
used to characterize ligand binding to the transcriptional co-
activation domain CBP/p300 GACKIX (Pomerantz et al., 2012) 
and bromodomains in BRD4, BrdT, and BPTF (Mishra et al., 
2014). In addition, genetic incorporation of trifluoromethyl-
phenylalanine was used to probe protein–ligand interactions 
within the thioesterase domain of fatty acid synthase (Cellitti 
et al., 2008). Recently, a full PrOF NMR fragment screen was 
used to discover several new small molecule ligands for distinct 
binding sites on CBP/p300 GACKIX, confirming the drugga-
bility of this dynamic protein interface (Gee et al., 2015).

Another emerging approach to get around the typical size 
limits of NMR spectroscopy is to label methyl groups on 
amino acid side chains. Methyl groups frequently reside in the 
hydrophobic interior of proteins and are sensitive reporters 
of protein structure and dynamics (Janin et al., 1988). NOEs 
can be used to determine spatial proximity of methyl groups, 
reporting on tertiary and quaternary protein structure (Rosen 
et al., 1996; Gardner et al., 1997). Furthermore, methyl groups 

located at the end of side chains undergo slower relaxation 
kinetics, facilitating the acquisition of NMR spectra for large 
proteins with high sensitivity and resolution (Nicholson 
et al., 1992; Tugarinov and Kay, 2005). Researchers at Abbott 
Laboratories adapted this approach to screen a series of protein 
targets using selective 13C labeling of methyl groups in valine, 
leucine, and isoleucine side chains, demonstrating the utility 
of this strategy in HTS for target proteins up to 110 kDa in size 
(Hajduk et al., 2000).

Site-Directed Fragment-Based Screening
Covalent disulfide trapping, or Tethering, can be used in HTS to 
facilitate discovery of PPI inhibitors. In this method, fragment 
molecules containing disulfide moieties covalently modify 
a natural or engineered cysteine. The relative strength of the 
interaction is typically measured by competition with DTT or 
similar thiol modification reagent, permitting the selection of 
fragments that have the best affinity for the site (Erlanson et al., 
2000, 2004). Binding is typically explored by crystallography, 
SPR or mass spectrometry. Tethering is a particularly powerful 
technique because it is site-directed. Indeed, Tethering screens 
have demonstrated that adaptive, conformationally flexible 
regions of protein–protein interfaces are often more amenable 
to inhibitors (Buck and Wells, 2005; Buck et al., 2005; Scheer 
et al., 2006). Tethering was recently used to successfully define 
the role of an allosteric site in activation of the PDK1 kinase. 
Engineered cysteines lining the rim of the PDK1-interacting 
fragment (PIF) pocket on PDK1 were screened for disulfide 
capture against a library of fragment molecules (Sadowsky et al., 
2011). Interestingly, tethered fragments at a single site resulted 
in both activation and inhibition of PDK1, and the allosteric 
effect was unrelated to binding potency. Rather, fragment bind-
ing at a single allosteric site elicited subtle changes in the active 
conformation of PDK1, leading to potentiation or inhibition of 
kinase activity. Another recent example identified inhibitors of 
a specific cysteine mutant of Ras (Ostrem et al., 2013).

