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Abstract

With the rise in physical inactivity and its related diseases, it is necessary to understand the

mechanisms involved in physical activity regulation. Biological factors regulating physical

activity are studied to establish a possible target for improving the physical activity level.

However, little is known about the role metabolism plays in physical activity regulation.

Therefore, we studied protein fractional synthesis rate (FSR) of multiple organ tissues of 12-

week-old male mice that were previously established as inherently low-active (n = 15, C3H/

HeJ strain) and high-active (n = 15, C57L/J strain). Total body water of each mouse was

enriched to 5% deuterium oxide (D2O) via intraperitoneal injection and maintained with D2O

enriched drinking water for about 24 h. Blood samples from the jugular vein and tissues (kid-

ney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected for

enrichment analysis of alanine by LC-MS/MS. Protein FSR was calculated as -ln(1-enrich-

ment). Data are mean±SE as fraction/day (unpaired t-test). Kidney protein FSR in the low-

active mice was 7.82% higher than in high-active mice (low-active: 0.1863±0.0018, high-

active: 0.1754±0.0028, p = 0.0030). No differences were found in any of the other measured

organ tissues. However, all tissues resulted in a generally higher protein FSR in the low-

activity mice compared to the high-activity mice (e.g. lung LA: 0.0711±0.0015, HA: 0.0643

±0.0020, heart LA: 0.0649± 0.0013 HA: 0.0712±0.0073). Our observations suggest that

high-active mice in most organ tissues are no more inherently equipped for metabolic adap-

tation than low-active mice, but there may be a connection between protein metabolism of

kidney tissue and physical activity level. In addition, low-active mice have higher organ-spe-

cific baseline protein FSR possibly contributing to the inability to achieve higher physical

activity levels.

Introduction

It has been shown repeatedly that physical activity level has both genetic and biological regulat-

ing factors [1]. Previously, it has been demonstrated that inherently high-active mice (C57L/J),

when compared to an inherently low-active mouse strain, (C3H/HeJ) have overexpression of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0242926 November 30, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cross KM, Granados JZ, Ten Have GAM,

Thaden JJ, Engelen MPKJ, Lightfoot JT, et al.

(2020) Protein fractional synthesis rates within

tissues of high- and low-active mice. PLoS ONE

15(11): e0242926. https://doi.org/10.1371/journal.

pone.0242926

Editor: Randy Wayne Bryner, West Virginia

University, UNITED STATES

Received: July 25, 2020

Accepted: November 11, 2020

Published: November 30, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0242926

Copyright: © 2020 Cross et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The authors received no specific funding

for this work.

https://orcid.org/0000-0001-8552-2876
https://orcid.org/0000-0003-4035-1289
https://doi.org/10.1371/journal.pone.0242926
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242926&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242926&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242926&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242926&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242926&domain=pdf&date_stamp=2020-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242926&domain=pdf&date_stamp=2020-11-30
https://doi.org/10.1371/journal.pone.0242926
https://doi.org/10.1371/journal.pone.0242926
https://doi.org/10.1371/journal.pone.0242926
http://creativecommons.org/licenses/by/4.0/


proteins associated with metabolism in the nucleus accumbens of the brain [2] and in skeletal

muscle [3]. The observed overexpression and inferred upregulated metabolism of these pro-

teins support the hypothesis that the capacity to increase protein synthesis in specific organs

may be related to the physical activity level of an organism. Therefore, in search of what drives

an organism to be more active, we hypothesized that there are differences in tissue protein syn-

thesis between animals displaying differing physical activity levels.

Protein synthesis is commonly measured by calculating the protein fractional synthesis rate

(FSR), which is defined as the rate that labeled amino acid precursor is incorporated into pro-

tein. Protein FSR gives insight into metabolic regulation because the ability to create proteins

faster represents the capability to adapt quicker by upregulation or downregulation of processes

controlled by protein concentrations. For instance, the intestines have a high protein FSR [4]

which allows for the intestinal system to quickly react to stimuli or environmental changes.

