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Abstract
Sequence-specific DNA-binding transcription factors (TFs) are often termed as ‘master regulators’ which

bind to DNA and either activate or repress gene transcription. We have computationally analysed the
soybean genome sequence data and constructed a proper set of TFs based on the Hidden Markov
Model profiles of DNA-binding domain families. Within the soybean genome, we identified 4342 loci
encoding 5035 TF models which grouped into 61 families. We constructed a database named
SoybeanTFDB (http://soybeantfdb.psc.riken.jp) containing the full compilation of soybean TFs and signifi-
cant information such as: functional motifs, full-length cDNAs, domain alignments, promoter regions,
genomic organization and putative regulatory functions based on annotations of gene ontology (GO)
inferred by comparative analysis with Arabidopsis. With particular interest in abiotic stress signalling,
we analysed the promoter regions for all of the TF encoding genes as a means to identify abiotic stress
responsive cis-elements as well as all types of cis-motifs provided by the PLACE database. SoybeanTFDB
enables scientists to easily access cis-element and GO annotations to aid in the prediction of TF function
and selection of TFs with functions of interest. This study provides a basic framework and an important
user-friendly public information resource which enables analyses of transcriptional regulation in
soybean.
Key words: soybean; transcription factors; abiotic stress; database

1. Introduction

Sequence-specific DNA-binding transcription factors
(TFs) are the key molecular switches that control or
influence many of the biological processes such as
development, growth, cell division and responses to
environmental stimuli in a cell or organism. By being
capable of activating or repressing transcription of
multiple target genes, they affect the metabolism,
physiological balance and progression in cells and the
responses of cells to the environment.1–3 TFs form

complex regulatory networks at the transcriptional
level and through protein–protein interactions
among themselves or with proteins of other classes.
Protein–protein interactions may also form with
other transcriptional regulators such as chromatin
remodelling/modifying proteins to recruit or block
access of RNA polymerases to the DNA template. The
specific interactions between TFs and a family of cis-
regulatory sequences described by a consensus motif
play a central part in how genetic regulatory proteins
affect spatial and temporal gene expression.4

Additionally, alterations in the activity and regulatory
specificity of TFs are emerging as a major source of
diversity and evolutionary adaptation.5,6

In the past decade, the availability of complete
genome sequences and the development of
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high-throughput experimental techniques have
enabled scientists to compile complementary infor-
mation describing the function and organization of
TF regulatory systems in a number of organisms. The
identification, characterization and classification of
TFs at the genome-wide level will provide an impor-
tant resource for researchers who are interested in
studying the regulation of gene expression. Similar
to other proteins, TFs are comprised evolutionarily
conserved units called ‘domains’, which belong to
families that can occur in many different proteins.
The majority of TFs can be grouped into a number
of different families according to the specific type of
DNA-binding domain (DBD) that is present within
their sequence.7–10 Using bioinformatics approaches,
computational studies have documented valuable TF
repertoires by searching for genes containing DBDs
within individual organisms ranging from prokaryotes
to eukaryotes or by searching across all completely
sequenced genomes.7,8,10–18

In plants, �7% of the genome encodes putative
TFs.19 Despite their importance as a fundamental
component of biological systems, the TF repertoires
for many plant genomes remain largely unknown
and understudied. Analyses of expressed sequence
tag (EST) and genome sequence databases have indi-
cated that legumes encode more than 2000 TFs per
genome. At the present time, less than 1% of these
putative TFs have been genetically and functionally
characterized.19 Our basic knowledge of TFs and
their role in transcriptional regulation is derived
from molecular biological and genetic investigations.
Proper characterization of particular TFs often
requires a detailed study in the biological context of
a whole TF family, since functional redundancy is a
common occurrence within TF families.20–24

Furthermore, since TFs control the expression of the
genome, it is not possible to completely understand
their function without performing detailed functional
studies at a genome-wide level.7,25–27

Soybean (Glycine max L.) is a nutritionally impor-
tant crop which provides an abundant source of
oil and protein for worldwide human consump-
tion.28–31 In addition, soybean is also viewed as an
attractive crop for the production of renewable fuels
such as biodiesel. Due to its symbiosis with nitrogen
fixing bacteria, soybean can fix atmospheric nitrogen
and therefore requires minimal input of nitrogen fer-
tilizer. Agricultural dependence on nitrogen fertilizer
often accounts for the single largest energy input in
agronomic practices.32 With the recent completion
of the soybean genomic sequence (http://www.
phytozome.net/soybean#C Soybean Genome Project
, DOE Joint Genome Institute), the identification,
isolation and functional analysis of important
genes will be accelerated. From a biotechnology

perspective, this resource will be especially important
for studying regulatory genes involved in plant pro-
ductivity, seed quality, nitrogen fixation and the
sensing/response and adaptation to the environ-
ment. Within the soy genome model, �975 Mb has
been captured in 20 chromosomes and 66 153
protein-coding loci have been predicted (http
://www.phytozome.net/soybean#C). With the com-
pletion of the soybean genome sequence, the full
complement of TF-encoding genes from this impor-
tant crop can be characterized and functionally
analysed.

In this report, we searched for sequence-specific
DNA-binding TFs using a prediction method which
uses 51 Hidden Markov Models (HMMs) from the
Pfam database. We also used 11 models, which were
originally created by HMMbuild of HMMER2
package, to identify the domains within the putative
TF proteins. The computational results predict that
the soybean genome contains 5035 TF protein
models coded from 4342 loci in 61 families. We
created a database named ‘SoybeanTFDB’. This data-
base provides open access for researchers to all rel-
evant and basic information on functional motifs,
full-length cDNAs, promoter regions, genomic distri-
bution, gene duplication and multiple sequence align-
ment of the DBDs for each TF family. Since most of
these TFs have not been experimentally characterized
for regulatory function as indicated by assessment in
PubMed, we searched for their putative regulatory
function by assessing annotations of the gene ontol-
ogy (GO) using comparative analysis with their
Arabidopsis counterparts. As a complement to this
functional prediction using GO annotations, we also
mapped all putative cis-regulatory elements that
were documented within the PLACE database on all
TF encoding genes. In this analysis, we placed a par-
ticular emphasis on abiotic stress responsive cis-
elements. Knowledge gained from identifying the
presence of stress responsive cis-elements, in addition
to GO annotation, enables effective prediction of
stress responsive TFs. Taken together, in this study,
we demonstrate a comprehensive and high-quality
census of TFs encoded within the soybean genome.
These results provide a solid foundation for further
systematic characterization of soybean TFs using tra-
ditional molecular approaches and/or genomic tech-
niques at either the single-gene level or family-wide
scale.