Fragments identified from Tethering screens can be powerful 
chemical probes for dissecting allosteric networks in flexible pro-
teins. For example, the GACKIX domain of the transcriptional 
co-activator protein CBP/p300 displays considerable structural 
plasticity (Thakur et al., 2014). A recent Tethering screen yielded 
a small molecule (1-10) that has a remarkable effect on the 
overall thermal stability of GACKIX and was used as an aid in 
crystallization in order to obtain the first X-ray crystal structure 
of GACKIX at 2 Å resolution (Wang et al., 2013). More recently, 
1-10 was used in conjunction with kinetic and computational 
analyses to reveal the mechanism of allostery between two 
activator-binding sites in GACKIX. Binding of one ligand does 
not affect the association kinetics for the second partner, but 
rather decreases the rate of dissociation of the complex (Wang 
et al., 2014). These results suggest that cooperativity between the 
two activator-binding sites is achieved by increasing the energy 
barrier for dissociation, effectively stabilizing the GACKIX 
ternary complex (Law et al., 2014). In other words, inhibition of 
activator binding is mediated by favoring the unbound binary 
complex.
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Adaptive Protein interfaces
One screening approach is to take advantage of the conforma-
tional plasticity of PPIs. Protein surfaces that mediate contacts 
with a variety of other proteins are typically flexible, allowing 
them to adapt to each partner. For example, the GACKIX domain 
of the transcriptional co-activator CBP/p300 is an important 
regulatory node of gene expression and mediates binding to 
diverse transcriptional activators via two allosterically coupled 
binding sites (De Guzman et al., 2006; Brüschweiler et al., 2009; 
Thakur et  al., 2014). Majmudar and coworkers reasoned that 
small molecules could take advantage of this intrinsic motion 
to trap specific states (Majmudar et  al., 2012). GACKIX was 
screened with the activator MLL bound in the deeper and more 
conformationally flexible binding site, and this approach identi-
fied two natural products, sekikaic acid and lobaric acid. These 
compounds bind to a dynamic site on CBP/p300 GACKIX and 
allosterically inhibit interactions at the distal binding site with 
good specificity. In this case, knowledge of the adaptive, local PPI 
network was used to establish a screening paradigm that favored 
discovery of the desired probe.

Another recent example focused on nuclear receptors and their 
co-activator proteins. The retinoid X receptor (RXR) contains a 
dynamic protein interface, termed activation function 2 (AF2) 
that mediates interactions with co-activator proteins (Wurtz 
et al., 1996; Huang et al., 2010). Sheepstra and coworkers used 
a combination of NMR spectroscopy and molecular docking to 
identify a natural product honokiol that targets both sides of the 
adaptive AF2 domain (Sheepstra et al., 2014). They used rational 
design to “split” the two functions of honokiol, generating a potent 
RXR agonist with one and an antagonist with the other. The first 
ligand inhibits the RXR-coactivator PPI by binding at an allosteric 
site, while the second ligand binds directly to the ligand-binding 
site on RXR to favor interactions with the co-activator. Like the 
example of the CBP/p300, this approach exploits the inherent 
conformational flexibility of the AF2 domain and demonstrates 
how binding of small molecules at the same protein interface can 
differentially modulate specific PPIs.

Another interesting example involves the adaptor protein 
14-3-3, which was introduced earlier. Binding between 14-3-3 
and the plant proton pump PMA2 was monitored by SPR, and 
a small compound library was screened for stabilizers of the 
interaction (Rose et  al., 2010). This campaign identified small 
molecules that promote the PPI between 14-3-3 and PMA2 by 
binding to the flexible binding groove on 14-3-3 and making 
important contacts with both partners. Synthetic optimization 
of the pyrrolinone scaffold in one of these molecules resulted 
in the development of a derivative that further stabilized the 
14-3-3−PMA2 interaction (Richter et al., 2012). This example is 
interesting because the screening method was designed such that 
the two partners were near their half-maximal concentrations, 
which likely facilitated the discovery of the “hits”. Most screening 
campaigns involve saturating concentrations of the two interact-
ing partners; not surprisingly, inhibitors are more commonly 
observed under these conditions.

These successful HTS campaigns demonstrate how a 
conformationally dynamic protein can be targeted with small 

molecules to specifically modulate the assembly and disassembly 
of multi-protein complexes. A key design feature of these screens 
is that structural knowledge of the system was used to guide the 
screen and favor identification of compounds with the desired 
mechanism.

