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Abstract

Computational neuroimaging methods aim to predict brain responses (measured e.g. with

functional magnetic resonance imaging [fMRI]) on the basis of stimulus features obtained

through computational models. The accuracy of such prediction is used as an indicator of

how well the model describes the computations underlying the brain function that is being

considered. However, the prediction accuracy is bounded by the proportion of the variance

of the brain response which is related to the measurement noise and not to the stimuli (or

cognitive functions). This bound to the performance of a computational model has been

referred to as the noise ceiling. In previous fMRI applications two methods have been pro-

posed to estimate the noise ceiling based on either a split-half procedure or Monte Carlo

simulations. These methods make different assumptions over the nature of the effects

underlying the data, and, importantly, their relation has not been clarified yet. Here, we

derive an analytical form for the noise ceiling that does not require computationally expen-

sive simulations or a splitting procedure that reduce the amount of data. The validity of this

analytical definition is proved in simulations, we show that the analytical solution results in

the same estimate of the noise ceiling as the Monte Carlo method. Considering different

simulated noise structure, we evaluate different estimators of the variance of the responses

and their impact on the estimation of the noise ceiling. We furthermore evaluate the interplay

between regularization (often used to estimate model fits to the data when the number of

computational features in the model is large) and model complexity on the performance

with respect to the noise ceiling. Our results indicate that when considering the variance of

the responses across runs, computing the noise ceiling analytically results in similar esti-

mates as the split half estimator and approaches the true noise ceiling under a variety of

simulated noise scenarios. Finally, the methods are tested on real fMRI data acquired at

7 Tesla.
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Author summary

Encoding computational models in brain responses measured with fMRI allows testing

the algorithmic representations carried out by the neural population within voxels. The

accuracy of a model in predicting new responses is used as a measure of the brain validity

of the computational model being tested, but the result of this analysis is determined not

only by how precisely the model describes the responses but also by the quality of the

data. In this article, we evaluate existing approaches to estimate the best possible accuracy

that any computational model can achieve conditioned to the amount of measurement

noise that is present in the experimental data (i.e. the noise ceiling). Additionally we intro-

duce a close form estimation of the noise ceiling that does not require computationally or

data expensive procedures. All the methods are compared using simulated and real fMRI

data. We draw conclusions over the impact of regularization procedures and make practi-

cal recommendations on how to report the results of computational models in

neuroimaging.

Introduction

Computational modelling approaches applied to functional magnetic resonance imaging

(fMRI) measurements aim to explain and predict the brain responses by expressing them as a

function of model features that describe the sensory (or cognitive) stimuli [1–5]. By doing so,

computational neuroimaging methods have been proposed as a means to test the (brain) valid-

ity of the algorithm being evaluated and eventually its refinement.

At the single voxel level, two different approaches, population Receptive Fields (pRF)

modelling [3] and linearized encoding models [6,7], have been developed to link computa-

tional models and fMRI responses. In the following, we will refer to both these approaches

indiscriminately as encoding models (see e.g. [8] for the relation between linearized encoding

models and pRF approaches).

The performance of a computational model that describes fMRI responses is evaluated in

terms of its accuracy in predicting new (test) data. The prediction accuracy is not only affected

by inaccuracies in the definition of the algorithm (i.e. mismodelling) but also by other sources

of variance in the brain responses that are not expressly modelled (e.g. attention and adapta-

tion) and, most importantly, by physiological (e.g. respiration) and measurement noise. These

effects are evidenced by the fact that in real data, presenting multiple times the same stimulus

does not result in the same measured brain response. Commonly tested models of sensory (or

cognitive) stimuli do not account for the variability in the response between repetitions of the

same stimulus which imposes a bound to the ability to encode computational models in fMRI

responses. This bound can be interpreted as the performance of the computational model

underlying the generation of the responses (i.e. the true underlying model) conditional to the

noise (experimental, physiological or other) that is present in the test data (under the assump-

tion of infinite training data). It should be noted here that this represents one of many possible

definitions of a bound to the performance of a computational model. This bound is imposed

exclusively by the measurement noise in the test data (i.e. test-data-noise ceiling). A more real-

istic definition of the noise ceiling would also consider the influence of the size of the training

set and the algorithms used for estimating the computational model, however it has not been

proposed yet. Reporting the test-data-noise ceiling allows assessing the quality of the predic-

tions obtained when using computational modelling approaches relative to the quality of the

data, and thus comparing modelling efforts on different datasets across labs.
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In the neuroimaging community, it has been recommended to report the performance of a

computational model with respect to the (test data) noise ceiling and, in some cases, these rec-

ommendations have led to the use of normalized accuracy scores (e.g. dividing the accuracy by

the noise ceiling, [9–13]). Different estimation procedures have been proposed for the test-
data-noise ceiling but the properties of these different estimators have not been compared. The

main purpose of this article is to provide a framework in which the concept of the test-data-
noise ceiling can be clarified for the users of encoding models and in which different estimators

can be compared on the basis of their assumptions.

To illustrate the concept of test-data-noise ceiling we can consider the two-step procedure

that in many cases is used when fitting a computational model. In the first step, responses to

the stimuli are estimated from the whole fMRI time series and, in the second step, the compu-

tational model is fit to the stimulus response series. While this two-level procedure is not used

by all encoding approaches in practice, the unmodelled variability of the response between

repetitions of the same stimulus limits the performance of a computational model that predicts

the whole fMRI time series as well (see e.g. pRF models [3]). As a consequence of this hierar-

chical estimation framework, the prediction accuracy of the model (step 2) is bound by the

uncertainty in the estimation of the response (step 1). This bound corresponds to the intraclass

correlation coefficient [14] a well-known result in multilevel modelling.

The noise ceiling can be obtained considering the variability across subjects (see e.g. [15]),

but here we will focus on estimation procedures at the single subject level, where two

approaches have been proposed to estimate the test-data-noise ceiling of single voxels. The first

models the response of a voxel as a univariate normal distribution with two variance compo-

nents [16]. The first variance component corresponds to the variability of the signal around its

mean due to genuine differences in the brain response between different stimuli (excluding

the effects of measurement noise). The second variance component corresponds to the vari-

ability in the brain response due to measurement noise. Having an estimate of the measure-

ment noise allows generating new samples for both the signal without noise (genuine brain

response) and the measurement (i.e. signal plus noise) using Monte Carlo simulations. The

noise ceiling (measured with correlation or predictive R2) is then computed using the simu-

lated signals and measurements (i.e. considering the performance in predicting the noisy mea-

surements of a model whose prediction is the clean signal). In what follows we will refer to this

approach as the Monte Carlo noise ceiling (MCnc). Alternatively, the noise ceiling can be esti-

mated as the correlation between the estimates of the responses in two independent repetitions

of the same experimental procedure [17,18]. In absence of two repetitions of the test set, the

split-half noise ceiling estimator (SHnc) can be estimated by splitting the available test data in

two disjoint sets (i.e. splitting the trials of all test stimuli in two sets to obtain two estimates of

the test data), computing the split-half correlation and applying a correction factor that

accounts for the reduced number of trials in each half of the data compared to the full dataset.

In this article, we describe the differences between these two noise ceiling estimators using

simulated data and derive an analytical solution to the calculation of the test-data-noise ceiling
obviating the need of computationally demanding procedures (i.e. Monte Carlo simulations)

or splitting the data in two sets. Importantly, the MCnc and the analytical noise ceiling we pro-

pose are based on an estimate of the variability of the estimated responses due to the measure-

ment noise. In simulations, we show how different estimators for this variability impact the

resulting test-data-noise ceiling depending on the structure of the noise in the data.