A generally accepted method of measuring protein FSR is the administration of heavy

water (D2O) to create labeled amino acids [5]. This method has been used to measure tissue-

specific protein FSR of skeletal muscle [6], heart, and liver [7]. While other organ tissues have

been analyzed for protein FSR utilizing other stable isotope methods (i.e. primed continuous

intravenous infusions with L-[ring-13C6]-Phenylalanine) [8], in the present study, we utilized

D2O to measure protein FSR in several organ tissues simultaneously as a multi-organ approach

to examine the association between protein metabolism and physical activity level. Therefore,

we measured protein FSR of inherently high- and low-active inbred mouse strains (C57L/J

and C3H/HeJ, respectively) [3, 9–11].

Methods

Animals. All procedures were approved by the Texas A&M University Institutional Ani-

mal Care and Use Committee (IACUC; AUP # 2015–0159). We analyzed samples from 15

male C3H/HeJ mice (inherently low-active inbred strain) and 15 male C57L/J mice (inherently

high-active inbred strain), purchased from The Jackson Laboratory (Bar Harbor, ME, USA).

Average physical activity levels of these two mouse strains have previously been described [12].

In previous studies, we observed that low-active mice and high-active mice have daily wheel

running on average of 0.6 ± 1.1 km/day and 9.5 ± 2.0 km/day (mean±SD), respectively [12].

This physical activity level is shown to be highly reproducible [13]. We used C57Bl6/J mice

(n = 5), to estimate tracer background enrichments. All mice were obtained at 10-weeks of age

and group-housed in standard mouse-cages in a light and temperature-controlled housing

facility (12-hour light-dark cycle, room temperature 22–24˚C) with ad libitum water and a

standard chow diet (Harlan Labs, Houston TX; 25.2% protein, 4.0% fat, 39.5% carbohydrate,

3.3% crude fiber, 10% neutral fiber, and 9.9% ash). Food consumption was measured daily by

measuring unconsumed food weights. The food intake responses between high and low active

mice has been shown previously [11]. During the two-week acclimation period, mice were not

exposed to wheel-running activity because we previously showed that multiple day exposure to

running wheels can result in gene expression changes and potential alteration of protein FSR

and protein expression [10]. By studying the mice strains without the physical activity stimulus

of running wheel activity, we are able to analyze potential differences in protein metabolism

that may be driving activity level while preventing the potential confounding of the protein

FSR/protein expression responses by physical activity exposure.

Study protocol

D2O administration. After the acclimation period, we performed the protein FSR assess-

ment procedures via a terminal surgery. The day before tissue collection, the mice were given
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an intraperitoneal injection of a pre-calculated amount of D2O (365uL/10g of body weight) to

raise body water enrichment to a level of 5%. The D2O will enrich the amino acid alanine for

calculation of the protein FSR at a sufficient precision in all the organs of interest [14, 15] and

is sufficient to achieve a measurable amount of labeled alanine in the tissues with the lowest

and the highest predicted protein FSR. After the D2O injection, the mice were given the same

percentage of D2O in their drinking water to maintain steady-state D2O enrichment for ~24

hours until the start of the surgical procedure. The timeline of the study is shown in Fig 1.

Body composition. Four hours before initiation of the terminal surgical procedure, food

was removed from mouse cages to study the animals in the post-absorptive condition. Body

weight (bw) was assessed immediately after food withdrawal using a digital beam scale. Lean

body mass, and fat masswere measured using echo MRI (EchoMRI LLC, Houston, TX 77079).

Total body water was estimated by calculating 74% of body weight [16].