“Gray-Box” Screening
In many cases, weak binding affinity between a protein and 
its binding partner can complicate the design of an effective 
screening assay. In these cases, it can be useful to screen the 
functional output of the interaction, rather than the physical 
interaction itself. A method referred to as “gray-box” screen-
ing (Wong, 2011) was developed specifically for this purpose. 
The name of this method comes from the term “black box” 
screens, which is applied to phenotypic assays. While screens 
in whole cells or organisms are powerful, it is often difficult to 
find the target. Likewise, biochemical screens against purified 
proteins, such as kinases or proteases, are clean, but they often 
ignore the impact of PPIs and non-enzyme partners. Gray-box 
screens are designed to include not just the enzyme, but also 
its binding partners. In the first example of this approach, the 
ATPase, Hsp70, was mixed with its co-chaperones, includ-
ing Hsp40. These co-chaperones act as catalysts of Hsp70’s 
ATPase activity (Harrison et  al., 1997; Wittung-Stafshede 
et al., 2003; Ahmad et al., 2011), so the readout of the screen 
was largely a result of the PPIs and not the enzyme activity 
per  se. Thus, the functional consequence of the interactions, 
measured as elevated turnover, can be used as a surrogate for 
binding (Chang et al., 2008; Miyata et al., 2010). This type of 
approach has identified many specific chemical modulators of 
PPIs between Hsp70 and co-chaperones, ATPase activity, and 
chaperone function (Wisén and Gestwicki, 2008; Wisén et al., 
2010; Chang et al., 2011). Indeed, a screen against all possible 
binary and ternary complexes in the prokaryotic Hsp70 system 
identified inhibitors that were specific for given co-chaperones, 
each taking advantage of previously unexplored allosteric net-
works to inhibit Hsp70 activity (Cesa et al., 2013). Such diverse 
inhibitors are likely to be powerful tools and could enable the 
definition of Hsp70 PPI networks in a cellular environment. 
Gray-box screening has also been used to identify inhibitors 
of the interactions between Gα proteins and regulators of 
G-protein signaling (RGS) proteins, which act as GTPase 
activating proteins (GAPs). In this case, GTPase activity was 
used as a surrogate for RGS-Gα binding, and this screen 
identified several molecules capable of targeting the specific 
interactions between different RGS proteins and Gαi (Monroy 
et  al., 2013). In another example, the progesterone receptor 
(PR) was reconstituted with Hsp90 chaperone complexes, and 
compounds were screened for their ability to inhibit refolding 
of PR, a physiological substrate of Hsp90 (Patwardhan et al., 
2015). Overall, gray-box screening is particularly well suited 
to finding inhibitors of challenging PPIs.

Screening in Cells
Some PPI networks cannot be readily replicated in vitro, demand-
ing the use of cell-based screening platforms. However, even 
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for a well-defined PPI, cell-based screens of the native network 
will likely yield modulators of up- and downstream interac-
tions, required substantial deconvolution. To circumvent these 
challenges, enzyme fragment complementation can be used, 
allowing for a specific PPI to be screened in the cellular environ-
ment such that the functional output of the assay is dependent 
solely on the PPI of interest (Shekhawat and Ghosh, 2011). In 
this approach, protein fragments derived from enzymes such 
as luciferase, β-galactosidase, or dihydrofolate reductase are 
fused to putative interacting partners. The inactive fragments 
can reassemble into a functional complex upon interaction of 
the protein partners. Reconstituted enzymatic activity is used to 
quantify protein binding, even between transiently interacting 
partners.

The split luciferase assay can be used to detect PPIs in cells 
(Luker et  al., 2004) and can be expanded to include a Cre-
recombinase-mediated cassette exchange (Wong et  al., 2005) 
allowing for inducible gene expression. The recombinase-
enhanced bimolecular luciferase complementation platform 
(ReBiL) allows for the detection and analysis of even weak PPIs 
in living cells in real time. This platform enabled the detection 
of the transient PPI between the E2 ubiquitin-conjugating 
enzyme UBE2T and its partner E3 ubiquitin ligase FANCL 
(Li et al., 2014). This complex has a reported low micromolar 
dissociation constant and cocrystallization required the crea-
tion of a fusion protein between UBE2T and FANCL (Hodson 
et al., 2011, 2014). Unsurprisingly, this complex has previously 
eluded detection in living mammalian cells, although the ReBiL 
platform was able to readily detect the interaction. Furthermore, 
this assay was used to evaluate several reported small molecule 

and peptide antagonists of p53–MDM2 and p53–MDM4 inter-
actions (Li et  al., 2014). In particular, SAH peptides did not 
disrupt complex formation between p53 and either MDM2 or 
MDM4; rather, their previously reported cellular activity could 
be contributed to p53-independent cell membrane disruption. 
Importantly, ReBiL was readily adapted to 1536-well format, 
making it a powerful, high-throughput technique for the detec-
tion of even weak or transient protein complex formation in real 
time in living cells.

