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ABSTRACT A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1,
was isolated from activated sludge treating coke oven wastewater, and the complete
genome sequence was determined. COW1 contained a single circular chromosome
(3.23Mb; G1C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes,
and 3 rRNA genes were identified.

Thiocyanate (SCN2) is a major component of wastewater from mining and coking
industries, and it is often degraded through an activated sludge process (1). We

attempted to screen for thiocyanate-degrading bacteria using activated sludge as an
isolation source. More specifically, thiocyanate-degrading biomass was first enriched
by operating a laboratory-scale moving bed biofilm reactor. We then obtained a highly
enriched (.98.4%) culture of Thiohalobacter sp. strain FOKN1 by serial dilution (2).
More recently, we successfully isolated Thiohalobacter sp. strain COW1 from the same
reactor by repeating single-colony isolation on a carrageenan-solidified plate; the
strain’s thiocyanate-degrading activity was confirmed experimentally. In this study, we
report the complete genome sequence of the thiocyanate-degrading Thiohalobacter
sp. strain COW1.

For genome analysis, COW1 was grown in inorganic medium (2) at 30°C for 10 days,
and genomic DNA was purified using the Qiagen blood and cell culture DNA kit. Long-
read sequencing and short-read sequencing were performed using GridION (Oxford
Nanopore Technologies [ONT]) and DNBSEQ (MGI) systems, respectively. Default pa-
rameters were used for all software unless otherwise specified. For long-read sequenc-
ing, genomic DNA (600 ng) that had been pretreated with Short Read Eliminator
(Circulomics) was used to construct a library using a ligation sequencing kit (ONT). The
library was then analyzed on a FLO-MIN106 R9.41revD flow cell (ONT). Base calling was
conducted using Guppy v.4.0.11 to generate 89,841 reads (506Mb) with an average
length of 5,636 bases. The raw reads were filtered (Q $ 10; read length, $1,000 bases)
using NanoFilt v.2.3.0 (3). The longest read was 221,578 bases.

For short-read sequencing, the MGIEasy FS PCR-free DNA library preparation set
(MGI) was used to generate paired-end libraries (;430-bp insert). Paired-end (2� 150-
bp) sequencing was performed on a DNBSEQ-G400RS system (MGI), yielding 17.8 mil-
lion paired-end reads, spanning 2.67 Gb, with an average length of 150 bp. Raw
sequencing data were processed using fastp v.0.20.1 (4) to trim adapters and low-qual-
ity data (Q$ 30; read length,$ 10 bases), yielding 13.2 million paired-end reads, span-
ning 1.93Gb, with an average length of 146 bp.

The long- and short-read data were assembled de novo using Unicycler v.0.4.8 (5)
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followed by polishing with Pilon v.1.23 (6), resulting in the generation of a single circu-
lar chromosome of 3,567,646 bp (G1C content, 63.4%). Automatic annotation using
DFAST v.1.2.4 (7) revealed that the chromosome contained 2,788 protein-coding
genes, 39 tRNA genes, and 3 rRNA genes.

Several thiocyanate-degrading halophilic bacteria have been reported (2, 8–10),
among which draft genome sequences have been reported for Thiohalobacter thiocya-
naticus HRh1 (11) and Thiohalobacter sp. strain FOKN1 (12). JSpeciesWS analysis (13)
revealed that the COW1 genome showed 98.25% average nucleotide identity (ANI)
with respect to the FOKN1 genome (GenBank accession number AP018052.1) (12) and
85.91% ANI with respect to the HRh1 genome (QZMU01000001.1 and QZMU01000002
.1). Taking the definition of a species with a cutoff ANI value of 95% (13), FOKN1 and
COW1 belong to the same species but are distinct from HRh1.

Data availability. The complete genome sequence of Thiohalobacter sp. strain
COW1 is available from DDBJ/EMBL/GenBank with accession number AP024239. Raw
sequencing data were deposited in the SRA database under the accession numbers
DRX248466 (Nanopore) and DRX248467 (DNBSEQ) (BioProject number PRJDB10899
and BioSample number SAMD00262787).
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