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Uncovering additional long non-coding RNA (lncRNA)-dis-
ease associations has become increasingly important for devel-
oping treatments for complex human diseases. Identification of
lncRNA biomarkers and lncRNA-disease associations is central
to diagnoses and treatment. However, traditional experimental
methods are expensive and time-consuming. Enormous
amounts of data present in public biological databases are
available for computational methods used to predict lncRNA-
disease associations. In this study, we propose a novel compu-
tational method to predict lncRNA-disease associations. More
specifically, a heterogeneous network is first constructed by
integrating the associations among microRNA (miRNA),
lncRNA, protein, drug, and disease, Second, high-order prox-
imity preserved embedding (HOPE) was used to embed nodes
into a network. Finally, the rotation forest classifier was adop-
ted to train the prediction model. In the 5-fold cross-validation
experiment, the area under the curve (AUC) of our method
achieved 0.8328 ± 0.0236. We compare it with the other four
classifiers, in which the proposed method remarkably outper-
formed other comparison methods. Otherwise, we constructed
three case studies for three excess death rate cancers, respec-
tively. The results show that 9 (lung cancer, gastric cancer,
and hepatocellular carcinomas) out of the top 15 predicted dis-
ease-related lncRNAs were confirmed by our method. In
conclusion, our method could predict the unknown lncRNA-
disease associations effectively.

INTRODUCTION
RNA has been reported to play an intermediary role when the en-
coded protein is translated from DNA sequences.1 Only 2% of the
Human genome encodes protein, and the remaining of 98% is known
as non-coding RNAs (ncRNAs).2 Long non-coding RNA (lncRNA),
which belongs to the heterogeneous class of ncRNAs, is an ncRNA
with non-protein-coding transcripts longer than 200 nucleotides.3

Several previous works show that lncRNAs play a significant role in
many biological processes, such as immune responses and chromo-
some, dynamic circuitry controlling pluripotency, and differentiation.
Furthermore, lncRNA also play important role in many complex dis-
eases, such as malignancies including lung cancer,4 hepatocellular
cancer,5 and prostate cancer.6 For instance, the upregulation of
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DANCR is an essential factor in the development of lung cancer, espe-
cially in high-grade lung cancer tissues. The proliferation and colony
formation of lung cancer is induced by ectopic DANCR expression.
Thus, DANCR upregulation is an indicator of aggressive lung cancer.
Another example is the HOTAIR, which is expressed about 100 to
2,000 times at the normal levels in breast cancer metastases.7 A
similar association is found in other cancer types, including liver
and gastric cancer. Therefore, finding an efficient way to predict addi-
tional associations among lncRNA and disease is a challenge for
future progress.

In recent years, an increasing number of machine learning and data
mining methods have been developed to take advantage of biological
databases on large-scale lncRNA-disease associations. Blom et al.8 put
forward a supervised machine learning for predicting gene-disease as-
sociations, in which a biased support vector machine is utilized. A
random walk model with restart walking was proposed by Chen
et al.9 to rank the microRNAs (miRNAs)-disease associations. How-
ever, these methods only recover a portion of all features contained in
the databases. Currently, enormous datasets are populated using
advanced technologies. A thorough understanding of the functions
and mechanisms of lncRNAs will require a complete analysis of all
this information.10 In addition, NONCODE provides a systematic
platform including expression profiles and functions.11 Thus, con-
structing a network among different molecular nodes simultaneously
and systemically is beneficial to capture the complicated relationships
between ncRNA and diseases.

Xiong et al.12 constructed a heterogeneous biological network named
HeteWalk, which includes miRNAs, genes, and diseases. You et al.13

developed a pathway method to construct the network through
miRNA-miRNA, disease-disease similarities, and associations be-
tween miRNAs and diseases. Chen et al.14 proposed a network
method, hyper-geometric distribution for lncRNA-disease
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Figure 1. The ROC curves of our methods

The AUC is the area under the receiver operating characteristic curves (ROC).
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association inference (HGLDA), in which the information of associ-
ations among miRNA and lncRNA, miRNA and disease is used to
predict associations between lncRNA and miRNA. Sun et al.15 pro-
posed a global network computational framework, RWRlncD, to
identify possible associations between lncRNAs and diseases.