When using linearized encoding approaches, regularization is often required because of the

dimensionality of the model with respect to the number of stimuli and because of collinearity

between the features of the computational model. Here we evaluate how the bias variance

tradeoff introduced by the regularization influences the performance of an ideal model and
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thus the relationship with the noise ceiling (which is model independent) by imposing a sec-

ond constraint.

Finally, we evaluate the differences between the noise ceiling estimators using real fMRI

data, obtained from 7 Tesla acquisitions. Our results are discussed in terms of their implica-

tions for the evaluation of computational models and their comparison using fMRI data.

Methods

We consider a two-level procedure to fit a computational model to fMRI responses. At the first

level, fMRI responses to single stimuli are estimated from the fMRI time series and, at the sec-

ond level, the computational model is (linearly) fit to the vector of fMRI responses in order to

derive the parameter weights (in the space of the features of the computational model).

Fig 1 illustrates key concepts that underlie the notion of noise ceiling. Brain responses (β)

can be considered a (linear) function, with weights representing the population receptive field

(P), of the representation of the stimuli in the space of a computational model (X with 3-fea-

tures in Fig 1A). The measurement of brain responses (Fig 1B) is affected by experimental/

measurement noise such that the estimate of the responses of a given voxel to the same stimuli

in two independent measurements (Fig 1B) differs. Fitting a computational model to the mea-

sured brain responses allows linking the model features to the measurements and thus predict-

ing voxel responses to new (test) stimuli. When this procedure is used on noisy measurements,

the experimental noise imposes a limit to the performance of the model in predicting the mea-

sured responses.

Fig 1. General description of linking a computational model to fMRI brain responses. Encoding approaches

assume brain responses (pink in panel A) to be a linear function of the model based representation of the stimuli X

(pink dots) (A). Observed fMRI responses (B) are affected by experimental noise which causes estimated responses

(green in panel B) to be different from responses predicted by the computational model (pink in panel B) and to be

different across repetitions of the same experiment.

https://doi.org/10.1371/journal.pcbi.1006397.g001
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In what follows we first describe the two-level fitting approach and the different metrics

used to evaluate model fitting in order to introduce some relevant concepts, next we introduce

a generative framework and derive the bound to the performance. The mathematical notation

used in the following sections is presented in Table 1.

Estimation of the response to single stimuli

The observed fMRI response is assumed to be linearly dependent on the stimuli (design

matrix) [19,20] and the estimation (for every voxel) is achieved using generalized least squares

(GLS):

β̂ ¼ ðΦTΩ̂ � 1ΦÞ� 1ΦTΩ̂ � 1y ð1Þ

The covariance matrix for β̂ is:

Vβ̂ ¼ ðΦ
TΩ̂ � 1ΦÞ� 1ΦTΩ� 1ΦðΦTΩ̂ � 1ΦÞ� 1

ð2Þ

For every voxel, β̂ is the vector of the estimated responses to the stimuli, y is vector of the voxel

time course (the observed fMRI signal) and F is the design matrix describing the timing of

presentation of the stimuli in the experiment, including the effect of the hemodynamic

response. The matrix Ω̂ is the estimated covariance matrix of the fMRI noise, while the O is

the true value of this covariance. This general formulation can accommodate a variety of esti-

mators for computing Vβ̂ which depends on the assumptions made with respect toO. Note

that Vβ̂ depends of the trueO which is unknown. In practice, estimators of O should be

obtained which leads to the estimator of Vβ̂ [21]:

V̂β̂ ¼ ðΦ
TΩ̂ � 1ΦÞ� 1

ð3Þ

The assumption of identically independent distributed (i.i.d) noise (which implies Ω̂ ¼ I)
leads to the ordinary least squares estimator (OLS) [20]. Violations of the i.i.d. assumptions

(i.e. presence of temporal dependences and lack of stationarity of the fMRI noise) involve com-

puting Ω̂ which is an ill conditioned problem, which is usually solved by imposing some form

Table 1. Mathematical notation.

Symbol Definitions (size)

y Voxel time series (time points x 1)

F fMRI design matrix (time points x num of stimuli)

Ω; Ω̂ True and estimated covariance matrix of the fMRI noise (num of time points x num of time points)

s2
εt

Variance of the noise of the fMRI time series for one voxel (scalar)

β; β̂ True and estimated brain responses for one voxel (num of stimuli x 1)

b̂r
i

Voxel estimated brain response for the stimulus i at fMRI run r (scalar)

Vβ̂ ; V̂ β̂ ; V̂ b̂ ii
Voxel true and estimated β̂ covariance matrix (num of stimuli x num of stimuli); and component i

from the diagonal of the β̂ covariance matrix (scalar).

β
�

Voxel brain responses predicted on the test data with the computational model (num of test stimuli x

1)

X,X
�

Computational model for training and test data respectively (num of training/testing stimuli x num of

features)

P; P̂ Voxel true and estimated receptive field vector (number of features x 1)

λ Regularization parameter

�b;
�̂
b ; s2

b
; s2

b̂

Voxel mean and variance of the true and estimated voxel brain response across components. (scalars)

https://doi.org/10.1371/journal.pcbi.1006397.t001
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of regularization. Typically, this is achieved by parametrizations of the noise covariance matrix

that accommodate the assumptions about the noise structure (e.g. first order autoregressive

model)[22–24].

Linearized encoding models

Linearized encoding models assume the estimated response vector β̂ to be linearly dependent

on the description of the stimuli on the basis of a computational model represented by a matrix

X that projects each of the n stimuli onto the model space described by a model with f features

(Fig 1A). The (linear) weights that link the computational model to the fMRI response are

referred to as the population receptive field of the voxel. If the objective of the encoding

approach is to model the differences in the brain responses between stimuli as a function of

the computational model then, voxels that differ only in their means, but otherwise represent

stimuli in the same way, should have the same estimated population receptive field. To do this,

the mean of the brain responses (across all stimuli) can be removed from the response vector β̂
before fitting the model X, or a column of ones can be added to the model X before fitting the

un normalized responses [25]. When there is collinearity across the features or when the num-

ber of stimuli n is smaller than then number of features f, regularization is used. Here we con-

sider the use of ridge regression [26] for estimating the population receptive field P̂ linking the

computational model (represented by the training data matrix X) to the estimated voxel

response vector on the training data set β̂:

P̂ ¼ ðXTXþ lIÞ� 1XTβ̂ ð4Þ

where λ is the regularization parameter. P̂ allows predicting the responses to new (test) stimuli

by considering β� ¼ X�P̂, where X� contains the representation of the stimuli in the test set in

the space of f features. Other approaches use grid search or more sophisticated optimization

algorithms when a non-linear relationship between the features and the response is assumed

[3,27].

Evaluating the performance of computational model encoded in fMRI

responses

The performance of a computational model can be assessed on test stimuli using e.g. the sam-

ple correlation coefficient between the responses predicted by the computational model β�

and the estimated brain responses in the test data β̂ (see Eq 1):

r ¼

1

ðn� 1Þ

Pn
i¼1
ðb̂i �

�̂
bÞðb

�

i �
�b�Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

β̂
ŝ2
β�

q ð5Þ

Where b
�

i and b̂i are the predicted and estimated response to stimulus i respectively. Estimated

variances refer to the variability between the components of the vector of responses around

the mean of the vector: ŝ2

β̂ ¼
1

n� 1

Pn
i ðb̂i �

�̂
bÞ

2
. The estimated mean

�̂
b ¼ 1

n

Pn
i b̂ i corresponds

to the sample mean of the estimated response across its components (each component corre-

sponds to one presented stimulus), with consistent definitions for s2
β� and �b�. Alternatively,

predictive R2 is frequently used for describing the performance of an encoding model:

R2 ¼ 1 �

Pn
i¼1
ðb̂i � b

�

i Þ
2

Pn
i¼1
ðb̂i �

�̂
bÞ

2
ð6Þ
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Note that we are computing the explained variance between the observed and predicted brain

responses β̂ and β�, which is different than the explained variance at the level of the fMRI time

series y. When computed on independent test data, R2 is defined in the interval [−1,1]. It is

important to note that, while R2 is sensitive to scaling transformations of the estimated

response, the correlation coefficient measures the similarity between the predicted and

observed responses in term of covariations around their mean and is insensitive to scaling

transformations. This difference between the metrics is relevant when regularization is used.