Anaesthesia. With the goal of this study to answer what regulates physical activity level,

we analyzed multiple aspects of metabolism. This study specifically reports our findings of pro-

tein FSR while findings regarding plasma amino acid kinetics obtained by the administration

of stable isotope tracers are reported in Granados et. al. [17]. Due to the additional measure-

ments, surgery was necessary and blood samples were taken along the timeline of the greater

study. We anaesthetized the mice with a mixture of ketamine (1.25 mg/10g BW) and medeto-

midine (2 μg/10g BW) via intraperitoneal injection (0.1 ml/10g bw) [18] and maintained

anaesthesia using a continuous subcutaneous pump infusion of ketamine (0.35 mg/ 10 g BW/

h) and medetomidine (0.35 μg/10g BW/h) at a rate of 0.1 ml/10 g BW/h [18]. Under anaesthe-

sia, a peripheral catheter was placed in the right jugular vein for blood sampling. We main-

tained the fluid balance and blood pressure by an initial 1.5 ml IP saline injection (0.9% sterile,

NaCl), and by continuous subcutaneous pump infusion (Harvard PHD2000) of normal saline

at a rate of 2.5 ml/hour [18]. Breathing was continuously monitored and body temperature

was maintained at 37˚C using a heating pad and lamp.

Tissue collection and processing. Blood samples (0.05–0.1 ml per sample) were collected

on two sampling time schedules (schedule 1: t = 3 and 30 minutes; schedule 2: t = 5 and 40

minutes) as previously described [17]. Blood samples were replaced with an equal volume of

sterile normal saline. We collected blood in lithium-heparinized tubes (microtube; Sarstedt,

Newton, NC) and immediately placed them on ice (4˚C) then centrifuged (4 ˚C, 3120 x g for 5

min) the samples to obtain plasma within the hour. The plasma was deproteinized with 0.1 vol

of 33% (w/w) trichloroacetic acid and stored at −80 ˚C for later analysis.

Eleven tissues were collected from each mouse in the following order: skeletal muscle, fat

(peri-testicular), jejunum, ileum, liver, kidney, lung, heart, brain, skin (ear), and bone (skull).

Each tissue was quickly freeze clamped, snap-frozen in liquid nitrogen, and stored in -80˚C.

Before analysis, the tissue homogenizing and processing was done as described [4]. In brief,

the homogenized tissue powder (30–80 mg) was centrifuged to separate the supernatant,

which was used for intracellular amino acid concentration measurements, and the protein

Fig 1. Timeline of study.

https://doi.org/10.1371/journal.pone.0242926.g001
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pellet. The pellet was washed three times with 0.3M TCA and hydrolyzed with 1 mL of 6 N

HCl at 110˚C for 24 h. 5 mL of water was added.

Alanine enrichment analysis

Plasma. Plasma samples were chemically derivatized before liquid chromatography-tan-

dem mass spectrometry (LC-MS/MS) by a modification for small plasma volumes of a method

previously described [17, 19]. In brief, deproteinized plasma supernatant was reacted at room

temperature for 15 min in a mixture of 3 vol of 1 M sodium phosphate, pH 10, and 6 vol of a

5% (w/v) solution in acetonitrile of 9-fluorenylmethoxycarbonyl (Fmoc) chloride (Sigma

Aldrich, St. Louis MO, USA). Reactions were stopped by adding 3 vol of 1.3 M acetic acid in

8% acetonitrile. A 1.3 μL sample was metered into a 24 μL/min eluent flow (Eksigent, a part of

SCIEX, Foster City CA, USA) thus onto a 0.5 x 100 mm LC column packed with 2.7 μm

Halo1 C18 beads (Advanced Materials Technology, Wilmington DE, USA). Fmoc derivatized

alanine and heavy (mass+1) alanine eluted after 45 s as acetonitrile increased from 26.5% to

38.5% (v/v), displacing 11.6 μM ammonium acetate and 3.9% 2-propanol. Detection was by

Turbo-V electrospray MS/MS on a 5500 QTRAP system (SCIEX), monitoring m/z 310> 88

and m/z 311 > 89 at collision energies (CE) -68 V and -29 V for the natural and mass+1 ala-

nine, respectively. Collision energy (CE) was optimized in the alanine mass+1 MS/MS channel,

but deoptimized for alanine M0 itself. This allowed more samples to be injected for better pre-

cision while measuring low-level mass+1 alanine species while avoiding saturation of the ion-

counting detector by the much more abundant alanine species. As the same "detuning" was

applied for external-standard calibration samples, the modeled calibration line removes the

detuning factor.