Previous efforts to capture attributes of proteins and ncRNAs and as-
sociations among these nodes form a substantive basis for additional
work. The existing network graph method uses the associations
among ncRNAs, proteins, and diseases. A more holistic and system-
atic heterogeneous network method would use a combination of
known associations and attributes of all nodes in this existing
network. There have several proposed methods focus on learning
latent features from networks with multi-source features. He et al.16

proposed CCPMVFGC, which can discover clusters in graphs with
multi-view vertex feature. For utilizing the constructed network, the
network embedding method is introduced to our work to extract
discriminative features from network topology. This method is pop-
ular for identifying potential relationships in social networks. This
method allows for the preservation of vertex content, extra informa-
tion, and topological structure, a low-dimensional feature space by
mapping network data. In the low-dimensional vector space, each
node in the network is mapped to a point, and connections between
nodes are positively correlated to distances in the vector space.

The first challenge for constructing a heterogeneous network is
choosing appropriate entities such as ncRNA and disease, along
with other related items. Association among nodes can then be de-
picted concisely and clearly. A further challenge is identifying an effi-
cient graph embedding algorithm. To address these issues, a hetero-
geneous network is constructed and analyzed by high-order
proximity preserved embedding (HOPE) to identify potential associ-
ations among lncRNAs and diseases. First, a heterogeneous network
is constructed by integrating the associations among miRNA,
lncRNA, protein, disease, and drug. Second, each node in the network
is represented as a vector by combining attribute feature of the node
itself (e.g., sequences of ncRNAs and proteins, semantics of diseases
and molecular fingerprints of drugs) and the behavior feature of the
node in the complex network (associations with other nodes). Finally,
the rotation forest model is chosen as the classifier for predicting new
associations between lncRNA and disease. Furthermore, the proposed
method was evaluated in lung, colorectal, and breast cancer. The
experimental results demonstrate that the proposed method can
quantitively identify the potential associations between lncRNA and
disease.

RESULTS
Performance evaluation measures

The k-fold cross-validation is a popular procedure in most algorithms
designed for classifying two input categories of items or for
comparing performance on a single dataset. The parameter k is set
as 5 in our experiment. Specifically, a dataset is divided randomly
into 5 disjointed folds of equal size. Each fold is then used in turns
to test the model trained by the classifiers from the other 4 folds.
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The performance of classifiers is evaluated using the average of 5
values from 5-fold cross-validation. In practice, some nodes without
association and nodes contribute simultaneously are isolated. Even
though, the manual experiment of researchers can be simulated by
this situation better. Manual assessment may address such a situation
more efficiently.

For a comprehensive performance evaluation, a series of broader eval-
uation criteria are introduced to evaluate, including accuracy (Acc.),
sensitivity (Sen.), specificity (Spec.), precision (Prec.), Matthews cor-
relation coefficient (MCC), and area under the curve (AUC). The
equations of accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), pre-
cision (Prec.), and Matthews correlation coefficient (MCC) were
listed as follows:

Acc: =
TP +TN

TP +TN + FP + FN
(Equation 1)

Sen:=
TP

TP + FP
(Equation 2)

Spec:=
TN

TN + FN
(Equation 3)

Prec:=
TP

TP + FP
(Equation 4)

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP � FNÞðTN + FPÞðTN + FNÞp

(Equation 5)

While in these equations, TP, TN, FP, FN, mean true positive, true
negative, false positive, and false negative, respectively. In addition,
the proposed model is evaluated using two visualization methods.
First method uses the AUC, which is the area surrounded by the
Receiver characteristic curve (ROC) in a coordinate system whose



Figure 2. The PR curves of our methods

The AUPR is the area under the precision-recall (PR) curves.