The relation between predictive R2 and ρ (see S1 Text) can be rendered explicit considering

that (without loss of generality) the estimated responses were centred to have zero mean (
�̂
b =

0) [25]:

R2 ¼ 2rg lð Þ � gðlÞ
2
�

n
ðn � 1Þ

�b�
2

ŝ2

β̂

ð7Þ

Where g2 lð Þ ¼
ŝ2
ðlÞb�

ŝ2

β̂
is the ratio between the estimated variances of the predicted and observed

response vectors and dependent on the amount of regularization used to estimate the compu-

tational model (see Eq 4 in [5]). The �b� represents the bias in the mean of the predicted

response vector (i.e. how much the mean of the predicted response vector differs from zero,

See S1 Text). Note that the optimal λ for the maximization of R2 does not necessarily corre-

sponds to the λ which maximizes ρ. The predictive squared Euclidean distance D2 between the

vectors β̂ and β�, which is also a frequently used metric, is closely related to the explained vari-

ance: D2 ¼ ðn � 1Þŝ2

β̂ð1 � R2Þ.

Estimating the performance of linearized encoding models

As a consequence of the estimation procedure highlighted above (see Eq 1), in linearized

encoding models, the estimated response vector β̂ is assumed to be multivariate normally dis-

tributed around the true response vector β and with covariance matrix that reflects the vari-

ability of the β̂ estimator:

β̂ � Nðβ;Vβ̂Þ ð8Þ

For linearized encoding models, β (i.e. the expected value of the estimated response β̂) can be

considered to be generated on the basis of the computational model defined by the matrix X.

In particular we can consider:

β ¼ XP ð9Þ

This assumes a fixed linear relation between matrix of model features X and the underlying

“true” brain response β (not influenced by measurement noise) which is mediated by the pop-

ulation receptive field vector P. Note that the true response β can have any shape and is not

limited to be a standard gaussian variable. The noise ceiling estimated under such fixed rela-

tionship is based on the assumption that the total variance of the underlying β can be explained

by the features contained in X.

Noise ceiling definition and estimation procedures

For infinite training data (and without the use of regularization) the noise ceiling can be

defined as the expected performance (measured as correlation or predictive R2) of the model

underlying the generation of the responses (i.e. the “true” model X). Such model uses the true
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pRF (P) and produces correct predictions for a voxel, i.e. it assumes that the predicted

responses β� are the true β:

rNC ¼ EðrÞβ�jλ¼0;ntr¼1
ð10Þ

This definition of the noise ceiling is a function of the variability of the test data, is by construc-

tion independent of the computational model, and thus is better referred to as test-data-noise
ceiling. Different assumptions underlying the univariate modeling of fMRI data result in differ-

ent estimates of the responses (β̂) and their variance. Thus, the (true) noise ceiling is affected

by the fMRI response estimation procedure. More sophisticated noise ceiling definitions

might also consider the performance of the true model conditioned to the actual amount of

data available, or conditioned on the particular algorithm that was used to fit the computa-

tional model (e.g conditioned on the value of λ).

Split-half noise ceiling (SHnc). The split-half noise ceiling estimator is an empirical pro-

cedure which consists of correlating the β̂ responses to the same stimuli obtained from two

disjoint sets of (test) data: (β̂1 and β̂2) at every voxel [18, 29]. Because the number of stimuli in

each split is reduced by half, the observed correlations are adjusted using the correction:

r ¼
covðβ̂1; β̂2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2

β̂1
ŝ2

β̂2

q

rSHnc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2r

rþ 1

r
ð11Þ

The split-half noise ceiling is a non-parametric procedure since it does not rely on the estima-

tion of the β̂ variances. Therefore, the split-half noise ceiling estimator procedure takes into

account all sources of variability that affect the brain responses. Note that the SHnc is defined

only for positive split half correlation values. Here we define the SHnc to be zero for negative

split half correlations, which is equivalent to assuming that in the case in which the observed

correlation between two independent measurements of the same stimuli is negative the maxi-

mum performance that any encoding model can achieve is the chance level.

Monte Carlo noise ceiling (MCnc). The MCnc assumes each element of the response vec-

tor β̂ (i.e. b̂i, with i running across the n stimuli) to be samples of the same univariate normal

distribution [16]. The variance of the responses are split in two components, the experimental

noise (s2
ε) and the variability between stimuli of the noise free β responses (s2

β).

b̂i � Nð�̂b ; ŝ2

β̂Þ

ŝ2

β̂ ¼ ŝ
2

ε þ ŝ
2

β

ð12Þ

where ŝ2
ε is the pooled variability of each component of the response vector due to measure-

ment errors (i.e. ŝ2
ε ¼

1

n

Pn
i¼1

V̂ b̂ ii
). Note that in the definition provided by [16], the experimen-

tal noise variability (ŝ2
ε) is across experimental conditions (i.e. stimuli) and not across trials

(i.e. repetitions) of the same stimulus. When pooling across stimuli the MCnc assumes that the

noise affects all stimuli in the same way. An estimate of the variability of the noise free signal

can be obtained as the difference between the variability of the responses across the n stimuli

(ŝ2

β̂) and the variability of the noise:

ŝ2

β ¼ ŝ
2

β̂ � ŝ
2

ε ð13Þ

After the variability of the noise free signal is obtained with Eq 12, Monte Carlo samples of the
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noise free signal can be generated. For every generated noise free signal the experimental noise

is added (using a normal distribution with zero mean and variance ŝ2
ε) and the correlation

between the noise free signal and the noise contaminated signal is computed. The median

across all simulations represents an estimate of the noise ceiling.

Analytical derivation of noise ceiling. Considering the definition provided in Eq 10, if

the predicted responses β� are identical to the true expected value of the responses β the pre-

diction accuracy expressed through the correlation coefficient takes the form of:

rNC ¼
1

n� 1

Pn
i¼1
ðb̂i �

�̂
bÞðbi �

�bÞ
ffiffiffiffiffiffiffiffiffiffi
ŝ2

β̂
ŝ2
β

q ð14Þ

Based on the assumption that the measurement error and the true β are independent, the

noise ceiling can be estimated as (see S1 Text):

r̂NC ¼
ŝ2
β
ffiffiffiffiffiffiffiffiffiffi
ŝ2

β̂
ŝ2
β

q ¼
ŝβ

ŝβ̂

ð15Þ

This means that the noise ceiling can be expressed as the square root of the ratio between the

variance of the true brain response (ŝ2
β) and the variance of estimated brain response (ŝ2

β̂), or

equivalently the ratio between the variance of the noise free brain response (ŝ2
β) and the vari-

ance of the noise contaminated brain response (ŝ2

β̂) (see Eq 12 for the relation between both

variances). The denominator ŝ2

β̂ is easy to compute since β̂ is estimated from the fMRI time

series and its variance can be directly derived from the test data. However, the numerator ŝ2
β

has to be derived based on the covariance matrix of the estimated β̂. The analytical noise ceil-

ing can be estimated using the variance estimates of each component of β̂ according to the for-

mula:

r̂NC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

β̂
� 1

n

Pn
i V̂ b̂ ii

q

ŝβ̂

ð16Þ

The term V̂ b̂ ii
refers to the component i of the diagonal of the V̂ β̂ matrix. As for the MCnc,

this general formulation allows considering different estimators for V̂ β̂ . Note that in Eq 16 a

negative number under the square root can be obtained if the average of the variance within

components (1

n

Pn
i V̂ b̂ ii

is greater that the variance between components (ŝ2

β̂). This can be

caused by one or more stimuli (components of β̂) with a brain response that is equal to zero.