2. Materials and methods

2.1. Identification of TF repertoire in soybean
To identify TF encoding genes from the annotations

of Glyma1 in the soybean genome, 51 HMMs of
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Pfam33 and those of 11 originally created using
HMMbuild of the HMMER2 package (http://hmmer.
janelia.org/) were applied, which corresponded to a
total of 61 TF families (Supplementary Table S1).
The modelled proteome data of annotated genes in
Glyma1, which were downloaded from Phytozome
(http://www.phytozome.net/), were subjected to a
profile search for HMM dataset using Pfam-HMM
with set thresholds of E-value, E , 1e25
(Supplementary Table S1). The search results for
each of the TF families were then applied to retrieve
discovered regions as conserved DBDs and related
annotations. To further classify genes with a con-
served MYB domain into three subgroups:
(R1)R2R3_MYB, MYB_related and atypical_MYB, the
MYB soybean protein sequences were searched
against previously classified Arabidopsis MYB genes34

using blastp (E , 1e25) and each top hit combi-
nation was applied to the classification. To avoid poss-
ible contaminations of pseudo response regulator or
histidine kinase sequences into the GARP_ARRB
family, genes containing CCT, CHASE, HATPase_c and
HisKA together with Response_reg of Pfam domains
were searched by InterProScan. Genes, which hit in
this search, were subsequently removed from the
GARP_ARRB family.

The putative TF encoding genes discovered in the
soybean genome were classified into the following
four categories based on their potential functionality
as TFs. The first group of TFs (Category A) consists of
TF encoding genes showing sequence identity �95%
and a blastn E � 1e2100 with GenBank soybean
sequences having a functional description as TFs.
Category A genes were classified with the highest con-
fidence level after assessment with the PubMed data-
base. The second group of TFs (Category B) is
comprised TFs which have an equivalent protein
domain arrangement (blastp E � 1e230) for regulat-
ory function in well-annotated plants, such as
Arabidopsis and/or rice. The third group of TFs
(Category C) combines possible TFs which show a sig-
nificant hit with each of the HMM models used for
DBD prediction (Pfam-HMM E � 1e220). The last
group contains TFs which have promiscuous HMM
models with a threshold of settled E-values.

2.2. Structural and functional annotations for putative
soybean TFs

For annotating TF encoding genes in soybean,35 we
used protein and cDNA sequences of soybean TFs as
queries against the following protein and nucleotide
datasets using the BLAST algorithm:36 the nr protein
DB of NCBI (ftp://ftp.ncbi.nih.gov/blast/db); the
protein data presented in TAIR release 8 (ftp://ftp.
arabidopsis.org/home/tair/Sequences/blast_datasets);

the protein data from UniProt (http://www.uniprot.
org/); the TIGR/MSU Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu/) release 6; the
soybean representative cDNA sequences in UniGene
(ftp://ftp.ncbi.nih.gov/repository/UniGene/); the TIGR
Transcript Assemblies (http://plantta.jcvi.org/); the
Plant GDB (http://www.plantgdb.org/); the sequence
sets of ESTs and high throughput cDNAs (HTCs) of
RIKEN soybean full-length cDNA clones (http://rsoy.psc.
riken.jp/);37 the cDNAs of the previous version of the
soybean genome annotation (Glyma0, Phytozome)
and the target sequences of the Affymetrix soybean
GeneChip (GPL4592 of NCBI GEO platform accession).
All of the similarity searches using blastn were per-
formed with threshold E , 1e2100, and the top
scoring hit for each query was applied. All similarity
searches with blastp against protein datasets were
performed with a threshold E , 1e25 to find possible
functional descriptions for TF encoding genes. The top
scoring hit for each query was applied.

Conserved domains in the protein sequence of
putative TF encoding genes were identified with
InterProScan and the InterPro DB (http://www.ebi.ac.
uk/interpro/) to predict structures of DBD of TFs
together with other functional domains and associ-
ated GO terms. All domains and those positions pre-
dicted by the search were retrieved and
implemented them into our database. To determine
the global characteristic features of functional cat-
egories of TF encoding genes of soybean, the TFs
were assigned to possible GO terms based on a
blastp similarity search to find Arabidopsis counter-
parts together with those annotated GOs of TAIR8.
Particular emphasis was placed on sequences serving
under the ‘biological process’ functional category.

TFs have been widely reported in plant TF databases
such as DATF, AtTFDB, RARTF and PlnTFDB for
Arabidopsis and DRTF, GRASIUS and PlnTFDB for rice.
To annotate all putative soybean TFs in relation to
Arabidopsis and rice counterparts, soybean TF
sequences were assigned to annotation data related
to TF families provided from each of the aforemen-
tioned databases based on sequence similarity
searches between soybean proteome data and those
of Arabidopsis and rice.8,14,38 –42 The interrelated
dataset of soybean genes, in combination with
related Arabidopsis and rice TF annotations, were
implemented into the SoybeanTFDB to provide cross
references with other plant TFDBs.

2.3. Gene duplications and gene clusters in soybean TF
families

Gene duplications and gene clusterings in soybean
TF families were estimated by analysing the amino
acid sequences of TF genes found on soybean
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chromosomes. Specifically, the presence of gene pairs
or gene clusters of closely homologous genes based
on global sequence similarity with threshold of more
than 60% amino acid sequence identity using cd-hit
program of CD-HIT package were investigated.43

Gene clusters are defined as genetic loci containing
three or more closely homologous genes. Once ident-
ified, the pairs or gene clusters were used to assess
the chromosomal allocation of highly homologous
genes. Genes in tandem duplication are arbitrarily
defined as those occurring within a sequence distance
of 50 kb. On the other hand, genes that are duplicated
in the same chromosome but reside .50 kb from each
other are referred to as ‘Duplications in same chromo-
some’. ‘Duplications in different chromosomes’ indi-
cate pairs of highly homologous genes which reside
on different chromosomes.