Table 1. 5-fold cross-validation results of our method

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

0 78.87 76.49 81.25 80.31 57.8 84.86

1 75.15 70.83 79.46 77.52 50.49 79.63

2 81.55 77.68 85.42 84.19 63.28 85.78

3 78.12 74.40 81.85 80.39 56.41 82.84

4 79.76 75.89 83.63 82.26 59.70 83.28

Average
78.69 ±

2.36
75.06 ±

2.64
82.32 ±

2.28
80.93 ±

2.48
57.54 ±

4.71
83.28 ±

2.36
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abscissa is the false positive rate (FPR) and the ordinate is the true
positive rate (TPR). For another perspective, the area under the Pre-
cision-Recall curve is also applied. The abscissa for the graph is recall
and the ordinate is precision. Average AUC and AUPR for perfor-
mance of the proposed model are both positive correlations. The
experimental results shown in Figure 1 and Figure 2 illustrate that
our model is acceptable.
Table 2. Comparison of different features, respectively and simultaneously

Feature Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

Attribute
71.85 ±

1.55
66.79 ±

3.37
76.90 ±

1.63
74.31 ±

1.27
43.94 ±

2.97
71.92 ±

2.09

Behavior
79.16 ±

2.88
71.37 ±

3.11
86.96 ±

2.97
84.57 ±

3.41
59.06 ±

5.81
81.88 ±

2.61

Both
78.69 ±

2.36
75.06 ±

2.64
82.32 ±

2.28
80.93 ±

2.48
57.54 ±

4.71
83.28 ±

2.36
Comparison with different types of features

In the constructed network, each node can be represented by both
attribute and behavior features. These two kinds of information can
be combined. A comparison experiment is designed for assessing
attribute and behavior information separately and in combination.
In Table 1, the results of the average of Acc., Sen., Spec., Prec.,
MCC, and AUC is 78.69%, 75.06%, 82.32%, 80.93%, 57.54%, and
83.28%, respectively. These average values represent the ability of
the proposedmodel to predict random associations in the constructed
network.

The experimental results are shown in Table 2 and Figures 3 and 4.
Both AUPR and AUC performance is improved when attribute and
behavior information are combined. The AUC is 71.92% and
81.88% when attribute and behavior information are used separately,
but it improves to 83.28% combined.

Comparison with other methods

The rotation forest model is chosen as the classifier for predicting new
lncRNA-disease associations. To show the outstanding performance
of this classifier, several classifiers, including Random Forest, Deci-
sion Tree, Gradient Boost, and Naive Bayes were initially compared.
Parameters were set as the default unless otherwise indicated. The
experimental results are shown in Table 3. It can be observed that
the prediction performance of rotation forest model is better than
Random Forest due to its use of PCA. It can also see that Bagging
is more suitable than boosting in this situation and an ensemble struc-
ture of “trees “outperforms a series of “weak” classifiers.

Case study

After running the proposed method through 5-fold cross-validation,
a case study was introduced to evaluate the overall performance.
Three types of cancer with high mortality rates including lung, breast,
and colorectal cancer were chosen for the test. This case study was de-
signed as follows. Known associations were removed before datasets
were embedded using HOPE. Before ranking results, rest lncRNA-
disease associations were trained. As a result, 9 of the top 15 lung can-
cer associations, 9 of the top 15 gastric cancer associations, and 9 of
the top 15 hepatocellular carcinoma associations were validated in
lnc2cancer v2.0.