Tissue intracellular fluid. The intracellular fluid portion of the tissue homogenate was

Fmoc-reacted and chromatographed in the standard manner for plasma [19], except the con-

centration of acetonitrile in the reaction stop solution was decreased from 8% to 4% and the

volume injected for LC was reduced to 75 nL. The 310> 88 and m/z 311 > 89 channels were

monitored as above, except at CE -60 V and -29 V, respectively.

Tissue protein. The protein-bound portion of the tissue homogenate, the diluted acid

hydrolyzate, was Fmoc-reacted and chromatographed as for plasma [19], except the reaction

borate buffer was made more basic by adding 4.286 mL of 6M NaOH per 50 mL. The reaction

stop solution was composed of 12 mL of acetonitrile and 5.72 mL of glacial acetic acid adjusted

to 100 mL with water. 125 nL were injected and collision energies were set at -68 V and -29 V,

respectively.

Calibration of alanine enrichment. An isotope response ratio was calculated for every

injected sample by dividing the peak area measured in the alanine (mass+1) channel by that of

alanine. From the response ratio was calculated the alanine enrichment by using a calibrated

reference standard consisting of a pool of biosamples containing mass+1 alanine. Reference

standard was reacted in several vials spaced among the biosamples and injected onto the LC

column to control for experimental drift. In a preliminary experiment, the reference standard

was calibrated against a set of enrichment standards, solutions in 0.1 M hydrochloric acid of a

physiological concentration of alanine and increasing, small concentrations of alanine(mass

+1) to give known enrichments 0.00086, 0.00432, 0.00865, 0.0432, 0.0865, 0.0173, and 0.432.

Calculations

We have learned from other studies that the alanine enrichments from water labelling are an

inconsistent measurement as the enrichment ratio between alanine and D2O can range from

3.7 [20, 21] to 4.0 [22]. For this reason, we chose to analyze the true precursor of the
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incorporation into protein alanine rather than an indirect measurement. By calculating the

tracer-to-tracee ratio (TTR), we are able to report a more accurate enrichment in the precursor

pool. We calculated the labeled to unlabeled ratio (tracer-tracee ratio = TTR = enrichment) of

alanine of each organ tissue and corrected the value with the natural abundance of the tracer,

measured in tissues of C57Bl6/J mice that were not given D2O. Using the corrected TTR, we

calculated protein FSR using Eq (1) where f is calculated as protein-bound alanine (pbALA)

TTR divided by the precursor pool alanine TTR [15, 23, 24]. f will be between 0 and 1. The pre-

cursor pool can be measured in either the intracellular fraction of the tissue or in plasma,

assuming that the plasma alanine (plaALA) TTR is the overall mean of the precursor TTR as

all pools will be labeled from the D2O at the same enrichment [25]. The amount of time (t) is

the duration between the bolus administration of D2O and the collection of tissue.

FSR ¼
� ln ð1 � f Þ

t
ð1Þ

Statistical analysis

Results are expressed as mean [95% confidence interval]. GraphPad Prism (Version 8.3.1) was

used for data analysis. If data failed normality using Graphpad Prism’s normality tests, they

were log-transformed before statistical tests were performed and rechecked for normal distri-

bution. Unpaired t-tests were used to determine significant differences of the characteristics

between the high and low active mice, the protein FSR of each organ, and the difference in tis-

sue protein FSR between the high-active and low-active mice groups with the level of signifi-

cance alpha set a priori at< 0.05. The p-values from the t-test were analyzed using false

discovery rate (FDR) approach controlled with Q = 0.05 and set to use the two-stage linear

step-up procedure of Benjamini, Krieger, and Yekutieli [26]. FDR adjusts the p-values to rec-

ognize if the significance is a true discovery (q < 0.05). The reported coefficient of variation is

an output of Prism calculated as the standard deviation divided by the mean, expressed in per-

centage. All mean differences are calculated as the percentage of 1 minus the ratio of the two

means.