2.4. Discovery of cis-regulatory motifs in promoter
regions of TF genes

To discover cis-regulatory motifs located in the pro-
moter regions of each putative soybean TF gene and
to investigate the enriched representation of cis-
motifs in each TF family, cis-motif sequences from the
PLACE database (version 30, 469 entries) (http://
www.dna.affrc.go.jp/PLACE/)44 and the stress respon-
sive cis-motifs previously reported45 were used as
queries to search against the Glyma1 genome scaffold
sequence using the fuzznuc program of EMBOSS
package (http://emboss.sourceforge.net/). The results
of pattern matches were subsequently assessed to
identify matched sequences located on the 2500,
21000 and 23000 bp upstream sequences from
the putative transcription start site for each TF encod-
ing gene defined in the Glyma1 annotation. The cis-
element search results were implemented into the
SoybeanTFDB as a searchable property. In addition,
these search results were also incorporated as an anno-
tation track of the genome browser (Gbrowse).

To assess the enrichment for the representative
allocation of each cis-element identified on upstream
sequences of each TF family, we analysed cis-element
representations in the 21000 bp promoter region of
TF members for TF families containing more than 50
gene loci to compare cis-element representations of
randomly sampled gene loci of Glyma1. The compu-
tation of the overrepresentation test and its signifi-
cance were performed by a Z-test as previously
described.46

2.5. Construction of a web accessible database
The database is implemented in MySQL and the

web interface of Perl CGI and Java script run on the
Apache Web server. The definition strings used for

sequence similarity searches for each database, the
domain searches by InterProScan, cis-motif names
from the PLACE database and the assigned GO
terms have been assembled as a keyword database
enabling users to specify queries on any keyword
and to retrieve relevant information for genes from
the SoybeanTFDB. A BLAST server was implemented
to provide a similarity search interface for queried
sequences using NCBI BLAST together with soybean
Glyma1-related sequences, as well as those from
Arabidopsis and rice. Generic Genome Browser
(Gbrowse)47 was also implemented in SoybeanTFDB
with Glyma1 genome annotations released by
Phytozome to visualize the gene annotations of the
putative TF encoding genes together with cis-motifs
found on the upstream sequence of the TF genes. All
of the data in the SoybeanTFDB are accessible not
only through a web interface but also as download-
able files from the website. The cross references of
corresponding data for each of the entries were also
implemented into the SoybeanTFDB together with
the URLs for each of the original referenced data to
provide hyperlinks on the web interface with seamless
navigations.

3. Results and discussion

3.1. Identification of the soybean TF repertoire
For the purpose of identifying the repertoire of TFs

within the soybean genome, we first define a class of
proteins which bind DNA in a sequence-specific
fashion. A protein is classified as a TF if it has a signifi-
cant match to a model that we annotated as being a
DBD, with the significance thresholds for HMM
matches. Supplementary Table S1 summarized the
HMMs used in TF predictions. For each HMM, we
examined the description and associated literature
to assess their sequence-specific DNA-binding capa-
bilities. The pipeline that we used to predict soybean
TFs began with retrieving the complete set of pre-
dicted proteins from the completely sequenced
soybean genome. This approach was then followed
by a HMMER search with all HMMs taken from the
Pfam database (Fig. 1). In total, 4342 putative TF
encoding loci which showed a significant match
with these selected DBDs were extracted from the
soybean genome sequence Glyma1 model (http://
www.phytozome.net/soybean#C). These putative TFs
represent 6.56% of the total number of predicted
genes in soybean (Table 1 and Supplementary Table
S2). In soy, this percentage of TFs to total gene
number was similar to what has been observed for
Arabidopsis. In the Arabidopsis genome, there are at
least 1968 TFs which account for 7.23% of the total
number of genes. Although the number of TFs
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generally increase with the number of genes in a
genome, interestingly the percentage of TF genes
described in rice (3.68%) is less than expected
(Table 1). The identified soybean TFs were classified
into 61 families based on the presence of domains
that were specific for the family (Table 2). Among
the identified TFs, a significant proportion of the
soybean TF repertoire has not been annotated with
full-length open reading frames in the Glyma1

model. As a means to address this deficiency, we
took advantage of our recently released soybean FL-
cDNA collection of 4712 complete sequences and
68 661 ESTs to assess the Glyma1 annotation of the
identified TFs (http://www.legumebase.agr.miyazaki-
u.ac.jp).37 Table 2 summarized the full-length
information of the soybean TF encoding genes anno-
tated by Glyma1 and the FL-cDNA collection. Detailed
information for each gene is available on
Supplementary Table S2. Next, we then grouped the
TFs into four categories according to our confidence
in their structure and functionality by assessing
PubMed and relevant databases as described in
Materials and methods (Fig. 2, and Supplementary
Table S3). Relevant information of the soybean TF
repertoire can be easily accessed at our website
SoybeanTFDB (http://soybeantfdb.psc.riken.jp).
Information that is readily available for the TF reper-
toire includes nucleotide and amino acid sequences,
promoter regions and domain alignments within the
family as well as multiple alignments with putative
Arabidopsis and homologous rice genes.

Our prediction method depends heavily on the
content of the Pfam database and the ability of the
search algorithms to detect the DBDs in protein
sequences, thus there are a few possible sources of
inaccuracies in this prediction method. In addition,
although the Glyma1 model contains more than
98% of known soybean protein-coding genes in its
assembly, part of the TF repertoire may be clarified
in the future by fine-tuning of the annotation.
Finally, our literature analysis depends on the existing

Figure 1. Schematic workflow of the computational pipeline used
to discover and annotate genes encoding putative transcription
factors in soybean.

Table 1. Numbers of TFs in Arabidopsis, rice and soybean

Species No. of non-
redundant TF

gene locia

No. of non-
redundant gene

locib

Referenced
annotation

Percentage of
TFsc

Database URL

A.
thaliana

1922 27 235 TAIR8 7.06 DATF http://datf.cbi.pku.edu.cn/
1968 7.23 RARTF http://rarge.g.sc.riken.jp/rartf/
1961 7.20 PlnTFDB http://plntfdb.bio.uni-potsdam.

de/v2.0/index.php?sp_id=ATH
1737 6.38 AtTFDB http://arabidopsis.med.ohio-

state.edu/AtTFDB/
1358 4.99 DBD http://dbd.mrc-lmb.cam.ac.

uk/DBD/index.cgi?About

O. sativa 1928 56 797 Rice Pseudomole-
cule Release 6

3.39 DRTF http://drtf.cbi.pku.edu.cn/
2095 3.69 PlnTFDB http://plntfdb.bio.uni-potsdam.

de/v2.0/index.php?sp_id=OSAJ
2141 3.77 GRASSIUS http://grassius.org/summary.