The three cancer types were chosen for their high mortality and inci-
dence rates. More than 1.3 million patients are estimated to die of
lung cancer annually,17 with high incidence in China.18 Even in Eu-
rope, the 5-year survival rate is only approximately 10%. The high
rate of treatment failure correlates with metastatic disease at diag-
nosis. Earlier diagnosis during the stage where surgery is a viable
treatment increases the survival rate to more than 70%. Several
lncRNAs show obviously higher expression in tumor tissues in pa-
tients with small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC). The expression of lncRNA is both upregulation
and downregulation in lung cancer cells. For example, the higher
expression of some lncRNA is considered as an indicator for NSCLC.
To be more specific, HOTAIR was indicated that there is an upregu-
lated association between this lncRNA and NSCLC. Further, loss of
imprinting of H19 can cause lung cancer. Expression of KCNQ1OT1,
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 279
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Figure 3. Comparison of different features under 5-fold cross-validation,

respectively

Figure 4. Comparison of different features under 5-fold cross-validation

simultaneously

Molecular Therapy: Nucleic Acids
demonstrated by the knockdown experiment, is correlated to a series
of behaviors observed for lung adenocarcinomas, such as positive
lymphatic metastasis and larger tumor size. In the NSCLC cases,
XIST is recognized as an oncogenic lncRNA in driving tumorigenesis
is overexpressed in these cells.

Even though there still exists much geographical variation, especially
in East Asia and China, gastric cancer is the second most frequent
cause of cancer-related deaths worldwide. Most patients with gastric
cancer are diagnosed at a late stage of the disease, andmortality can be
reduced by early detection. Some specific risk profiles, including the
presence of precursor lesions and gene polymorphisms, should be
considered while deciding on the diagnosis and treatment. Overex-
pression of H19 is known to promote proliferation, invasion, and
other features of gastric cancer.19 The expression of ANRIL, measured
by qPCR, is correlated with a higher TNM stage and larger tumor size.
These features are independent predictors for overall survival.20

Downregulation associated with MEG3 is correlated with maternal
expression of gene 3 and gastric cancer. Under-expression of MEG3
in gastric tissues is correlated with poor prognosis.21 Compared to pa-
tients with lower levels of NEAT1, patients with higher levels show
poor survival. Associations between NEAT1 and gastric cancer
include upregulation and overexpression of this lncRNA as an inde-
pendent prognostic factor in these gastric cases.22

Hepatocellular carcinoma has become the fifth most common cancer
and the third most common cause of cancer mortality worldwide in
recent years. Mortality from this cancer increased by 25% between
2002 and 2012 and reached an incidence of 3.1 per 100,000 for men.
In Asia, the incidence of liver cancer is expected to decrease. In Japan,
the incidence was predicted to decrease to 5.4 per 10,000 for men in
2020. Except in East Asia, younger individuals from most regions
show a more encouraging trend in the incidence of liver cancer than
middle-aged individuals. It was also common that themortality among
280 Molecular Therapy: Nucleic Acids Vol. 23 March 2021
women is lower than for men by 3-fold to 5-fold. H19 and IGF2 are
regulated in parallel in the hepatocellular carcinomas. A common
feature of this disease is the disruption of IGF2 prompter regulation.23

The tumor suppressor candidate 7 (TUSC7) suppresses epithelial-to-
mesenchymal transformation through TUSC7-miR-10a-EphA4 axis,
which is probably a potential target for treatment in hepatocellular car-
cinoma.24 The correct prediction of case study was shown in Table 4.

DISCUSSION
Recently, experimental technologies have proved plenty of known as-
sociations between lncRNA and disease. These associations play a
crucial role in the prevention and treatment in severe disease, espe-
cially neoplasm. Due to the expensive and inefficient traditional
experimental methods, we proposed this computational method
based on known dataset and data mining method, for which the po-
tential associations can be discovered.