Results

Animal characteristics

We analyzed a total of 30 male mice (15 low-active, and 15 high-active) at 12 weeks of age

(Table 1). The high-active mice were characterized by 7.0% higher total body weight

(p<0.0001) with a 7.6% higher lean mass (p<0.0001); however, we found no differences in

total fat mass (p = 0.3868) or average daily food consumption (p = 0.5552). In addition, the

high-active mice had 7.0% higher total-body water.

Table 1. Characteristics of mice.

Characteristic High-active mice (n = 15) Low-active Mice (n = 15) p-value

Bodyweight (g) 26.98 [26.52, 27.44] 25.22 [24.56, 25.88] <0.0001�

Lean Mass (g) 21.91 [21.50, 22.31] 20.36 [19.95, 20.77] <0.0001�

Fat Mass (g) 2.37 [2.04, 2.71] 2.33 [2.03, 2.63] 0.3868

Avg. Daily Food Consumption (g) 3.17 [2.75, 3.59] 3.39 [2.72, 4.06] 0.5552

Total-body water estimate (g) 20.15 [19.81, 20.50] 18.84 [18.35, 19.33] <0.0001�

Note: unpaired t-test, Data are expressed as mean [95% CI] in grams

�significance (p<0.05)

https://doi.org/10.1371/journal.pone.0242926.t001
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Plasma vs. Intracellular alanine TTR for calculating fractional synthesis

rates

Preliminary to calculating protein FSR, the precursor pool was determined since either plasma

or intracellular alanine TTR values can be used to calculate protein FSR. We measured alanine

TTR within plasma at various blood sampling time points: 3 minutes and 30 minutes, or 5

minutes and 40 minutes. Since the values of alanine TTR at the early compared to the later

time points are not statistically different (3 min: 0.1962 [0.1876, 0.2049] versus 30 min: 0.1964

[0.1876, 0.2051] p = 0.8181, and 5 min: 0.2044 [0.2014, 0.2075] versus 40 min: 0.2054 [0.2023,

0.2085] p = 0.6741), the plasma is a stable measurement to use as the precursor pool for protein

FSR calculations. Also the calculated coefficient of variation showed low variability change

between the initial time points (3 min: 8.46%, 5 min: 2.53%) and later time points (30 min:

7.82%, 40 min: 2.40%). Alanine TTR within the intracellular fraction of tissue (icALA TTR)

resulted in more variability when compared to the plasma alanine (plaALA) TTR as shown by

the coefficient of variation (Table 2). In addition, when using the plaALA TTR or icALA TTR

as the precursor pool to calculate protein FSR, we observed more variability in the protein FSR

calculated with icALA TTR in each organ (Table 3). The coefficients of variation were two-

fold higher in some tissues when using icALA TTR to calculate the protein FSR. Also, the pro-

tein FSRs calculated with icALA TTR were significantly higher than when calculated with

plaALA TTR in most tissues (Table 3). Since the icALA TTR were more variable than the

plaALA TTR, we, therefore, decided to use the plaALA TTR as the precursor pool to calculate

protein FSR.

Tissue protein fractional synthesis rates

Utilizing the plasma alanine TTR (Fig 2A), the protein-bound alanine TTR (Fig 2B), and sam-

pling time to calculate protein FSR of the mice given 5% D2O enrichment, we found the jeju-

num had the highest tissue protein FSR followed by ileum and liver while skeletal muscle,

bone and skin had the lowest protein FSR (Fig 3).

Table 2. Comparison of the precursor pools used to calculate FSR for all mice combined.