Dissecting Protein Networks In Vitro and 
in Cells

While the previous sections focused on methods for discovering 
modulators of PPIs, it is also critical to understand the impact of 
the molecules on broader PPI networks. A key tool here continues 
to be mass spectrometry. Many groups have developed methods 
for measuring and quantifying PPI networks in cells (Vidal, 
2005). What has been less well explored is how small molecules 
affect these systems. This is somewhat surprising, and a more 
concerted effort to study how compounds change PPI networks 
will provide significant insight. Inhibiting a single protein target 
with a small molecule affects not only the direct interactions 
between the target and its partners, but also propagates changes 
throughput the entire protein network (Figure 5). In addition, 
the shape of the ligand and the accompanying conformer of 
the bound protein target dictate how changes are transmitted 
throughout the overall protein network, both in the extent of 
modulation and which “arms” of the network are affected. One 
might envision that some inhibitors might act on the same target, 
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but produce different outcomes because of their unique pattern of 
affected PPIs (Figure 5).

Proteins and other macromolecules exist in an ensemble of 
conformational states, and binding to other macromolecules 
or ligands can have profound effects on their dynamics (Boehr 
et al., 2006; Henzler-Wildman et al., 2007). Each member of the 
structural ensemble has the potential to bind different partners 
or perform specific tasks (Tang et al., 2006). As discussed, many 
small molecules trap particular protein conformations and this 
state can propagate important downstream effects (Jubb et  al., 
2015). Thus, one powerful method is to explore time-dependent 
perturbations in protein structure (Henzler-Wildman and 
Kern, 2007; van dem Bedem and Fraser, 2015). For example, 
pioneering efforts in nanoflow electrospray ionization (nESI) 
have revolutionized the study of large protein complexes with 
its increased sensitivity and preservation of weak non-covalent 
interactions (Hopper et  al., 2012). Because detection occurs in 
the gas phase, this technique effectively captures a “snapshot” 
of a binding equilibrium that exists in solution. Furthermore, 
multiple protein partners can be detected simultaneously within 
the context of the larger assembly without the need to isolate spe-
cific complexes (Hopper and Robinson, 2014). nESI is therefore 
particularly suited to the study of multi-protein complexes in 
real time. Recently, it has been used to quantify the assembly of 
complexes between the molecular chaperones Hsp90, Hsp70 and 
the co-chaperones FKBP52 and HOP (Ebong et al., 2011), as well 
as polydispersed oligomers of small heat shock proteins (Aquilina 
et al., 2005).

Ion mobility-mass spectrometry (IM-MS) is a technique 
that separates macromolecules in the gas phase, analogous to 
electrophoresis in solution. Measurement of ion migration, or 
drift time, can be used to generate information on the collisional 
cross section of a protein of interest, which can in turn be used to 
infer changes in the folded conformation of a protein upon ligand 
or macromolecule binding (Niu et  al., 2013). The introduction 
of collision-induced unfolding measurements enable IM-MS 
to report on more subtle changes in protein tertiary structure 
induced by ligand binding (Hopper and Oldham, 2009; Hyung 
et al., 2009). This development has been useful for evaluating dif-
ferent binding modes of similar ligands, in particular the subtle 
differences in kinase structure upon binding to type I and type 
II inhibitors (Rabuck et  al., 2013). This approach was sensitive 
enough to cluster several well-characterized type I and type II 
Abl kinase inhibitors based on their preferred protein structure 
and has the potential to be adapted to a larger screen of a chemi-
cal library for evaluation of ligand-induced changes in protein 
conformation.

How Can Small Molecules Produce Diverse 
Cellular Outcomes via Hitting the Same Target?
It is important to consider that small molecule modulators of 
PPIs are often not simple, functional “on-off switches.” Rather, 
compounds can have sundry effects on function because the 
immediate PPIs are linked to the broader network. To illustrate 
this complexity, it is worth considering the example of Hsp70 
inhibitors. Hsp70 is an important molecular chaperone that 