html
1629 2.87 DBD http://dbd.mrc-lmb.cam.ac.uk/

DBD/index.cgi?About

G. max 4342 66 210 Glyma1.0 6.56 SoybeanTFDB http://soybeantfdb.psc.riken.jp
aNumber of predicted non-redundant TF gene loci in each genome.
bNumber of predicted non-redundant gene loci in each genome.
cPercentage of TFs per genome.
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Table 2. Characteristics of soybean transcription factors

TF gene families No. of
modelsa

No. of
gene locib

No. of
models (FL)c

No. of models
(not FL)d

No. of models assigned
with RIKEN FL ESTe

No. of models assigned
with RIKEN FL-HTCf

1 (R1)R2R3_MYB 333 319 246 87 37 6

2 ABI3VP1 163 139 121 42 35 7

3 Alfin-like 27 18 26 1 7 2

4 AP2_EREBP 405 382 306 99 78 31

5 ARF 75 58 69 6 29 6

6 ARID 22 20 17 5 7 0

7 atypical_MYB 89 78 67 22 22 2

8 Aux_IAA 126 85 120 6 41 14

9 BBR-BPC 21 10 21 0 1 1

10 BES1 21 18 17 4 8 2

11 bHLH 390 325 317 73 72 18

12 bZIP 205 148 194 11 49 8

13 C2C2_Zn-CO-
like

101 84 87 14 31 13

14 C2C2_Zn-Dof 87 81 78 9 13 5

15 C2C2_Zn-GATA 65 63 53 12 14 1

16 C2C2_Zn-YABBY 28 18 27 1 8 1

17 C2H2_Zn 270 258 211 59 42 5

18 C3H-TypeI 178 151 154 24 50 14

19 CAMTA 14 14 12 2 4 0

20 CCAAT_Dr1 23 16 20 3 4 2

21 CCAAT_HAP2 42 23 40 2 9 2

22 CCAAT_HAP3 47 39 34 13 5 2

23 CCAAT_HAP5 26 23 20 6 6 0

24 CPP 22 17 17 5 1 0

25 E2F_DP 23 14 21 2 3 0

26 EIL 14 13 11 3 6 2

27 GARP_ARRB 21 21 16 5 4 2

28 GARP_G2-like 104 82 95 9 20 6

29 GeBP 17 17 6 11 4 1

30 GRAS 127 117 101 26 29 7

31 GRF 10 8 9 1 3 0

32 HB 283 242 240 43 67 20

33 HMG-box 50 26 43 7 18 3

34 HRT 1 1 1 0 1 1

35 HSF 65 59 54 11 11 6

36 JUMONJI 54 51 37 17 8 0

37 LFY 3 3 2 1 0 0

38 LIM 41 32 38 3 5 0

39 LUG 10 9 10 0 2 0

40 MADS 220 186 141 79 7 0

41 MBF1 3 3 3 0 2 1

42 MYB_related 168 135 138 30 35 8

43 NAC 205 187 159 46 37 11

44 Nin-like 23 23 17 6 2 0

Continued
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available published information pertaining to each
gene, which will need to be updated as new findings
are reported. The availability of updated HMM
libraries or refinements of existing ones and better
fine-tuned annotation and continuous searches for
newly reported literature will enable us to improve

the TF prediction coverage. We will continue to
update the website with new information when it
becomes available.

Literature analysis, which is achieved by assessing
corresponding genes deposited as soybean TF genes
in the GenBank core nucleotide division together
with associated identifiers of PubMed, has revealed
that the majority of soybean TFs remains experimen-
tally uncharacterized. Thus, we attempted to further
extend our current knowledge base regarding their
regulatory function by assessing the putative func-
tions of soybean TFs via comparative analyses with rel-
evant GO annotations of Arabidopsis in TAIR. First, we
analysed the profile of GO terms at the biological
process level which could be assigned to soybean
TFs based on sequence similarity searches against
Arabidopsis counterparts having GO terms in TAIR. In
order to grasp the overall representation of GO
terms in applied entries of soybean TFs, all of the
assigned terms were counted after the similarity
searches were completed. With the exception of ‘regu-
lation of transcription’, ‘DNA binding’ and ‘biological
process’, the top 21 most abundant terms were

Table 2. Continued

TF gene families No. of
modelsa

No. of
gene locib

No. of
models (FL)c

No. of models
(not FL)d

No. of models assigned
with RIKEN FL ESTe

No. of models assigned
with RIKEN FL-HTCf

45 PcG 94 86 76 18 11 1

46 PHD 333 285 287 46 84 16

47 PLATZ 40 33 34 6 8 2

48 S1Fa-like 4 4 4 0 2 0

49 SAP 2 2 1 1 0 0

50 SBP 58 48 46 12 15 2

51 SRS 24 22 18 6 0 0

52 TCP 61 61 39 22 13 3

53 Trihelix 34 33 31 3 9 4

54 TUB 37 24 33 4 18 2

55 ULT 32 32 5 27 0 0

56 VOZ 8 7 7 1 2 1

57 Whirly 11 7 11 0 2 0

58 WRKY_Zn 219 198 167 52 47 12

59 zf-HD 57 56 37 20 4 1

60 zf-TAZ 8 8 6 2 1 0

61 ZIM 57 34 55 2 28 13

Total 5035 4342 4032 1003 1003 249
aNumber of predicted TF models in Glyma1 model.
bNumber of predicted TF loci in Glyma1 model.
cNumber of predicted full-length TF models in Glyma1 model.
dNumber of predicted not full-length TF models in Glyma1 model.
eNumber of predicted full-length TF models in soybean assigned with RIKEN full-length ESTs.
fNumber of predicted full-length TF models in soybean assigned with RIKEN full-length high throughput cDNAs.