Alanine TTR (n = 30) Coefficient of Variation (%)

PlaALA TTR

Plasma 0.2013 [0.1968, 0.2058] 5.96%

Tissue icALA TTR

Kidney 0.1599 [0.1461, 0.1738] 22.72%

Heart 0.1720 [0.1664, 0.1776] 7.89%

Fat 0.1914 [0.1871, 0.1957] 5.59%

Lung 0.1722 [0.1624, 0.1819] 14.85%

Jejunum 0.1698 [0.1587, 0.1809] 17.19%

Ileum 0.1878 [0.1660, 0.2095] 30.51%

Muscle 0.2008 [0.1959, 0.2058] 6.38%

Brain 0.1762 [0.1723, 0.1800] 5.63%

Liver 0.1750 [0.1613, 0.1888] 20.64%

Bone 0.1712 [0.1639, 0.1785] 9.84%

Skin 0.1434 [0.1373, 0.1495] 9.38%

Note: Plasma alanine (plaALA) TTR is the mean of each mouse’s average plaALA TTR. Alanine TTR reported for

each tissue is the intracellular alanine TTR (icALA TTR). Data are expressed as mean [95% CI]. n = 30 for plasma

and tissues.

https://doi.org/10.1371/journal.pone.0242926.t002
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Analysis of protein FSR per physical activity levels resulted in a significant protein FSR dif-

ference in the kidney tissue between the high-active and low-active mice (Fig 4). The kidney

protein FSR in the low-active mice was 7.82% higher than the high-active mice. No significant

differences were found between protein FSR of high-active and low-active mice in any of the

other studied organs (heart, fat, lung, jejunum, ileum, liver, muscle, brain, bone, and skin).

Discussion

The purpose of the present study was to determine the differences in protein fractional synthe-

sis rates (FSR) of various organ tissues between high- and low-active mice, using D2O. Only in

kidney tissue, we identified a significant difference between protein FSR of high- and low-

active mice suggesting a possible connection between renal protein synthesis and physical

activity level.

Fractional synthesis rate of high- and low-active mice

Protein FSR is an important measure to gain an understanding of metabolic regulation, as the

faster the organ can synthesize protein, the more control the tissue has through upregulation

and downregulation of metabolic pathways. It, therefore, represents the organ’s ability to

adapt to a change of environment. We calculated protein FSR of multiple organs in high-active

Table 3. Protein-bound alanine (pbALA) TTR and comparison of protein FSR calculated with plasma or intracellular precursor pools for all mice combined.

Tissue pbALA TTR FSR (plasma) FSR (intracellular) P-value

Kidney 0.0408 [0.0396, 0.0420] 0.1809 [0.1769, 0.1848] 0.2515 [0.2226, 0.2804] <0.0001�

5.67% 29.03%7.70%

Heart 0.0163 [0.0146, 0.0181] 0.0679 [0.0606, 0.0753] 0.0792 [0.0717, 0.0868] 0.0116�

24.6% 25.03% 20.84%

Fat 0.0280 [0.0280, 0.0315] 0.1274 [0.1211, 0.1337] 0.1352 [0.1281, 0.1422] 0.1372

14.25% 11.96% 12.39%

Lung 0.0164 [0.0156, 0.0193] 0.0675 [0.0647, 0.0704] 0.0796 [0.0735, 0.0857] 0.0125�

12.94% 11.18% 19.79%

Jejunum 0.0736 [0.0705, 0.0767] 0.3644 [0.3482, 0.3805] 0.4780 [0.4298, 0.5263] <0.0001�

10.99% 11.66% 26.53%

Ileum 0.0644 [0.0610, 0.0679] 0.3070 [0.2904, 0.3236] 0.3601 [0.3246, 0.3956] 0.0053�

14.15% 14.23% 25.91%

Muscle 0.0074 [0.0069, 0.0079] 0.0298 [0.0277, 0.0320] 0.0299 [0.0277, 0.0320] 0.9378