This method has several advantages as listed. (1) The full use of
biology information. The node representation was combined by not
only the information of molecular function such as, lncRNA and
miRNA molecular function, protein sequence, and semantic of dis-
ease, but also, the associations and interactions among the miRNA,
lncRNA, protein, disease, and drug. (2) The HOPE was used to embed
the network and present the node behavior. This method can preserve
the feature information in graph network. (3) The rotation forest was
used to train the model and predict the potential associations. The
reason we chose these classifiers was for the following purposes: (1)
for random forest classifier, principal-component analysis (PCA)
was applied to each feature set to preserve variability information.
The same number of “trees” was set at 45 for comparisons with rota-
tion forest model. (2) Gradient boosting is a member of a family of
classifiers; boosting uses an ensemble structure to boost some
“weak” classifiers. (3) Decision tree model is a “weak” classifier chosen
in the rotation forest because of its sensitivity to rotation of feature



Table 3. Comparison of different classifiers

Classifier Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

Decision
tree

73.57 ±

1.74
66.07 ±

2.69
81.07 ±

2.39
77.77 ±

2.23
47.71 ±

3.51
73.55 ±

1.79

GDBT
78.69 ±

1.66
68.21 ±

2.42
89.17 ±

1.24
86.29 ±

1.68
58.69 ±

3.24
81.27 ±

1.30

Naive
bayes

68.69 ±

2.66
48.16 ±

3.33
89.23 ±

2.25
81.67 ±

4.05
40.99 ±

5.64
79.02 ±

2.45

Random
forest

78.75 ±

2.43
68.75 ±

2.68
88.75 ±

2.47
85.95 ±

3.05
58.69 ±

4.93
81.35 ±

1.85

Rotation
forest

78.69 ±

2.36
75.06 ±

2.64
82.32 ±

2.28
80.93 ±

2.48
57.54 ±

4.71
83.28 ±

2.36

Table 4. Marked lncRNAs associations between lung cancer, gastric

cancer, and hepatocellular carcinomas

lncRNA Disease Rank

HOTAIR lung cancer 3.10

H19 lung cancer 6.7

KCNQ1OT1 lung cancer 8

MEG3 lung cancer 12

UCA1 lung cancer 13

XIST lung cancer 14

linc-ROR lung cancer 15

H19 gastric cancer 1

MEG3 gastric cancer 3

HOTAIR gastric cancer 6

NEAT1 gastric cancer 7

XIST gastric cancer 8

UCA1 gastric cancer 9

ANRIL gastric cancer 10

CASC2 gastric cancer 12

link-ROR gastric cancer 13

H19 hepatocellular carcinomas 1.7

HOTAIR hepatocellular carcinomas 2.3

ANRIL hepatocellular carcinomas 5

IGF2-AS hepatocellular carcinomas 9

MEG3 hepatocellular carcinomas 12

TUSC7 hepatocellular carcinomas 13

NEAT1 hepatocellular carcinomas 15

Table 5. Nine associations involved in the heterogeneous network

Relationship type Database Number of associations

miRNA-lncRNA lncRNASNP225 8,374

miRNA-disease HMDD26 16,427

miRNA-protein miRTarBase27 4,944

lncRNA-disease

lncRNAdisease28

1,680lncRNASNP225

lnc2Cancer10

lncRNA-protein lncRNA2Target29 690

protein-disease DisGeNET30 25,087

drug-protein DrugBank31 11,107

drug-disease CTD32 18,416

protein-protein STRING33 19,237

total N/A 105,963
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axes. (4) Naive Bayes is a popular “weak” classifier used when features
are independent. The results of comparison with other classifiers
shows that the process of PCA bring an outstanding performance.

MATERIALS AND METHODS
Construction of the molecular association network

Several databases that include known associations among miRNA,
lncRNA, protein, disease, and drugs were used to construct the sys-
tematic and holistic molecular association network. The data used
in the final model were selected by unifying identifiers, simplifying,
eliminating redundancy, and deleting the extraneous items, which
is shown in the Table 5. Divergent nodes were allocated separately
from the Table 6 and concise amounts are provided in Table 6. The
construction of the network is shown in Figure 5.