regulates protein quality control through a conserved mecha-
nism of ATP hydrolysis and substrate binding. Many classes of 
Hsp70 inhibitors have been identified and each of these inhibits 
nucleotide turnover in  vitro (Patury et  al., 2009; Evans et  al., 
2010). Thus, one might assume that each of these compounds 
have similar downstream effects on Hsp70’s functions in cells. 
However, this assumption turns out to be incorrect because 
each category of inhibitor has a unique impact on Hsp70 PPIs. 
Efforts by multiple groups have provided Hsp70 “inhibitors” that 
either compete with ATP or inhibit interactions with specific 
classes of co-chaperones (Schlecht et al., 2013). In each case, the 
compound blocks steady-state ATPase activity in vitro, yet the 
cellular effects are not equivalent. For example, rhodacyanines 
that inhibit PPIs between Hsp70 and its nucleotide exchange 
factors (Li et  al., 2015) lead to dramatic degradation of the 
polyglutamine expanded androgen receptor (PolyQ-AR) (Wang 
et  al., 2012), a well-established Hsp70 client, while molecules 
that inhibit ATP binding (Miyata et al., 2012) lead to substantial 
increases in accumulation of polyQ-AR (Wang et  al., 2010). 
Therefore, two classes of molecules with equivalent ability to 
inhibit ATPase activity have opposing effects on polyQ-AR 
levels, although the exact mechanisms that link these events to 
cellular outcome are not yet clear. Nonetheless, molecules target-
ing the same protein can produce distinct outcomes, likely due to 
differences in the way that the target, in this case Hsp70, engages 
with downstream partners. An increased understanding of how 
protein networks are linked to disease may eventually allow 
for a more rational approach to drug discovery and improved 
screening paradigms that more correctly predict outcomes. In 
many ways, these observations mirror what is observed in GPCR 
agonists/antagonists.

Small Molecule-induced Changes in Local and 
Global Protein Networks
Emerging large-scale PPI maps have been instrumental in defin-
ing the protein interactome in mammalian cells (Rual et al., 2005; 
Parrish et al., 2006). Advances in quantitative mass spectrometry, 
including its combination with affinity purification (AP-MS), 
have allowed for dynamic profiling of PPIs at near physiological 
conditions (Gingras et al., 2007). In this technique, a protein of 
interest (bait) is expressed with an epitope tag, which is used to 
purify the bait protein from cell lysate along with its interacting 
protein partners (prey) (Dunham et al., 2012). Commonly used 
tags include the short FLAG tag or the tandem affinity purification 
(TAP) tag. The TAP approach requires two affinity tags separated 
by a protease cleavage site (Gavin et  al., 2006). Purification of 
the bait and prey proteins from cell lysate occurs over two steps, 
and this strategy can decrease the identification of false positive 
proteins in subsequent analysis. Tandem mass spectrometry is 
then used for identification and quantitation of the isolated 
proteins. This powerful approach allows for rapid sequencing 
and identification of thousands of individual peptides, including 
characterization of post-translational modifications (Aebersold 
and Mann, 2003; Nesvizhskii, 2007). Furthermore, mass spec-
trometry is readily adapted to quantify protein abundance in the 
original sample, which can provide insight into the dynamics 
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of protein complex assembly (and disassembly) in response to 
pharmacological manipulation (Ong et al., 2003). It is important 
to note that the lack of detection in an AP-MS experiment does 
not imply a lack of interaction between the bait protein and a 
prey protein of interest. The stringency of washing conditions can 
disrupt transient PPIs, which can complicate analysis (Gingras 
et al., 2007).

Despite these limitations, many groups have nonetheless 
successfully used AP-MS to identify and characterize protein 
complexes in living cells in response to pharmacological 
manipulation. In Saccharomyces cerevisiae, polyglutamine 
(polyQ) fragments form cytosolic aggregates, and this process is 
regulated by molecular chaperones (Rikhvanov et al., 2007). The 
dihydropyrimidine 115-7c promotes binding of Hsp70 to Hsp40 
and polyQ, increasing polyQ solubility. AP-MS revealed changes 
in proteins bound to polyQ fragments as a function of polyQ 
length, aggregation time, and 115-7c treatment (Walter et  al., 
2011). In a similar study, Thompson and coworkers used AP-MS 
to study acute changes in the interaction network associated with 
turnover of microtubule-associated protein tau (Thompson et al., 
2012b). Several proteins, including Hsp70 and Hsp90 had dif-
ferential association with tau following treatment with an inducer 
of tau degradation. In both examples, MS was a powerful tool 
for dissecting the dynamic changes in multi-protein complexes 
in response to pharmacological disruption of PPIs.