16.83% 17.43% 17.06%

Brain 0.0179 [0.0174, 0.0183] 0.0741 [0.0726, 0.0756] 0.0858 [0.0828, 0.0888] <0.0001�

6.38% 4.77% 8.23%

Liver 0.0579 [0.0558, 0.0600] 0.2723 [0.2625, 0.2821] 0.3269 [0.2935, 0.3603] 0.0038�

8.93% 8.70% 24.75%

Bone 0.0076 [0.0065, 0.0087] 0.0308 [0.0263, 0.0353] 0.0365 [0.0310, 0.0419] 0.1684

30.93% 31.09% 31.09%

Skin 0.0050 [0.0041, 0.0059] 0.0201 [0.0167, 0.0235] 0.0277 [0.0231, 0.0322] 0.0475�

35.89% 35.31% 34.02%

Note: FSR (plasma) indicates that plaALA TTR was used as the precursor pool during FSR calculation. FSR (intracellular) indicates that icALA TTR was used. p-value is

reported for t-test between FSR (plasma) and FSR (intracellular). All FSR calculations used the same pbALA TTR. Data are expressed as mean [95% CI] and coefficient

of variation(%). Protein FSR is fraction/day. n = 30 for all and a mix of high-active and low-active.

�significance of unpaired t-test (p<0.05)

https://doi.org/10.1371/journal.pone.0242926.t003
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and low-active mice to analyze the relationship between tissue protein synthesis and physical

activity level. Our previous studies have identified a link between metabolism and physical

activity level [2, 3]. In contradiction to our hypothesis, we found that the kidney of the low-

active mice had a 7.8% higher protein FSR than the high active mice, but no significant differ-

ences were observed in any of the other studied tissues. Since we used inbred strains with

inherently differing physical activity levels, the results indicate that the higher FSR in the kid-

ney of low active mice may be contributing to a change in physical activity level rather than a

consequence of low activity level. Although an argument can be made that a 7.8% difference in

protein synthesis may not be physiologically relevant in a tissue with a high protein FSR like

the kidney, many other studies have observed associations between physical activity level and

the progression of chronic kidney disease [27, 28]. Evidence also exists that the benefit of phys-

ical activity for the kidney lies in the correction of blood pressure, reduction of inflammation,

decrease in triglycerides, and reduction of co-morbid diseases [28], but is not related to any tis-

sue-specific metabolic changes of the kidney instead of systemic adaptations. No studies, to

our knowledge, have examined the physical activity-induced physiological changes on kidney

tissue metabolism. Without a solid understanding of the role that physical activity plays on

kidney tissue metabolism, we can not definitively explain a connection of a higher kidney pro-

tein FSR and a lower physical activity level.

In addition, a statistical trend was observed in the lung tissue with higher protein FSR in

the low-active mice when compared to high-active mice. It is known that the lung tissue pro-

tein synthesis decreases from gestation to adult life then remains constant throughout adult

life [29]. As a sedentary lifestyle is mostly accompanied by a reduced ventilatory load, one

might expect protein FSR of the lungs to be suppressed in low-active mice. On the other hand,

lung tissue protein synthesis has been demonstrated to increase in damaged states [30]. More-

over, in physically inactive chronic bronchitis patients with enhanced pulmonary and systemic

low grade inflammation, higher resting whole-body protein turnover was observed [31].

Fig 2. Alanine TTR of high and low active mice. (A) Plasma alanine TTR of high and low active mice. (B) Protein-bound alanine TTR of high and low active mice

per organ tissue. All data are mean [95% CI], n = 15.

https://doi.org/10.1371/journal.pone.0242926.g002
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Whether a chronic low grade inflammatory state is also present in the low-active mice in these

mice needs further study but could possibly contribute to the inability to achieve a higher

physical activity level. More research is needed to examine if protein synthesis of the lung can

be modified by a change in physical activity and whether the upregulated protein FSR of the

lung is responsible for the inability to achieve a higher physical activity level.