Representing sequences of lncRNA

To obtain the discriminative attribute feature, we downloaded se-
quences of lncRNA from Database: NONCODE.11 For simplifying
our experiment, the sequences of lncRNA were encoded into a 64
(4 � 4 � 4) dimensional vector, where each dimension represents
the normalized frequency of the corresponding 3-mer that was
used in the lncRNA sequence (e.g., GAC, CUG, UGA).

MeSH for disease descriptions and directed acyclic graph

Medical Subject Headings (MeSH) are developed by the National Li-
brary ofMedicine.34An effective “tree structure”was introduced toauto-
matically retrieve these descriptions. TheMeSH tree structures are poly-
hierarchical, that is, one main heading can be found in more than one
subcategory. For instance, for the heading,GallbladderNeoplasms,Neo-
plasms is a disease listed under Neoplasms and under Digestive System
Disease.Within this structure, the most search is accurate and objective.
The tree can be expressed in another form as a directed acyclic graph
(DAG). The method for describing the disease in the DAG is as follows:

DAGðdÞ= ðd; EðdÞ;NðdÞÞ (Equation 6)

where N(d) means the points in the set that include all the diseases in
the DAG(d). E(d) denotes the edges in the set that include all connec-
tions between nodes in the DAG(d). Figure 6 illustrates the descrip-
tion of the disease Astrocytoma.
For defining semantic similarity among diseases, we used an
approach that calculates means of DAG. The following formula re-
veals how disease u in any ancestral disease contributes to disease d.
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 281
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Table 6. The number of kinds of nodes in the heterogeneous network

Node Number of nodes

disease 2,062

lncRNA 769

miRNA 1,023

protein 1,649

drug 1,025

total 6,528
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�
DdðuÞ= 1 if u= d
DdðuÞ=maxfD � D1dðu0Þju0˛children of ug if tsd

(Equation 7)

where,D, a factor that contributes semantically, is set at 0.5 according
to previous works. The weight of disease d for itself is 1. The contri-
bution of other nodes to this disease is attenuated and assessed to
yield D. From Equation (1), the sum of contributions of all ancestral
nodes in the graph to d is estimated as follows:
DVðdÞ=
X

u˛NðdÞ
DdðuÞ (Equation 8)

Moreover, the semantic similarity between the two diseases is calcu-
lated using the Jaccard similarity coefficient:
Figure 5. The network constructed by the multiple associations among differe
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S1ðp; qÞ=

X
t˛NðpÞXNðqÞ

�
DpðuÞ+DqðuÞ

�

DVðpÞ+DVðqÞ
(Equation 9)

In this equation, p and q are two diseases, which would be calculated
to find the similarity.

P
t˛NðpÞXNðqÞ

ðDpðuÞ +DqðuÞÞ would calculate all

same father node of these two diseases and DVðpÞ+DVðqÞ would
calculate the mean of these two diseases.
Stacked auto-encoder

To avoid the labor-intensive and handcraft feature design, we used
Sparse Auto-Encoder (SAE) in our method, which is an unsupervised
feature leaningmethod. The hidden layer is acted as a feature extraction
of the input layer. The output and input are equal in SAE finally. More
specifically, SAE is an unsupervised feedforward neural network.
K = fnð1Þ; nð2Þ; :::; nðmÞ; nðiÞ ˛Rdg is set as unsupervised examples.
Encoder function, m=sðWn + pÞ, maps the input layer n to hidden
layer m, while decoder function, y =sðWm + pÞ, is used to recover y
from m.W is the connected parameter between two layers, b is a bias,
ands is a non-linearmapping. SAE can train a model that can approx-
imate m with y, and the hidden layer is a new representation of data.