Figure 2. The distributions of soybean TF encoding genes are
classified into four categories of annotation levels. Category A
includes soybean gene models showing sequence identity
�95% and a blastn E � 1e2100 with GenBank soybean
sequences having a functional description as TFs. Category B
includes gene models which have an equivalent protein
domain arrangement (blastp E � 1e230) for regulatory
function in well-annotated plants, such as Arabidopsis and/or
rice. Category C includes gene models which show a
significant hit with each of the HMMs used for DBD prediction
(Pfam-HMM E � 1e220). Category D includes TF genes which
have promiscuous HMMs with a threshold of settled E-values.
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subsequently used to classify the TFs. The contig
results of these total 21 GO terms for each soybean
TF, which was based on similarity with Arabidopsis
TFs, are provided in Supplementary Table S4.
Figure 3A illustrates the distribution of soybean TFs
in the 21 most abundant GO terms. A significant pro-
portion of soybean TFs are related to stress and
hormone responses (Fig. 3B), indicating the impor-
tant role of TFs in controlling these biological pro-
cesses. Of these assigned regulatory functions,
responses to auxin, chitin and salt stress are the
most highly represented. It is acknowledged that
these annotations are the first steps in functional pre-
diction, and researchers must use original publi-
cations as a source for a higher level of detailed

information. In addition, it is ideal if functional ana-
lyses can be performed in order to gain a detailed
understanding of gene function. Overall, these ana-
lyses emphasize the limited amount of functional
information that we know regarding the biological
processes that most of the TFs mediate, even for
model plants such as Arabidopsis. Directing research
efforts into uncharacterized TFs—for example, using
high-throughput genomic surveys to describe the
key features combined with a detailed examination
using traditional molecular approaches—will
undoubtedly accelerate our functional understanding
of these important regulatory genes. The NAC TF
family, which is widely distributed in plants but so
far has not been found in other eukaryotes, is an

Figure 3. The representative distributions of the GO terms for biological processes associated with soybean TF encoding genes. The top 21
abundantly found GO terms were assigned based on homology searches against annotated Arabidopsis genes (A). Abundant distribution
of TFs in GO terms related to the response to various types of abiotic stresses in the soybean TF dataset (B). Gene numbers are displayed
next to the terms.

360 Analyses of transcriptional regulation in soybean [Vol. 16,



excellent example of how research interests can sud-
denly arise the following key findings. The accelera-
tion in functional studies has revealed their diverse
functions in different biological aspects and future
follow-up studies will rapidly improve our understand-
ing of the regulatory function of NAC members. A
greater understanding of how TFs operate will be sub-
sequently translated into their potential applications
to enhance plant productivity.4,48,49

3.2. Structural feature of TFs
As mentioned above, the most common classifi-

cation of TFs is based on the structure of their
DBD.7,14 Grouping TFs by their structural domains
has been extremely useful in gaining insights into
how they recognize and bind specific DNA sequence.
This strategy has also been proven successfully for
characterizing their evolutionary histories as well.
Moreover, the DBD may provide clues to their biologi-
cal function. For example, ABI3/VP1 TFs are often
associated with the regulation of abscisic acid (ABA)-
responsive genes during seed development.50

Since structural features of TF families have been
extensively characterized in other reports, we do not
cover this in detail within this report.8 However, it is
worthy to note that soybean contains a number of
large families which consist of more than 100
members (Supplementary Table S5). For example,
the large AP2_EREBP family alone contains 405 TF
models and accounts for a total of 8.04% of the TF
repertoire. The bHLH and (R1)R2R3_MYB TFs also
represent major families with 390 and 333
members, respectively, which together occupy
14.36% of the TF repertoire. These observations
agree with the previous studies in Arabidopsis and
rice, which confirmed that the same three families
contain the highest numbers of TFs in these model
systems (Supplementary Table S5). In addition, the
plant-specific NAC family, which comprises 205
models in soybean, represents a similar ratio in
Arabidposis and rice (Supplementary Table S5).
Taken together, these results suggest a similar ten-
dency in the evolution of major TF families in plants.
Furthermore, given that the size of TF families is influ-
enced in part by the number of different DNA
sequences that they are able to recognize, the DBDs
of AP2_EREBP, bHLH and (R1)R2R3_MYB TF families
may be able to diversify their collection of target
sequences. As a result, they occur in the greater
numbers in a genome.4,51,52

3.3. Chromosomal distribution and gene duplications
of TFs

Our analysis has indicated that the soybean TF
families are scattered throughout the genome. The

larger families, such as AP2_EREBP, (R1)R2R3_MYB,
have members that are distributed on every chromo-
some in soybean (Supplementary Table S2). The local
distribution of TF genes relative to each other is also of
interest. Previous studies have described duplications
and clusters of highly homologous genes. In
Arabidopsis, tandem gene duplications and large-
scale duplications on different chromosomes may
account for .60% of the genome.7 In soybean, we
were able to distinguish between two types of dupli-
cations and clusters based on the evolutionary
history of the TF-coding genes that they contain.
The first type of duplications and clusters consists of
a series of paralogous genes, suggesting that they
arose through repeated tandem duplications which
originated from a founding locus. In contrast, the
second type of duplications and clusters is not com-
prised paralogous genes. We anticipate that the TF-
coding genes in these duplications and clusters
arose independently of each other at diverse locations
within the genome. Over time, it is likely that they
relocated to form these duplications and clusters.
Table 3 summarizes gene duplications and gene clus-
ters in soybean TF families. Closely related genes,
which are defined by .60% amino acid sequence
identity, account for �77.75% of the total number
in the TF families (Table 3). Pairs of duplicated
genes on different chromosomes are most common
and gene clusters of three or more highly related
genes are also widely found (Table 3). On the basis
of the distance of their occurrence, a few of the dupli-
cated genes could be classified arbitrarily as either
genes that were duplicated on same chromosome or
genes that were tandemly duplicated. Evolutionary
studies and haploid genome analysis have suggested
that the soybean genome experienced a tetraploidiza-
tion event which occurred an estimated 10–15
million years ago. Since then, the soybean genome
has gone through extensive gene rearrangements
and deletions to become diploidized.53 Therefore,
we can observe in soybean that multigene families,
including TF families, contain highly related
genes.24,54

3.4. Promoter regions of the TFs and the discovery
of cis-elements in the TF promoter regions

Cis-regulatory elements, which are the binding sites
for TFs located in the promoter regions of genes, are
the functional elements that determine the timing
and location of transcriptional activity. Over the
years, extensive promoter analyses have identified a
large number of cis-elements, which are important
molecular switches involved in the transcriptional
regulation of a dynamic network of gene activities
controlling various biological processes such as
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Table 3. Classification of homologous soybean TF genes

TF family No.
of

gene
locia

No. of
genes with

close
homologb

Percentage
of genes

with close
homolog

No. of
individual

genes

Duplications in
different

chromosomesc

Duplications in
same

chromosomed

Tandem
duplicationse

No. of gene
clusters/no. of
genes in cluster

(no. of
chromosmes)f

(R1)R2R3_MYB 318 261 82.08 57 50 2 1 43/155 (20)

ABI3VP1 139 90 64.75 49 20 1 2 12/44 (17)

Alfin-like 18 18 100.00 0 1 0 0 1/16 (11)