A major hurdle to AP-MS is the difficulty in identifying part-
ners with low affinity and/or low abundance. Several groups have 
developed creative solutions to this challenging problem, includ-
ing crosslinking. Examples of synthetic crosslinkers include acti-
vated diesters linked by a cyclic quaternary diamine. The diamine 
is cleavable by collision-induced dissociation and facilitates iden-
tification of crosslinked peptides (Clifford-Nunn et  al., 2011). 
Another crosslinking method is the use of genetically encoded 
photoactivatable amino acids, such as p-benzoyl-l-phenylalanine 
(Bpa), which are used to covalently and site-specifically capture 
PPIs in their native environment (Chin and Schultz, 2002; Hino 
et  al., 2005). This approach has been successfully adapted to 
both stable, high-affinity PPIs as well as more transient, moder-
ate- to low-affinity PPIs within the transcriptional machinery. 
Photoactivation of Bpa encoded in the transcriptional activator 
Gal4 captured its stable interaction with the suppressor protein 
Gal80 (Majmudar et  al., 2009a). Interactions of transcriptional 
activators with co-activator proteins are typically much more 
transient (Fuxreiter et  al., 2008). For example, the Swi/Snf 
chromatin-modifying complex is a proposed binding target 
for the viral activator VP16, although the specific interactions 
had evaded detection with traditional methods (Neely et  al., 
2002). Photo-crosslinking of Bpa confirmed that VP16 makes 
direct contacts with both Snf2 and Snf5 during transcription 
initiation (Krishnamurthy et  al., 2011). Because this approach 
is site-directed, it can be combined with mass spectrometry to 
localize interaction “hot spots” for specific PPIs and to identify 
and characterize novel binding partners for a protein of interest 
(Majmudar et al., 2009b).

A recently reported proximity biotinylation approach, BioID 
is a complementary method for mapping specific PPIs within 

large multi-protein complexes. This strategy is particularly 
advantageous because it does not require that complexes be 
maintained across numerous purification steps and therefore 
has the potential to identify more transient PPIs compared to 
traditional AP-MS techniques (Roux et al., 2012). In this method, 
the bait protein is fused to a mutated prokaryotic biotin ligase 
BirA. This enzyme covalently links acceptor proteins with biotin 
via an activated intermediate (biotinoyl-5′-AMP). However, the 
mutant enzyme dissociates rapidly from the activated biotinoyl-
5′-AMP, creating a “cloud” of activated biotin surrounding the 
bait protein (Kwon and Beckett, 2000). The activated biotin 
can then covalently modify exposed lysine residues on the prey 
proteins, which can include direct partners as well as neighbor-
ing proteins. Alternatively, specific prey proteins can be fused 
with an acceptor peptide for the biotin ligase (Fernández-Suárez 
et al., 2008). Rather than subsequent affinity purification with the 
tagged bait protein, prey proteins are enriched with streptavidin 
purification and identified by mass spectrometry. This approach 
has been successfully adapted to the in vivo characterization of 
a number of diverse, dynamic protein complexes, including the 
chromatin-associated mediator complex (Lambert et al., 2014), 
members of the nuclear lamina (Roux et al., 2012) and nuclear 
pore complexes (Kim et  al., 2014), and components of the 
inner membrane complex in Toxoplasma gondii, among others 
(Chen et al., 2015). These complementary approaches, including 
AP-MS, protein crosslinking, and proximity biotinylation can be 
used in tandem to create a full picture of a protein complex in 
living cells, as each approach has the potential to identify novel 
interactions.

Conclusion and Outlook

Multi-protein complexes are the “hubs” of the cellular PPI 
networks and attractive drug targets for a variety of diseases. 
We have illustrated in this review several “success stories” of 
small molecules that target PPIs and the development of new 
methodology for identifying new PPI modulators. Creative 
HTS strategies are beginning to expand the toolbox of available 
approaches, although there is no algorithm or “road map” for a 
successful screen. Rather, each campaign must be designed indi-
vidually, taking into account the affinity of the interactions, the 
topology of the interaction surfaces, and the interplay between 
different components of the system. For instance, a phenotypic or 
gray-box screen has the best chance of success for finding small 
molecules that can perturb protein networks. However, these 
strategies require significant knowledge of the structure and 
function of individual PPIs within a greater protein complex, 
highlighting the importance of basic research in order to be able 
to ask the right questions.
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