Overall, the present study shows that most of the measured high-active mice organs are not

differently equipped for adaptation through protein FSR rates than the low-active mice. These

results suggest that the source of physical activity regulation is not an increase in protein turn-

over but that the low active mice lack the ability to increase protein FSR to achieve a higher

physical activity level.

Comparison of obtained data to literature

We compared the protein FSR in the tissues with those described in the literature and observed

that the jejunum had the highest protein FSR followed by the liver, ileum, heart, and skeletal

muscle in accordance with the reported protein FSR in multi-organ analyses [4, 7]. Our

Fig 3. Order of tissue protein FSR in various tissues from highest to lowest of combined high- and low-active mice. All data are mean [95% CI], n = 30.

https://doi.org/10.1371/journal.pone.0242926.g003
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observed tissue-specific protein FSR values were comparable to those reported using D2O [7,

20, 32] and [2H5]phenylalanine flood dose methods [33, 34] in mice [33], rat [7], and humans

[20].

Limitations

The mice used in this experiment were administered a pulse of stable isotope tracers an hour

before tissue collection for analysis of amino acid whole body production and clearance as

reported [17] and the mice underwent surgery with anesthesia. The anesthesia and surgical

Fig 4. Protein FSR of low-active and high-active mice in each tissue. Statistics: t-test corrected with false discovery rate (significance: q<0.05). Data

are expressed as mean [95% CI] in fraction/day.

https://doi.org/10.1371/journal.pone.0242926.g004
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procedure would not make a large impact on the protein FSR as the incorporation of tracer from

D2O has taken place over 24 hours. Therefore, an increase or decrease in protein FSR due to the

surgery would have only affected the last hour of a 24 hour measurement. A 20% reduction in the

FSR during the last hour would only have about 1% effect on the measured FSR. In addition, all

mice underwent the same type of surgery and we can anticipate that the effect on FSR would be

roughly the same. There is a possibility that these stable isotope tracers increased the amount of

isotopes (5N, 13C or 2H) available since the labeled isotopes of the administered amino acids can

appear in alanine [35]. We used plasma to calculate protein FSR due to the icALA TTR variability

that possibly could be caused by the stable isotope pulse. However, we acknowledge that the intra-

cellular alanine probably is the most optimal choice of precursor pool, because this pool repre-

sents the labeled alanine that is directly used by the cell for protein synthesis. We could use

plaALA TTR since the enrichment of alanine should be the same in all tissues of the mouse [25]

and our calculations using plasma did not change our overall conclusions. In future studies,

plasma should be taken before the administration of stable isotope tracer pulse to obtain the high-

est accuracy. We recommend if intracellular alanine is desired to be used as the precursor pool

then the subject should not be administered other stable isotope tracers.

The observed significant role of the kidney tissue and lung tissue may be (in part) related to

other potential strain differences. However, extensive research has been done on the genomic

and proteomic profiles between these two inbred strains in order to understand the role of

genetics on physical activity level difference [1, 12]. With genetic control, as these strains are

inbred, and with environmental controls, such as diet, we are able to contribute findings to a

difference in the metabolic pathway.

Conclusion

In summary, the present study results show that physical activity level is not specifically regu-

lated by protein FSR, although more in-depth analysis is required regarding the observed rela-

tionship between kidney tissue metabolism and physical activity. This work is important to

determine which biological factors are regulating physical activity level, as physical inactivity is

linked to several chronic diseases [36] and is a growing societal problem. More studies are

needed to examine whether other metabolic parameters are able to differentiate the physical

activity level. The methods used in the present study make it possible to explore the utilization

of multiple energy substrates such as fatty acid oxidation and glycogen storage in the liver and

muscle [6], whereas others also measured fatty acid and lipid synthesis using D2O [37, 38]. In

addition, protein breakdown analysis of the different tissues would provide a more complete

metabolic picture in regards to the physical activity level.
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