In these cases we define the analytical noise ceiling to be zero, which corresponds to assume

that the maximum accuracy that encoding models can reach is the chance level. The same

indeterminacy of obtaining a negative estimation of the variance can occur for the Monte

Carlo NC (Eq 12) and the considerations made for the MCnc and the analytical noise ceiling

are consistent with the ones made for the SHnc in the case of negative correlations between

the splits.

The noise ceiling estimator r̂NC has as expected value ρNC, (see S1 Text II). The noise ceiling

estimator for the explained variance R2 can be derived transforming the noise ceiling for the

correlation coefficient to the R2 domain with Eq 7. The analytical noise ceiling estimator has

the same expected value than the Monte Carlo noise ceiling estimator with the advantage of

not requiring a large computational effort.
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Models of the variance of the estimated brain response

As highlighted above, the MCnc and the analytical approach rely on the estimation of the covari-

ance matrix of the estimated regression coefficients ðV̂ β̂Þ. Different V̂β̂ estimates will therefore

result in different expected values for the noise ceiling. In particular, as highlighted in Eq 3, V̂β̂

depends on the assumptions made about the structure of the noise in the fMRI time series (i.e. the

structure of Ω̂ in Eq 3). Different analysis software use different covariance constrains for com-

puting Ω̂; to account for autocorrelation in the noise, here we followed the SPM-12 (http://www.

fil.ion.ucl.ac.uk/spm/software/spm12) approach which estimates the brain response in two passes.

In the first pass, estimated brain responses are computed assuming Ω̂ ¼ I, which corresponds to

OLS. Next, the noise covariance matrix is computed assuming the same correlation structure for

each voxel within each session. A parametrized model of the noise covariance matrix is fit to the

pooled covariance matrix using restricted maximum likelihood (spm_reml.m). The covariance

constraint for Ω̂ are obtained with the function (spm_Ce.m) with autocorrelation coefficient of

0.2 (empirically determined). In the second pass the β̂ are obtained with Eq 1 which uses the esti-

mate of Ω̂ derived in the first pass. To account for non-stationarity we followed the RobustWLS

toolbox approach (http://www.diedrichsenlab.org/imaging/robustWLS.html). In particular, the

estimation of Ω̂ is performed using a Newton-Raphson algorithm (spm_rwls_reml.m in the WLS

toolbox) [30]. Note that autocorrelation and the non-stationarity constraints can be combined in

the same estimation of Ω̂ [30]. However, we do not perform this combined estimation here since

we used WLS as implemented in the RobustWLS toolbox.

When data are acquired across multiple runs (or sessions), additional sources of variability

across runs (sessions), can have an effect on the variance of the β̂ [31]. See [32] for a proper

partitioning of the variance of the fMRI into runs and sessions components. Ignoring this

source of variability resulted in the underestimation of the variability of the brain responses

with the consequence of overestimating the NC. A solution for this problem is to estimate, for

each voxel, the β̂ responses using a mixed effect model. Two reasons limit the use of mixed

models in fMRI: first, estimating such model for each voxel has a large computational cost

(impractical for a large number of voxels); second, and more relevant, the design may not

allow a reliable estimation of the model when the number of presentations of each stimulus

across the runs is too small. An alternative is to compute the variability of β̂ as the variance of

the mean of β̂ across the fMRI runs (sessions):

V̂ b̂ ii
¼

1

ðnr � 1Þnr

Xnr

r¼1

ðb̂r
i �

�̂
b r

i Þ
2

ð17Þ

where nr is the number of runs (or sessions), b̂r
i is an estimate of the response for stimuli i in

the run r and
�̂
b r

i is the mean of the response for stimulus i across the nr runs. Note that the var-

iance of the mean of β̂ across nr runs is the estimator of the variance of β̂ divided by the num-

ber of runs. Since the noise ceiling is only a function of the measurement error of each

component of β̂, (and not of the covariance between components) only the diagonal elements

of the matrix V̂β̂ are relevant (See Eq 16). This estimator of the variance does not rely on

assumptions on the particular form of Ω̂ made by the parametric estimation procedure and

can be derived directly from the run to run variability of the β̂. Such estimator has the attrac-

tive of not depending of the assumptions regarding the structure of the fMRI noise, however

in fMRI experiments with only few runs it could make the estimator less robust.
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Data

Simulations. To validate the analytical formulation of the noise ceiling and to compare

the effect that different estimators of the variance of the responses have on the noise ceiling we

performed simulations under different scenarios for the structure of the noise in the fMRI

time series. Simulated fMRI time series were obtained starting from a computational model (X
representing 168 [126 training and 42 test] stimuli in a space of 128 features) and assuming a

linear encoding model where the responses to the stimuli β are obtained from a linear combi-

nation (the population receptive field) of the features of the model (see Eq 4). The number of

stimuli (training and test) and the dimensionality of the computational model were selected in

correspondence with the experimental design used for the real fMRI data (see next section).

The simulated population receptive field vector P was sampled from the standard normal

distribution.

The β vector was then combined with a design matrix F describing the presentation of the

stimuli during an fMRI experiment. We used the design matrix of an fMRI experiment in

which stimuli where presented following a fast event related design (as commonly used in

fMRI encoding approaches—see real data section) in 6 separate runs. Each simulation was rep-

licated 100 times under identical conditions and we report the average value across the simula-

tions and the [5 95] percentiles of the distribution.

We will refer to the different simulation scenarios on the basis of the structure used for the

true covariance matrix of the noise O and to be distinguished from the assumed covariance

matrix of the noise used in estimation Ω̂ (see previous section).

1. i.i.d noise scenario: we consider O = I, i.e. the fMRI time series was generated using inde-

pendent identical distributed gaussian noise and we assumed the same β across all runs.

We performed simulations in this scenario, as a function of the ratio between the variance

of the signal and the variance of the noise (SNR).

2. autocorrelated noise scenario: We generated the noise of fMRI time series following a first

order autoregressive processes with varying autoregressive coefficient (implemented using

the Matlab function arima.m). The generated noise was scaled to have SNR equal to one.

The results were displayed as function of the lag-1 autocorrelation of the fMRI noise. Con-

sidering that the estimation of the noise covariance matrix requires a subset of voxels (see

previous section), we simulated 1000 voxels with the same noise covariance structure in

each simulation, but we report the noise ceiling estimation for one of them (i.e. the first

voxel).

3. non-stationary noise scenario: the fMRI time series were generated using gaussian i.i.d.

noise for which a random subset of 5% of the fMRI volumes of the noise signal were scaled

with a non-stationarity factor varying in the interval [1, 3] (See the simulations in [30] for a

more detailed description). The non-stationarity factor effectively reduces the SNR for a

subset of the volumes, for the other set the SNR was fixed to one. Considering that the esti-

mation of the noise covariance matrix requires a subset of voxels (see previous section), we

simulated 1000 voxels with the same noise covariance structure in each simulation, but we

report the noise ceiling estimation for one of them (i.e. the first voxel).