AP2_EREBP 381 309 81.10 72 74 1 0 42/159 (20)

ARF 58 45 77.59 13 8 1 0 7/27 (16)

ARID 20 9 45.00 11 1 0 0 2/7 (6)

atypical_MYB 78 42 53.85 36 14 1 1 3/10 (6)

Aux_IAA 85 72 84.71 13 9 0 0 13/54 (15)

BBR-BPC 10 10 100.00 0 2 0 0 1/6 (4)

BES1 18 17 94.44 1 3 0 0 2/11 (9)

bHLH 323 269 83.28 54 63 1 2 38/137 (20)

bZIP 148 124 83.78 24 26 1 0 18/70 (20)

C2C2_Zn-CO-
like

84 67 79.76 17 19 0 0 7/29 (13)

C2C2_Zn-Dof 81 60 74.07 21 17 1 0 7/24 (13)

C2C2_Zn-GATA 63 53 84.13 10 11 0 0 9/31 (15)

C2C2_Zn-
YABBY

18 15 83.33 3 2 0 0 3/11 (8)

C2H2_Zn 257 187 72.76 70 61 2 2 15/57 (18)

C3H-TypeI 151 123 81.46 28 25 0 1 15/71 (17)

CAMTA 14 12 85.71 2 6 0 0 0/0 (0)

CCAAT_Dr1 16 14 87.50 2 2 0 0 3/10 (9)

CCAAT_HAP2 23 16 69.57 7 2 0 0 3/12 (10)

CCAAT_HAP3 39 32 82.05 7 4 0 0 4/24 (14)

CCAAT_HAP5 23 19 82.61 4 3 0 1 3/11 (9)

CPP 17 10 58.82 7 3 0 0 1/4 (4)

E2F_DP 14 11 78.57 3 2 0 0 2/7 (5)

EIL 13 12 92.31 1 2 0 0 2/8 (6)

GARP_ARRB 20 13 65.00 7 3 0 0 2/7 (6)

GARP_G2-like 82 59 71.95 23 18 0 0 7/23 (13)

GeBP 17 13 76.47 4 2 0 0 2/9 (8)

GRAS 117 102 87.18 15 23 0 0 14/56 (20)

GRF 8 2 25.00 6 1 0 0 0/0 (0)

HB 240 197 82.08 43 31 0 0 33/135 (20)

HMG-box 26 22 84.62 4 5 0 0 2/12 (10)

HRT 1 0 0.00 1 0 0 0 0/0 (0)

HSF 59 48 81.36 11 12 0 0 7/24 (17)

JUMONJI 51 28 54.90 23 8 0 1 3/10 (9)

LFY 3 2 66.67 1 1 0 0 0/0 (0)

LIM 32 28 87.50 4 1 0 0 5/26 (15)

LUG 9 8 88.89 1 2 0 0 1/4 (4)

MADS 186 154 82.80 32 25 2 1 18/98 (19)

MBF1 3 3 100.00 0 0 0 0 1/3 (2)

MYB_related 135 112 82.96 23 17 1 1 16/74 (19)

Continued
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abiotic stress responses, hormone responses and
developmental processes.45,55 The PLACE database
(http://www.dna.affrc.go.jp/PLACE/) has consolidated
all of the published cis-motifs that have been ident-
ified to date. In addition, a number of stress respon-
sive cis-motifs are also reported, which are of great
interest to our area of research.45 To facilitate the
functional characterization of soybean TFs, we
retrieved the promoter regions for all of the TF
genes from soybean genomic sequence database.
Specifically, we retrieved 500, 1000 and 3000 bp of
sequence upstream from putative transcription start
sites. We provided this data on our website in addition
to other relevant information on the TFs for con-
venient downloading. The 2500, 21000 and
23000 bp promoter regions were subjected to an
extensive in silico analyses to search for the existence
of all putative known cis-regulatory motifs. In
addition, we also analysed the enrichment of all of
the cis-motifs in each TF family using 21000 bp pro-
moter regions as described in Materials and methods.

Information on the cis-elements located in the pro-
moter region of each TF is accessible on the detailed
page of each TF gene under ‘cis-motif prediction’ func-
tion (Fig. 4C). In addition, our website provides the
‘cis-motif (PLACE)’ search function, which enables
the search for all types of cis-motifs provided by the
PLACE database in promoter region of any TF and/or
the search for those TFs which contains the cis-
motif(s) of interest (Fig. 4A). In combination with
GO annotations (Fig. 4H), these data can facilitate
the systematic functional predictions of soybean TFs.

Numerous cis-elements have been reported for their
essential roles in determining the tissue-specific or
stress-induced expression patterns of genes.45,55

Recently, a systematic combinatorial in silico analysis
of cis-motifs and expression patterns in Arabidopsis
indicated a positive correlation between multi-
stimuli response genes and cis-element density in
upstream regions.56 Inspection of the relationship of
the existence of cis-regulatory elements and the
expression patterns of the TF genes can therefore

Table 3. Continued

TF family No.
of

gene
locia

No. of
genes with

close
homologb

Percentage
of genes

with close
homolog

No. of
individual

genes

Duplications in
different

chromosomesc

Duplications in
same

chromosomed

Tandem
duplicationse

No. of gene
clusters/no. of
genes in cluster

(no. of
chromosmes)f

NAC 187 173 92.51 14 26 0 1 30/119 (20)

Nin-like 23 15 65.22 8 4 0 0 2/7 (4)

PcG 86 56 65.12 30 21 0 0 4/14 (9)

PHD 285 188 65.96 97 51 1 0 18/84 (20)

PLATZ 33 27 81.82 6 2 0 1 4/21 (13)

S1Fa-like 4 4 100.00 0 0 0 0 1/4 (4)

SAP 2 2 100.00 0 1 0 0 0/0 (0)

SBP 48 39 81.25 9 9 0 0 6/21 (13)

SRS 22 18 81.82 4 4 0 0 3/10 (8)

TCP 61 44 72.13 17 19 0 0 2/6 (3)

Trihelix 33 25 75.76 8 11 0 0 1/3 (3)

TUB 24 20 83.33 4 2 0 0 3/16 (12)

ULT 24 20 83.33 4 1 1 0 2/16 (1)

VOZ 7 7 100.00 0 1 0 0 1/5 (4)

Whirly 7 6 85.71 1 3 0 0 0/0 (0)