The encoder function and decoder are shown as below. The encoder
function maps the input layer n to hidden layer m, while decoder
nt biomolecules



Figure 6. The directed acyclic graph of a type of digestive system disease, gastrointestinal neoplasms
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function recover n from m. W is the connected parameters between
two layers, p and q are bias. f ðnÞ and gðmÞ denote non-linear map-
ping. SAE is for training a model that approximates x with y. The
hidden layer can be considered as feature extraction of the input
layer.

m= f ðnÞSf ðWn+ pÞ (Equation 10)

y = gðmÞSgðW 0n+ qÞ (Equation 11)

Additional constraints are added for avoiding training a trivial iden-
tity mapping, which may lead to a compressive representation. It will
also add noises to data, in which SAE would recover the data from a
corrupted version, and the representation would also be robust. Here,
the ReLU is chosen as the function for activation.

Sf ðuÞ= SgðuÞ=maxð0;Wu+ bÞ (Equation 12)

Node representation

Two categories of information are used for representing nodes in
the network. First, intrinsic attributes of nodes including sequences
of miRNA, lncRNA, and protein, fingerprints of drugs, and seman-
tic disease descriptions are used. Second, associations between no-
des are defined as the behavior of nodes in the molecular network.
Node behavior was represented using HOPE on the entire
network.35
Recently, undirected graphs have been targeted by graph embedding
methods. However, the method used for undirected graphs cannot be
used for the directed graphs because of asymmetric transitivity, which
is a fundamental characteristic of these graphs. HOPE preserves
asymmetric transitivity in directed graphs during embedding
learning. In this study, the loss function is minimized as follows:

minkP � QM$Qtu k 2

F
(Equation 13)

In this formula, asymmetric transitivity can be affected by several
high-order proximities. However, the approximation of proximities
is facilitated by the general formula as follows:

Q=M�1
g $Ml (Equation 14)

Further, Kg and Kl are both polynomial matrices. A series of prox-
imity measurements can be part of deduction in this equation, and
all measurements can be classified into two categories. The first cate-
gory is global proximity. Specifically, global asymmetric transitivity
can be preserved with the Katz index and rooted PageRank, because
these two measures are derived from a recurrent formula. The second
category is local asymmetric transitivity. For instance, asymmetric
transitivity only can be preserved in a local structure, because no
recurrent structure exists in common neighbors and Adamic-Adar.
Thus, an optimal rank-K approximation of the proximity matrix S
can be determined by singular value decomposition (SVD). Embed-
ding are constructed as follows:
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 283
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P =
XN
i= 1

t1U
P
i U

tu
i (Equation 15)

where ft1; t2; :::; tNg are singular values sorted in decreasing order;
UP

i and Ut
i are corresponding singular vectors of ti. Optimal embed-

ding vectors can be expressed as follows:

VP =
� ffiffiffiffiffi

t1
p

$UP
1 ;.;

ffiffiffiffiffi
tK

p
$UP

K

�
(Equation 16)

Vt =
� ffiffiffiffiffi

t1
p

$Ut
1;.;

ffiffiffiffiffi
tK

p
$Ut

K

�
(Equation 17)

To avoid calculating this matrix inversion in time complexity OðN3Þ,
it is necessary to use a previously proposed method to calculate ti by
the equation below:

ti =
tli
t
g
i

(Equation 18)

Finally, error bounds of this algorithm are produced as follows:

kP � VP$Vt k 2
F

kP k 2
F

=

XN

i=K + 1
t2iXN

i= 1
t2i

(Equation 19)

Conclusions

An increasing number of associations between lncRNA and disease
have been detected by advanced biological techniques. A computa-
tional method was are increasingly important for identifying potential
associations because detection such associationsusing biological exper-
iments is expensive. In this study, a novel computational method was
developed by constructing and embedding a heterogeneous network
usingHOPE.The experimental results demonstrated that the proposed
method achieved an outstanding performance for predicting lncRNA-
disease associations. The proposed method was further validated using
three case studies of highmortality cancer types (lung, breast, and colo-
rectal cancer) to demonstrate its predictive power and reliability.
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