4. autocorrelated noise with run to run variability: we repeated scenario 1 with the inclusion

of autocorrelated noise fixing the lag-1 autocorrelation value to 0.25. Here we evaluated the

effect on the noise ceiling of the run to run variability in the response vector β. For each

run, β comprised of two additive terms, one common across runs (coming from the model

matrix and the population receptive field: XP), and the second variable across runs modeled
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as standard gaussian distribution with zero mean. The proportion between the two terms

was selected such that the average correlation between two halves of the experiments (first

and second twelve runs) reached 0.6. We performed different simulations by varying the

amount of SNR now defined as the ratio of the variance of the term of the response com-

mon across runs and the variance of the noise.

In each of the simulated scenarios we computed the analytical noise ceiling (Eq 16) using

different estimators for β̂ which are conditioned to the parametric form of Ω̂ that determines

V̂β̂ . In particular, we tested three estimators depending on different parametric assumptions:

1) Ω̂ ¼ I, which corresponds to ordinary least square (OLS), 2) an autoregressive model of

order 1 (as implemented in SPM 12), and 3) a parametric model of non-stationarity (using the

RobustWLS toolbox). We will refer to these three estimators as Ω̂ ¼ I, AR(1) and NST respec-

tively and thus we will refer to the noise ceiling estimates resulting from them using the same

acronyms. The noise ceiling obtained with these parametric estimators of the variance of the β̂
was compared to the noise ceiling obtained using the run to run variability (R2R) for estimat-

ing the variance of the response (using the variance of the estimated responses introduced in

Eq 17 in the noise ceiling estimate proposed in Eq 16) and the SHnc. Note that for both the

R2R noise ceiling and the SHnc the estimated responses β̂ are obtained using ordinary least

squares (i.e. assuming Ω̂ ¼ I). This is to validate that the SHnc and the R2R noise ceiling esti-

mator are robust to violations of the OLS assumptions.

In each simulation scenario all noise ceiling estimators were compared to the true noise

ceiling that in simulations can be computed directly knowing the true simulated β using Eq

14. Note that the true noise ceiling is dependent on the estimation procedure used to obtain

the test β̂ (see section Noise ceiling definition and estimation procedures.). As a consequence,

the ground truth noise ceiling values used for comparative purposes in the simulations will

also differ depending on the estimation used to obtain β̂.

MRI data. The data presented here are part of a larger study that includes ten healthy partic-

ipants. The subjects had no history of neurological disease, and gave informed consent before

commencement of the measurements. The Ethical Committee of the Faculty for Psychology and

Neuroscience at Maastricht University granted approval for the study. Magnetic resonance imag-

ing data were acquired on an actively shielded MAGNETOM 7T whole body system driven by a

Siemens console at Scannexus https://scannexus.nl/. A Nova Medical head RF coil (single trans-

mit, 32 receive channels) was used to acquire anatomical (T1, Proton Density [PD] weighted)

and functional (T2
� weighted BOLD) images. T1 weighted (0.7 mm isotropic) images were

acquired using an MPRAGE sequence (repetition time [TR] = 3100 ms; time to inversion [TI] =

1500 ms; time echo [TE] = 3.5 ms; flip angle = 5˚). PD images were acquired with the same

MPRAGE as the T1 weighted image but without the inversion pulse (TR = 2160 ms; TE = 3.5 ms;

flip angle = 5˚), and were used to minimize inhomogeneities in T1 weighted images [33]. Acqui-

sition time for the T1 and PD datasets were ~ 9 and 4 minutes respectively. Anatomical data

were analyzed with BrainVoyager QX and were resampled (with sinc interpolation) in the nor-

malized Talairach space (Talairach and Tournoux, 1988) at a resolution of 0.5 mm isotropic.

Functional (T2
� weighted) data were acquired using a clustered Echo Planar Imaging (EPI)

technique (1.1 mm isotropic; TR = 2.6 s; GRAPPA = 3; MultiBand = 2; Gap = 1.4 s). The exper-

iments were designed according to a fast event-related scheme and slices were prescribed in a

coronal oblique orientation in order to cover the brainstem and auditory cortex (Heschl’s

gyrus, planum temporale and planum polare) bilaterally. A total of 168 sounds were presented

six times across 24 runs in silent gaps in between volme acquisitions using magnetic compati-

ble earbuds (Sensimetrics inc.). The sounds were divided into four training and testing sets (126
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and 42 sounds respectively). The four training and test sets (i.e. the four cross validations) where

built such that training sounds and test sounds where presented in separate runs (e.g. for cross val-

idation number 1 runs [4, 5, 12, 16, 17, 24] where test runs and the remaining runs where training

runs). Within each run, sounds were randomly spaced at a jittered interstimulus interval of 2, 3,

or 4 TRs and presented in the middle of the silent gap between acquisitions (leaving 100 ms of

silence before and after the sound). Zero trials (trials where no sound was presented [5% of the tri-

als]), and target trials (trials in which a sound was presented two times in a row [5% of the trials])

were included. Subjects were instructed to perform a one-back task, and were required to respond

with a button press when the same sound was presented two times consecutively. Target trials

were excluded from the analysis. Before starting the experiment (with the ear buds in place), the

subjects were instructed to adjust the overall sound intensity to a clearly audible and comfortable

level. This resulted in an approximate sound intensity of 65 dB. The total scanning was divided

over two sessions that were acquired in two consecutive days.

Functional data analysis. Functional data were analyzed with BrainVoyager QX (v20.4)

[34]. Preprocessing consisted of slice scan-time correction (with sinc interpolation), 3-dimen-

sional motion correction, and temporal high pass filtering (removing drifts of 4 cycles or less

per run). Functional data were co-registered to the anatomical data, normalized in Talairach

space (Talairach and Tournoux, 1988), and resampled (with sinc interpolation) at a resolution

of 1 mm isotropic.

We calculated the fMRI response to each sound using the following steps. First, for each

cross validation, we obtained noise regressors using GLM denoise ([16], http://kendrickkay.

net/GLMdenoise/). GLM denoise was run for each cross validation solely on the training runs

with a fixed hemodynamic (canonical form). The selected principal components were then

used to derive noise regressors in the test data. In the supplementary figures we reported the

difference between the NC estimated with and without the use of GLM denoise. Second, the

responses to the stimuli were estimated with SPM12 or RobustWLS, also using the canonical

hemodynamic function. Similarly to the simulations, in one subject, we report results obtained

using different assumptions on the structure of the noise covariance matrix. In particular,

we computed β̂ and V̂β̂ necessary to calculate the analytical noise ceiling (and the MCnc)

using: 1) Ω̂ ¼ I, which corresponds with OLS estimation, 2) an autoregressive model of order

1 (as implemented in SPM 12), and 3) a parametric model of non-stationarity (using the

RobustWLS toolbox). We will refer to these three estimators as: Ω̂ ¼ I; Ω̂ARð1Þ, and Ω̂NST

respectively. The noise ceiling estimators presented in simulations were compared in one arbi-

trarily selected subject (using 50000 voxels randomly selected). For this subject the voxels time

series, the fMRI design matrix, the β̂ images (assuming Ω̂ ¼ I), together with the Matlab

codes for computing the noise ceiling are publically available at: https://zenodo.org/deposit/

1489531. In all other subjects, we report the values of SHnc and R2R noise ceiling (50000 vox-

els randomly selected) obtained using OLS for computing β̂.