WRKY_Zn 198 166 83.84 32 49 0 2 17/64 (20)

zf-HD 56 46 82.14 10 7 0 1 6/30 (15)

zf-TAZ 8 5 62.50 3 1 0 0 1/3 (3)

ZIM 34 27 79.41 7 8 0 0 3/11 (9)
aNumber of predicted TF loci found in soybean chromosomes (Glyma1 model).
bGenes were considered closely homologs if they showed .60% amino acid sequence identity.
cPairs of closely homologous genes which are duplicated in different chromosomes.
dPairs of closely homologous genes which are duplicated in same chromosome but resided .50 kb apart from each other.
ePairs of closely homologous genes which are duplicated in same chromosome but resided ,50 kb apart from each other.
fClusters of three or more closely homologous genes.
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Figure 4. The web-based user interface of SoybeanTFDB and a demonstration of a typical example of related annotations for a putative
soybean TF encoding gene. The interface of SoybeanTFDB provides search queries for the names of TF families, keywords, sequence
identifiers, identifiers of domains supported by InterProScan, GO terms and available cis-motifs (A). The search results are listed for
each of the TF families with a description of corresponding genes based on similarity searches (B). Users are able to navigate to the
detailed annotation pages to browse the related annotations. The detailed annotation pages provide summarized basic information
on each of the gene models annotated in Glyma1 with gene structure. The figure for a gene structure is accessible via a hyperlink to
a genome browser which is browsed together with other sequences allocated onto the soybean genome (C). The sequences of
cDNAs and proteins are provided and all clickable buttons navigate users to the blast search interface directory (D). The similarity
search results for each of the entries against NCBI nr, gene models of Arabidopsis and rice with detailed search results and hyperlinks
to the original data (E). Resultant hierarchical clustering of homologous soybean TF genes can be browsed with multiple alignment
of each cluster (F). The identifiers assigned provide hyperlinks to the annotation web pages of Arabidopsis and rice TF databases.
Information of other sequence identifiers for representative transcript sequence databases, including PlantGDB, UniGene and TIGR
GI, as well as the probe ID of target sequences on the soybean Affymetrix GeneChip, are also accessible. Furthermore, the interface
also provides corresponding hyperlinks to the FL-cDNA provided from RIKEN (http://rsoy.psc.riken.jp/) (G). The GO terms assigned to
each of the entries based on InterProScan and sequence similarity search against the annotated genes of Arabidopsis of TAIR8 (H).
The domain structure predicted by InterProScan is provided (I). The result of a cis-motif sequence pattern search of promoter
regions for each gene is shown together with genomic gene structure (J).
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help predict the function of the respective TFs during
development, in different organs, cell types or in
response to various endo- or exogenous stimuli.
Additionally, quantitative models that describe how
combinations of cis-elements dictate changes in
expression will play an important role for enriching
our understanding of the transcriptional response of
individual genes to environmental perturbations.26

3.5. Cis-element- and comparative sequence analysis-
based prediction of abiotic stress responsive TFs in
soybean

Plants respond to environmental changes by alter-
ing large-scale transcriptional responses. The exquisite
sensitivity and specificity of these responses are con-
trolled in large part by the cis-regulatory elements.
The molecular mechanisms regulating gene
expression in response to abiotic stresses have been
studied by analysing the cis- and trans-acting
elements, i.e. the sequence-specific binding TFs.4,45

Genes induced by stresses are classified into two
groups: functional genes and regulatory genes. The
regulatory group includes genes encoding various
TFs which can regulate various stress-inducible
genes cooperatively or separately and may constitute
gene networks. Identification and functional analysis
of these stress-inducible TFs should provide more
information on the complex regulatory gene net-
works that are involved in stress responses. At the
present time, the functions for most of stress respon-
sive TF encoding genes are not fully understood. Some
of the stress-inducible TFs have been overexpressed in
transgenic plants and result in stress-tolerant
phenotypes.4,45,49

Recent studies have substantiated that sequence
similarity-based clustering of the members of
several TF families correlates with their function.
Phylogenetic analysis of the AP2_EREBP and NAC
families of soybean and the rice NAC family with
orthologs from other plant species whose stress
responsive expression pattern and/or function are
known, resulted in a nearly perfect match between
sequence conservation and function or expression
patterns. These similarities clearly demonstrate that
this can serve as a reliable approach to rationalize sys-
tematic functional predictions of different TF
families.21,24,54 Moreover, increasing evidence indi-
cates that the cis-motifs are highly conserved among
orthologous or paralogous genes and coregulated
genes and defined cis-elements can effectively aid in
the genome-wide screening of ABA and abiotic
stress responsive genes.57–59 These observations
together prompted us to investigate in a comprehen-
sive fashion the relationship between TFs and abiotic
stress with the integration of cis-element annotation

and comparative sequence analysis using stress
responsive GO terms which aimed to identifying
soybean TFs which may function in abiotic stress
response. We, therefore, carried out comparative
sequence analysis with stress-responsive Arabidopsis
TFs to predict the soybean TFs with stress responsive
GO terms (Fig. 3B). We also characterized information
on stress-responsive cis-element distributions in pro-
moter regions of each soybean TF gene on our
webpage for querying and searching for putative
stress responsive TFs in each family using ‘cis-motif
(stress responsive)’ search function. With the help of
our soybean TF database, we can use, for example,
the ‘cis-motif (stress responsive)’ search function to
identify TF genes which harbour major known stress
responsive cis-motif(s) in their promoter regions
(Fig. 4A). Next, we screen the identified TFs using
GO annotation provided for each TF on detailed anno-
tation page (Fig. 4H). Thus, we will be able to identify
the putative stress responsive TFs based on both the
existence of stress responsive cis-motif(s) and the
associated stress responsive GO terms. The predicted
stress responsive function of the identified TFs shall
be then confirmed by experiments. The existence
of major stress responsive cis-motifs enriched
in 21000 bp promoter regions for a number of TF
families was summarized in Table 4.