Results

Validating the analytical noise ceiling estimator

In the i.i.d noise scenario, and using an estimation based on the assumption of noise covari-

ance matrix is equal to the identity matrix, we verified that the expected value of the analytical

NC corresponds to its definition of Eq 14 by comparing (mean and [5 95] percentiles across

100 simulations) the estimated noise ceiling value (using Eq 16) with the true noise ceiling that

in simulations can be computed directly knowing the true simulated β using Eq 14 (red line in

Fig 2). This comparison is reported in Fig 2 for both correlation and predictive R2. The mean
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value of the analytical NC estimator (blue in Fig 2) matched the mean value and variance of

the true noise ceiling. The R2 showed stronger dependence with the experimental noise than

the correlation coefficient. The noise ceiling estimator showed larger variability (blue dashed

line) than the true noise ceiling (shaded region) due to the uncertainty associated with the esti-

mation of Vβ̂ (see Eq 3).

Comparison with the MCnc in the i.i.d scenario

Using simulated data under i.i.d scenario and estimating V̂β̂ assuming that the noise covari-

ance matrix is equal to the identity matrix we validated the equivalence between the Monte

Carlo estimator (MCnc) [16] and the analytical estimator (Eq 16). The results are reported in

Fig 3 for the correlation as evaluation metric (for simplicity). Both NC estimators resulted in

the same mean and variance across the 100 simulations (the mean and the [5 95] confidence

bands are superimposed in Fig 3 left panel). For both NC methods, the variability of the esti-

mated NC increased with decreasing mean value (mean and variance are not independent).

The relation between the two NC estimators is presented as a scatter plot in the right panel of

Fig 3 for all levels of experimental noise (without averaging across simulations).

The advantage of using the analytical noise ceiling estimator is that it did not require a com-

putationally expensive resampling procedure at each voxel. The difference in computation

time was: analytical NC (7x10-5 seconds/voxel) vs MCnc (0.06 seconds/voxel, for 1000 Monte-

Carlo samples), on a PC with intel(R), i7-6700HQ, CPU 2.6 GHz, 16Gb of RAM processor).

We have verified equivalence between the MCnc and the analytical NC also in the other simu-

lation scenarios and using different assumptions about the structure of the covariance matrix

of the noise during estimation. As both methods proved to be equivalent we report only the

analytical NC estimator for the subsequent analyses.

Comparison between NC estimators in the i.i.d noise scenario

Fig 4 summarizes the results (for different simulated noise levels) obtained in estimating the

noise ceiling in the i.i.d. noise scenario. The first three panels from the left represent the

Fig 2. The analytical noise ceiling estimator (blue) and its true value (red) are presented for different levels of variance

of the noise (the variance of the signal is equal to one). The left panel shows the noise ceiling for the correlation

coefficient while the right panel shows the noise ceiling for the explained variance. The grey shadowed area denotes the [5

95] percentiles of the true NC distribution, while the blue dashed line denotes the [5 95] percentiles for the estimated NC

across 100 simulations.

https://doi.org/10.1371/journal.pcbi.1006397.g002
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analytical NC obtained using three different parametric estimates of V̂ β̂ (i.e. assuming differ-

ent structures for the noise covariance matrix during estimation, see Methods section). The

analytical NC based on parametric estimators of V̂ β̂ are compared to the noise ceiling using

the run to run variability for estimating the diagonal entries of V̂β̂ (referred here as R2Rnc)

and the split-half noise ceiling estimator (SHnc). In each panel, the true value of the noise ceil-

ing (mean across 100 simulations–red in Fig 4; shaded gray area represents the [5 95] percen-

tile of the true value across the simulations) is compared to the estimated mean (blue in Fig 4 –

dashed blue lines represent the [5 95] percentiles). All estimators showed the same mean across

simulations (blue line). However the parametric noise ceiling estimators showed less variability

(dashed lines) than the non parametric noise ceiling estimator (SHnc and R2R). Between the

Fig 3. Left Panel: The mean of the NC across the 100 simulations is presented in the red line and blue dots for the Monte Carlo NC (MCnc) and the

analytical NC respectively as a function of the experimental noise. Both methods produced identical results thus the curves are perfectly superimposed. The

corresponding red dashed lines and blue crosses denote the [5 95] percentiles of the distribution across the 100 simulations. Right Panel: scatter plot of the

Monte Carlo noise estimates and analytical noise ceiling estimates.

https://doi.org/10.1371/journal.pcbi.1006397.g003

Fig 4. Estimated NC for the different methods for variable levels of noise in the i.i.d scenario. The mean value and the [5 95] percentiles are displayed in continuous

and dotted blue lines respectively for the each method. The mean value of the NC computed with the parameters used for generating the data are displayed in red (true

NC) with the [5 95] confidence intervals denoted by the shaded region.

https://doi.org/10.1371/journal.pcbi.1006397.g004

Methods for computing the maximum performance of computational models of fMRI responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006397 March 8, 2019 15 / 25

https://doi.org/10.1371/journal.pcbi.1006397.g003
https://doi.org/10.1371/journal.pcbi.1006397.g004
https://doi.org/10.1371/journal.pcbi.1006397


non parametric noise ceiling estimators the SHnc showed larger variability than the R2Rnc.

This simulation proves that all the NC estimators are equivalent when the noise is i.i.d.

Comparison between estimators in the presence of autocorrelated noise

Fig 5 summarizes the results obtained in estimating the noise ceiling in the case of autocorre-

lated noise. Each panel reports the result obtained with a different estimation procedure

(parametric estimators–first three panels from the left; R2R noise ceiling and SHnc) for different

levels of the lag-1 autocorrelation in the noise. The true noise ceiling is also reported (red–mean

value across 100 simulations; gray shaded areas [5 95] percentiles). The analytical noise ceiling

assuming i.i.d noise (Ω̂ ¼ I - first panel in Fig 5) or using a parametric model of the non-statio-

narity of the noise (Ω̂NST , third panel in Fig 5) result in overestimating the NC (with larger over-

estimation at higher levels of autocorrelation in the noise). The reason for this overestimation is

the underestimation of the variance of the brain response (V̂ β̂). Note that for Ω̂NST we consider

only non-stationarity of the noise, but in principle non-stationarity and autoregressive assump-

tions can be combined in one estimation [30]. In this combined NST-AR(1) estimation we

would expect the estimated noise ceiling to approach the true noise ceiling. All other estimators

resulted in unbiased (i.e. estimated noise ceiling equal to the true noise ceiling) NC values.

Interestingly, violating the noise assumption (e.g. assuming i.i.d. noise instead of autocorrelated

noise) also results in a lower true noise ceiling. This effect is visible when comparing the true

noise ceiling (red curves) across the panels in Fig 5, and is caused by the increased variance in

the β̂ obtained with e.g. an OLS model compared to estimates obtained with AR(1).

Comparison between NC estimators in the presence of non-stationary

noise

The performance of different estimators of the noise ceiling under violations of the non-statio-

narity assumption for the noise is presented in Fig 6 for an SNR level of one (i.e. when the

non-stationarity factor [x-axis in the panels of Fig 6] is equal to one, the simulation is identical

to an i.i.d. scenario with SNR = 1). Interestingly, the non-stationarity affected both the true

noise ceiling (red curve and shaded grey area in Fig 5) and the estimated noise ceiling (blue

curve and dashed blue curves in Fig 5), that are both underestimated when i.i.d. or AR(1)

assumptions are used. The SHnc showed the larger variability across simulations. This results

from the increased variance for the β̂ compared to estimates obtained with weighted least

squares Ω̂NST [30].

Fig 5. NC estimates using different methods as a function of the lag-1 autocorrelation of the noise. The mean value and the [5 95] percentiles are displayed in

continuous and dashed blue lines respectively. The true noise ceiling is displayed in red with the [5 95] confidence intervals denoted by the shaded region.

https://doi.org/10.1371/journal.pcbi.1006397.g005
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Comparison between NC estimators in the presence of autocorrelated noise

and random effects

The last set of simulations tested the presence of autocorrelation combined with run to run

variability in the true β responses. Fig 7 reports results for the different noise ceiling estimation

methods at different levels of variance of the noise (i.e. decreasing SNR) and for a fixed level of

autocorrelation in the noise (0.25) which corresponds to the level of autocorrelation observed

in the real fMRI data presented in this article (see below). In this scenario only the analytical

noise ceiling based on the run to run variability (R2Rnc) and the split-half noise ceiling

(SHnc) showed mean values consistent with the true noise ceiling (red curves). The SHnc

noise ceiling showed the larger variability across all the noise ceiling methods.

Influence of sample size and the interaction with the regularization

parameter

The left panel of Fig 8 shows, on data simulated with i.i.d. noise, the performance of an encod-

ing model trained using the true underlying computational model (i.e. an encoding model

Fig 6. Estimated NC for the different methods as a function of the non-stationarity factor on the noise for a fixed value of the SNR (SNR = 1). The mean value and

the [5 95] percentiles are displayed in continuous and dashed blue lines respectively for each method. The mean value of the true noise ceiling is displayed in red with

the [5 95] confidence intervals denoted by the shaded region.

https://doi.org/10.1371/journal.pcbi.1006397.g006

Fig 7. Estimated NC in the presence of autocorrelated noise and run to run variability in the simulated responses as a function of the variance of the noise in the

data. The mean value and the [5 95] percentiles are displayed in continuous and dashed blue lines respectively for the each method. The mean value of the true NC is

displayed in red with the [5 95] confidence intervals denoted by the shaded region.

https://doi.org/10.1371/journal.pcbi.1006397.g007
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trained using the matrix X used for simulating the responses). The performance is measured as

the correlation between predicted β� and the estimated β̂ vectors of the test data, for different

sample sizes in training (from ntr = 126 up to 10 times more the number of features ntr = 1260)

and two levels of regularization (λ = 100 and λ = 103) (green and red curves in Fig 8). The vari-

ance of the noise was fixed to 0.5.

As expected, prediction accuracy increased asymptotically with sample size. However, as a

consequence of the bias-variance trade-off introduced by the regularization procedure, the

performance did not reach the noise ceiling even for a very large number of samples. High reg-

ularization implies less variability in the estimated linearized model weights (i.e. the pRF in

fMRI encoding approaches) as depicted by the narrower [5 95] variability bands. Note that the

reduced variability in data poor scenarios comes at the cost of an increased bias highlighted by

the larger distance to the noise ceiling in data rich scenarios.

The right panel of Fig 8 depicts in more detail the influence of the regularization parameter.

By keeping the experimental noise variance and sample size constant (0.5 and ntr = 126 respec-

tively) we evaluated the prediction accuracy (measured as correlation) of the model underlying

the generation of the data and considering the effect of regularization on the difference

between the actual model performance and the noise ceiling. The performance did not reach

the noise ceiling even when the optimal regularization parameter was selected (the one that

results in the highest performance).

Noise ceiling in a real data example

Using a real fMRI data set we tested the analytical noise ceiling (using parametric and non-

parametric estimates for V̂β̂) as well as the SHnc. Fig 9 shows the results obtained with all the

Fig 8. Left panel: Model performance as a function of the number of trials for a fixed level of experimental noise. The analytical noise ceiling estimator for

the correlation coefficient in blue and its [5 95] percentiles denoted by the shadowed area is plotted together with the performance of two models that differ in

the amount of regularization (green λ = 100; red λ = 103). The corresponding [5 95] percentiles are presented in green and red dotted lines. Right panel: The

effect of regularization on the performance. The correlation coefficient is used the metric for describing the performance. The blue line depicts the analytical

noise ceiling estimator which is independent of λ. The mean accuracy of the model performance and the [5 95] percentiles of the distribution across 100

repetitions of the same simulation are presented by the red dotted line. The vertical bars highlight the λ = 1; red λ = 1000 for correspondence with the left panel.

https://doi.org/10.1371/journal.pcbi.1006397.g008

Methods for computing the maximum performance of computational models of fMRI responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006397 March 8, 2019 18 / 25

https://doi.org/10.1371/journal.pcbi.1006397.g008
https://doi.org/10.1371/journal.pcbi.1006397


tested approaches in one single individual (50000 randomly selected). The column on the left

in Fig 9 reports the results for the analytical estimator of the noise ceiling using different esti-

mation of β̂ and V̂β̂ . Similarly to simulations with autocorrelated noise, the results indicate

that assuming the noise structure to be either i.i.d or non-stationary (without autocorrelation)

results in a higher estimate of the noise ceiling compared to the estimation obtained using an

AR(1) assumption (See Fig 5). The second and third column from the left in Fig 9 show esti-

mate of the R2Rnc (analytical NC using run to run variances) and SHnc obtained using differ-

ent estimates for the response vector β̂ (i.e. assuming Ω̂ ¼ I; Ω̂ARð1Þ and Ω̂NST from top to

bottom respectively). While small differences between the rows can be observed, the R2R

noise ceiling and the SHnc are less affected by the method used for the estimation of the

response vector compared to the analytical solution that uses a parametric model of the V̂β̂

(left most column in Fig 9).

The relationship between the SHnc and the R2Rnc (analytical NC using run to run vari-

ances) is presented at the upper panel of Fig 10 for the data of one participant (all the other

participants in the dataset showed a similar behaviour). The two NC estimators converged to

similar values for high signal to noise ratio (SNR; i.e. when the estimated NC is high). This is

in line with what we observed in the simulations where the variance of the estimated noise ceil-

ing was low when the SNR was high. In those voxels where the SNR is low, the variability of

Fig 9. Noise ceiling estimates obtained in real fMRI data. Histograms represent the noise ceiling obtained for 50000 voxels of the temporal lobe for one subject. Every

row in the figure presents the noise ceiling estimated under different parametrizations of the noise covariance matrix (from top to bottom: Ô
^
¼ I; Ô^

ARð1Þ and Ô
^

NST). The

left most columns show the analytical noise ceiling using the estimate of the covariance of the responses based on the different parametric models. The R2Rnc and the

SHnc are presented in the two right most columns and, in each row, are computed based on the
^
b

^
obtained under different parametrizations of the noise covariance

matrix.

https://doi.org/10.1371/journal.pcbi.1006397.g009
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the estimators results in a low correlation between the two NC methods. The lower panel of

Fig 10, confirmed the equivalence, in real data between the analytical NC of the noise ceiling

and the MCnc.

Fig 11 shows the results obtained for the R2Rnc (red) and the SHnc (blue) in ten subjects

(first two rows and the two left most panels in the bottom row). These results are obtained on

50000 voxels (randomly selected) and assuming i.i.d. noise for estimating the voxel responses.

The SHnc showed slightly higher mean values compared with the R2Rnc. These results were

obtained including the noise regressors in the fMRI design matrix for estimation of the β (see

section Functional data analysis). Removing the noise regressors from the estimation of the

responses did not affect the results (see supplementary figures).