3.6. RIKEN soybean TF database
We constructed a TF database named SoybeanTFDB

which is based on the identified soybean TF reper-
toire. Access to our database is available via the fol-
lowing link: http://soybeantfdb.psc.riken.jp, and all of
the data described above are available for viewing
and immediate downloading. The scientific commu-
nity can browse predictions for a total of 5035 TF
models and receive classifications for submitted
nucleotide and protein sequences. Multiple align-
ments of amino acid sequences within TF families
are also available for downloading and can be used
for the construction of phylogenetic trees. We also
provided clustered results showing amino acid
similarity with different levels of amino acid identity
(30, 60 and 90%), search functions for functional
motif information of InterProScan, cis-motifs in pro-
moter regions of TFs and GO annotations.
Furthermore, cross-references and links to other data-
bases such as Arabidopsis TAIR8, TIGR rice, UniProt,
SoyBase, soybean FL-cDNA and other TF databases
such as AtTFDB, DATF, RARTF, DRTF, Grassius,
PlnTFDB are available. On the first page of
SoybeanTFDB, we provide four types of search key-
words to find an entry: ‘TF search’, ‘Similarity search’,
‘Genome browser’ and ‘Quick search’. Similarity
search allows search using either nucleotide or
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amino acid sequence of any TF gene. Genome
browser enables search using gene IDs and Quick
search allows search function via any essential key-
words such as ‘NAC’. Within the TF search keyword,

we provide seven search functions (Fig. 4A). Figure 4
illustrates the web-based user interface of
SoybeanTFDB with a detailed description. One can
easily carry out functionality predictions for any TF

Table 4. Enriched cis-regulatory motifs found in promoter region (1000 bp upstream from transcription start site of each gene) of genes
encoding each of the TF families

Cis-motif
namea

Cis-motif
patterna

TF family No. of gene
loci hit

No. of
gene loci

Mean
observedb

Mean
expectedc

Z-
score

P-value
(,0.001)

ABRE1 [TC]ACGTGGC C2C2_Zn-CO-like 4 84 47.385 14.074 8.81 0
C2C2_Zn-GATA 3 63 47.784 14.074 8.92 0
C3H-TypeI 6 151 39.851 14.074 6.82 4.577E212
JUMONJI 2 51 39.435 14.074 6.71 9.7873E212
NAC 5 187 26.593 14.074 3.31 0.00046339
TCP 5 61 82.433 14.074 18.08 0
WRKY_Zn 6 198 29.952 14.074 4.20 0.000013318

ABRE2 ACGTG[GT]C (R1)R2R3_Myb 26 319 81.996 55.79 3.59 0.00016627
AP2_EREBP 31 382 81.157 55.79 3.47 0.00025671
Aux_IAA 7 85 82.312 55.79 3.63 0.00014072
C2C2_Zn-CO-like 13 84 154.522 55.79 13.52 0
C2C2_Zn-Dof 10 81 123.231 55.79 9.24 0
C2C2_Zn-GATA 5 63 79.277 55.79 3.22 0.00064947
C3H-TypeI 12 151 79.117 55.79 3.19 0.00070084
JUMONJI 7 51 137.741 55.79 11.22 0
MADS 18 186 96.524 55.79 5.58 1.2169E208
NAC 27 187 144.379 55.79 12.13 0
TCP 8 61 131.2 55.79 10.33 0
Atypical_MYB 10 78 128.071 55.79 9.90 0

CE1 TGCCACCGG C2H2_Zn 1 258 3.952 0.571 4.39 5.7069E206
JUMONJI 1 51 19.698 0.571 24.83 0
WRKY_Zn 4 198 20.174 0.571 25.44 0

CRT GGCCGACAT AP2_EREBP 1 382 2.538 0.324 3.88 0.000051901
C2H2_Zn 1 258 3.86 0.324 6.20 2.8371E210

DRE TACCGACAT ABI3VP1 1 139 7.255 0.77 7.36 9.0372E214
AP2_EREBP 3 382 7.931 0.77 8.13 2.2204E216
NAC 1 187 5.351 0.77 5.20 9.9255E208

ICEr2 ACTCCG AP2_EREBP 22 382 57.453 37.698 3.25 0.00057027
C2C2_Zn-GATA 4 63 63.223 37.698 4.20 0.000013136
JUMONJI 4 51 78.537 37.698 6.73 8.7457E212
PHD 20 285 70.006 37.698 5.32 5.1702E208
TCP 4 61 65.403 37.698 4.56 2.5263E206

MYBR TGGTTAG C2H2_Zn 19 258 73.778 48.032 3.90 0.000047443
MADS 13 186 69.508 48.032 3.26 0.00056509
TCP 5 61 82.123 48.032 5.17 0.000000118

MYCR CACATG (R1)R2R3_Myb 98 319 307.51 230.595 5.93 1.5169E209
ABI3VP1 41 139 295.074 230.595 4.97 3.3303E207
AP2_EREBP 112 382 293.307 230.595 4.83 6.6647E207
ARF 19 58 327.992 230.595 7.51 2.9865E214
Aux_IAA 23 85 270.693 230.595 3.09 0.00099623
C2C2_Zn-CO-like 25 84 298.315 230.595 5.22 8.9042E208
C2C2_Zn-Dof 29 81 358.556 230.595 9.87 0
C2H2_Zn 70 258 271.297 230.595 3.14 0.00085076
Myb_related 38 135 281.165 230.595 3.90 0.000048357
bZIP 42 148 283.077 230.595 4.05 0.000026039

NACR ACACGCATGT C2H2_Zn 1 258 3.823 0.494 4.93 4.1633E207
WRKY_Zn 1 198 4.944 0.494 6.59 2.2463E211
bZIP 1 148 6.804 0.494 9.34 0

aAccording to Yamaguchi-Shinozaki et al.45

bThe mean values observed were calculated by counting motif pattern hit in 1000 random samplings in each 1000 trials
for promoter pools of each TFs.
cThe mean values expected were calculated by counting motif patterns hit in 1000 random samplings in each 1000 trials
for promoter pools of all genes annotated in soybean genome.
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of interest based on GO annotations and cis-motif
search results. For instance, putative abiotic stress
responsive TFs can be searched based on the existence
of stress responsive cis-motifs and GO annotations.
Thus, the database that we have developed consoli-
dates comprehensive information for all of the
members of soybean TF repertoire. This database is
a very user-friendly interface which aims to meet
the broad demands of researchers who strive to
perform research with soybean TFs with the goal of
gaining greater understanding of their putative roles
in plant development, differentiation and environ-
mental responses. Taken together, SoybeanTFDB will
serve as an in silico analysis-based basic platform for
the elucidation of regulatory mechanisms underlying
different developmental and physiological processes
and stress responses. We strongly feel that this data-
base will rapidly accelerate the progress in ‘transcrip-
tion factoromics’ of soybean, comparative genomics
of TF repertoires both within legume species and
between legumes and other species, as well as facili-
tate genetic engineering programs to improve the
productivity of soybean grown in adverse conditions.
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