Discussion

In neuroscience applications, computational models are a formal expression of the algorithms

that underlie cognitive and sensory processes. Linking a model with non-invasive measures of

Fig 10. Scatter plot and contour plot of the bivariate histograms of the relationship between: The R2Rnc and the

SHnc (upper panel) and the R2Rnc and MCnc (lower panel) for 50000 randomly selected voxels at one subject.

https://doi.org/10.1371/journal.pcbi.1006397.g010
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brain activity (such as fMRI) [35,36] allows testing the accuracy of the algorithm and eventu-

ally refine it to produce brain inspired models. Ultimately this approach can produce an

understanding of brain function at the level of fundamental processing units. The accuracy of

a computational model is measured in terms of its ability to predict the brain responses to sen-

sory (or cognitive) stimuli. In this regard, the intrinsic noise of the fMRI measurements proce-

dure provides a bound to the accuracy of any model and this bound can be referred to as the

test-data-noise ceiling.

In this article, we evaluated two existing approaches for the calculation of the noise ceiling

using simulations and real data. We also proved that the noise ceiling can be computed directly

from the variance of the estimated brain responses. In simulations and real data, we demon-

strated that the previously introduced MCnc estimator [16] and the analytical NC estimator

have the same expected value and variance. The use of the analytical approach is favourable

due to the reduced computational time that results from obviating the Monte Carlo sampling

performed by the MCnc for every voxel.

To calculate the noise ceiling on a test data set using the analytical solution it is necessary to

estimate from the fMRI time series the variance of the response to the stimuli. Following the

standard univariate approach, a parametric estimate of the variance of the responses can be

obtained based on an estimation of the noise covariance matrix. Otherwise, a non-parametric

estimate of the variance can be obtained by considering the variance of the responses across

fMRI runs (and or sessions). In simulations, we showed that such an approach is robust to dif-

ferent types of noise (i.i.d., autocorelated noise and non-stationary noise) as well as to random

variations of the responses (caused by factors such as fatigue) that cannot be accounted by the

computational model. Note that this estimate of the variance can also be used in the MCnc

estimator that originally used a parametric estimate of the variance based on the i.i.d. assump-

tion for the noise [16].

Fig 11. Histograms of the noise ceiling obtained with the split half method (blue) and the analytical NC (with variance the run to run variance R2Rnc; red) across

50000 (randomly selected) voxels for ten subjects.

https://doi.org/10.1371/journal.pcbi.1006397.g011
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In simulations we showed that the introduced analytical NC using the run to run variability

results in similar noise ceiling estimates to the split half noise ceiling (SHnc), which is based

on two independent estimates of the test data responses. In real data the SHnc showed slightly

higher NC values than the R2Rnc systematically across the 10 subjects. Two reasons can

explain this discrepancy: the reduced number of runs used for computing the run to run β̂ var-

iances (every sound was presented only in six fMRI runs in this experiment, see section MRI

data), or violations in the independence between trials which is assumed by the SHnc when

accounting for the reduced amount of data in each half. In light of this discrepancy it may be

preferable to use the most conservative estimate of the noise ceiling.

Computational models of cognitive processes can consider a high number of parameters.

In these cases regularization can be used to avoid overfitting or collinearity of the stimuli in

the model parameter space. Our simulations indicate that, when using regularization, the pre-

dicted responses using the true computational model (i.e. the model used to simulate the data)

cannot reach the noise ceiling.

It is important to stress that, the noise ceiling is itself a random variable with its correspond-

ing variability. The expected value corresponds to the maximum performance conditioned to

the noise in the test data. However, for a particular data sample it is possible that the perfor-

mance of a model being tested to be above the noise ceiling estimate on the same test set. Our

results show that different estimators have different variability with the split half estimator exhib-

iting the larger variance, which is a reason for preferring an analytic (or Monte Carlo) estimate

that uses run to run variability as an estimate of the variance of the responses. These consider-

ations also grant a comment on the practice of reporting noise corrected performance values

(see e.g. [37]). An evident advantage of this practice is that the noise corrected accuracies allow a

direct comparison across experiments (or ROIs) with different levels of noise (e.g. acquired

across laboratories or changing MRI acquisition parameters). Nevertheless, considering that the

noise ceiling itself is not an observable quantity that is estimated from the data with uncertainty

(which is not independent of the mean), this practice is controversial. Different noise ceiling esti-

mators have different variances and rely on different assumptions, and thus at the very least the

exact procedure for the estimation of the noise ceiling should be specified. Reporting only noise

ceiling corrected performances does not allow assessing (independently) the quality of the data

and the observed effect size. Consider the following example: a voxel which reached an accuracy

of 0.1 with an estimated NC of 0.2 would result in identical noise corrected accuracy (0:1

0:2
¼ 0:5)

to a voxel which reached 0.4 with NC of 0.8 (0:4

0:8
¼ 0:5). However the statistical significance and

the effect size of an accuracy of 0.1 vs an accuracy of 0.4 differs in orders of magnitude and is

computed on the uncorrected accuracies values since the null distribution of the noise normal-

ized accuracies has not been determined yet. For these reasons, it seems more appropriate to

report both the observed accuracies and the noise ceiling (see e.g. [38–40]).

The framework proposed in this article is based on a two-level procedure for the estimation

of the weights of the encoding models (first responses are estimated from the fMRI time series

and then the model is fit to the estimated responses). One conceptual advantage of this two-

level approach is that the residual variance can be partitioned in the variance of the experimen-

tal noise (level I) and the residual variance after fitting the model (level II). Other approaches

directly fit the encoding model convolved with the haemodynamic response to the fMRI time

series [3]. The interplay between the haemodynamic response and the computational model

makes it difficult to assess the experimental variability of the fMRI time series and as a conse-

quence the noise ceiling. One solution would be to report both accuracies and noise ceiling

after the removal of the hemodynamic effect. Alternatively, the SHnc can be used for the calcu-

lation of the NC at the level of the whole fMRI time series. Finally, here we evaluated
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approaches to compute noise ceiling at the single subject level for single voxel encoding mod-

els. Some of these approaches (e.g. the SHnc) can be extended to calculate noise ceiling for rep-

resentational similarity analysis (RSA) always at the single subject level. For group level

analysis the approaches we have described here are not directly suitable because they only

account for the measurement error and not for the variability between subjects. For RSA, a

method has been proposed to compute the noise ceiling at the group level [41] and can be

extended to encoding approaches [15].

Data availability statement

The data and the matlab codes are achieved and described at zenodo.org. The voxels time

series for one subject, the fMRI design matrix, the β̂ images (assuming Ω̂ ¼ I) and the Matlab

codes for computing the noise ceiling can be downloaded from the same zenodo url at: https://

zenodo.org/deposit/1489531, doi: 10.5281/zenodo.1489531. Additional data and codes can be

obtained by request to the authors (a.lagecastellanos@maastrichtuniversity.nl).

Supporting information

S1 Text. Relationship between the correlation coefficient and R2. Derivation of the analyti-

cal noise ceiling.

(DOCX)

S1 Fig. Noise ceiling estimates obtained in real fMRI data the inclusion of GLMdenoise

noise regressors. Histograms represent the noise ceiling obtained for 50000 voxels (randomly

selected) for one subject. Every row in the figure presents the noise ceiling estimated under dif-

ferent parametrizations of the noise covariance matrix (from top to bottom: Ω̂ ¼ I; Ω̂ARð1Þ and

Ω̂NST). The R2Rnc and the SHnc are presented in the two right most columns and, in each

row, are computed based on the β̂ obtained under different parametrizations of the noise

covariance matrix.

(TIF)

S2 Fig. Histograms of the noise ceiling obtained without the inclusion of the GLMdenoise

regressors for ten subjects. The split half method (blue) and the analytical solution (R2Rnc)

were computed in 50000 (randomly selected) voxels for 10 subjects.

(TIF)
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