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ABSTRACT
Denticles are small, tooth-like protrusions that are commonly found on the palate of
early tetrapods. Despite their widespread taxonomic occurrence and similar external
morphology to marginal teeth, it has not been rigorously tested whether denticles are
structurally homologous to true teeth with features such as a pulp cavity, dentine,
and enamel, or if they are bony, tooth-like protrusions. Additionally, the denticles are
known to occur not only on the palatal bones but also on amosaic of small palatal plates
that is thought to have covered the interpterygoid vacuities of temnospondyls through
implantation in a soft tissue covering; however, these plates have never been examined
beyond a simple description of their position and external morphology. Accordingly,
we performed a histological analysis of these denticulate palatal plates in a dissorophoid
temnospondyl in order to characterize theirmicroanatomy andhistology. The dentition
on these palatal plates has been found to be homologous with true teeth on the basis of
both external morphology and histological data through the identification of features
such as enamel and a pulp cavity surrounded by dentine. In addition, patterns of tooth
replacement and ankylosis support the hypothesis of structural homology between these
tiny teeth on the palatal plates and the much larger marginal dentition.We also provide
the first histological characterization of the palatal plates, including documentation
of abundant Sharpey’s fibres that provide a direct line of evidence to support the
hypothesis of soft tissue implantation. Finally, we conducted a survey of the literature to
determine the taxonomic distribution of these plates within Temnospondyli, providing
a broader context for the presence of palatal plates and illustrating the importance of
maintaining consistency in nomenclature.

Subjects Paleontology, Histology
Keywords Palatal plates, Denticles, Dissorophoid, Histology, Temnospondyl

INTRODUCTION
Denticles are generally recognized as small, recurved tooth-like protrusions and
are commonly found in high densities throughout the palatal region in Paleozoic
sarcopterygians and tetrapods, including temnospondyls (Warren & Davey, 1992). They
are also known from a subset of the more derived Meosozic temnospondyls, such as
the Mastodonsauridae (e.g.,Welles & Cosgriff, 1965), the Chigutisauridae (e.g., Damiani &
Warren, 1996), the Plagiosauridae (e.g., Schoch & Witzmann, 2012), and the Rhytidosteidae
(e.g.,Warren & Davey, 1992), supporting the hypothesis that the presence of denticles
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represents the plesiomorphic condition within Temnospondyli (Warren & Davey, 1992).
Although denticles are frequently described in the literature, they are rarely defined, nor are
they exclusive to early tetrapods. The term ‘denticle’ is also used in reference to serrations
on the teeth of various vertebrate taxa, such as theropod dinosaurs (e.g., Smith, 2005;
Brink et al., 2015) and other reptiles (e.g., De Andrade et al., 2010), the tooth-like scales on
extant cartilaginous fishes (e.g., Serra-Pereira et al., 2008), and tooth-like protrusions in
the pharyngeal cavity of agnathans, placoderms, osteichthyans, and basal tetrapods (e.g.,
Johanson & Smith, 2005;Witzmann, 2013). The term has also been applied to structures in
non-vertebrate groups, such as the tooth-like protrusions found on the hinges of bivalves
(e.g., Le Pennec, 1980) and on the radula in various mollusks (e.g., Lowenstam, 1962), the
cheliceral teeth of sparassid spiders (e.g., Jäger, 1997), and the tooth-like processes on
the subcapitulum of many mites (e.g., Evans & Till, 1979). It is even used to refer to early
cytoskeletal components in Drosophila (e.g., Price et al., 2006).

In one of the few works to formally define anamniote tetrapod denticles, Lombard
& Bolt (2003), revised an earlier definition of denticles by the same authors whereby
denticles are considered to be any tooth-like protrusion possessing no more than 20% of
the average maximum basal diameter and/or height of adjacent marginal teeth. However,
this definition is only reflective of the external morphology, and it remains relatively
untested whether denticles are true teeth or if they are simply a tooth-like protrusion
formed from a different tissue and a different developmental process. For example, some
clades of extant amphibians possess bony protrusions known as odontoid processes
that superficially resemble enlarged teeth; these are found on the mandibles and are
probably used in intraspecific competition (Fabrezi & Emerson, 2003). The only previous
histological analysis of denticles in a temnospondyl is that of Bystrow (1938), who provided
an exceptionally detailed description and drawings of histological sections of denticulate
palatal bones of the Early Triassic trematosauroid Benthosuchus. Bystrow’s work provided
clear and convincing evidence that the denticles in that taxon are structurally similar to the
marginal dentition, but this work has been largely overlooked, perhaps due to being written
in German, and further studies are needed to evaluate these findings. Denticles of extinct
Paleozoic anamniotes are regularly found on the various bones of the palate, but there have
also been a few documented occurrences of exceptional preservation of small denticulate
palatal plates in temnospondyls that may have been attached to soft tissue coverings
of the interpterygoid vacuities (e.g., Milner & Sequeira, 1998; Witzmann & Schoch, 2006
(for 2005); Schoch, 2006; Fröbisch & Reisz, 2008). These differ from denticulate branchial
ossifications, which occur across a wide range of anamniote tetrapods (summarized in
Witzmann, 2013), including colosteids (e.g.,Hook, 1983;Witzmann, 2013), temnospondyls
such as branchiosaurids (e.g., Boy, 1972), micromelerpetontids (e.g., Boy, 1995); dvinosaurs
(e.g., Berman, 1973; Milner, 1982; Witzmann, 2004), eryopids (e.g., Boy, 1990; Witzmann,
2005), and various stereospondylomorphs (e.g., Schoch, 2002; Schoch, 2003; Schoch, 2008;
Witzmann, 2006b; Damiani et al., 2009; Schoch & Witzmann, 2009), and the ‘microsaur’
Microbrachis (Olori, 2013). Based on comparisons of these ossifications in taxa in which
both palatal and branchial plates are found (e.g., Onchiodon, Archegosaurus), they can
be differentiated based on their position relative to other cranial elements and their
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general morphology; branchial plates are more elongate and oval in contour and feature
only a single row of teeth at one edge (e.g., Boy, 1972; Witzmann, 2005; Witzmann, 2004;
Witzmann, 2013). Some taxa (e.g., branchiosaurids, larval trematopids) feature isolated
branchial denticles that are directly attached to the ceratobranchials, rather than on small
plates (Witzmann, 2013), and were likely for filter feeding (Schoch, 2009). Additionally, the
presence of branchial plates is indicative of the retention of gill arches with open gill clefts,
whether in a larval form or in aquatic (paedomorphic and non-paedomorphic) adults,
by virtue of their association with the branchial skeleton and should not occur in mature
terrestrial anamniotes.

Palatal plates have not been previously examined in great detail and are only briefly
discussed as an aside in broader descriptions by past workers. In any given publication,
only a handful of references comprising a subset of other temnospondyl taxa in which
these plates are known are provided, resulting in the perception that they are exceptionally
rare. However, our review of the literature indicates that they are widely preserved in many
temnospondyl families, and as discussed later in this paper, a diversity of nomenclatural
terms used to refer to the plates likely plays a significant role in their misperceived paucity.
Compared to other temnospondyl families, the plates are relatively well-represented
within terrestrial dissorophoids, as they are known in the amphibamids Pasawioops
(Fröbisch & Reisz, 2008), Platyrhinops (Carroll, 1964; Clack & Milner, 2010 (for 2009)),
and Eoscopus (Daly, 1994), in the dissorophids Cacops morrisi (Reisz, Schoch & Anderson,
2009), Dissorophus sp. (BMG, pers. obs., 2017), Kamacops (Gubin, 1980), and Aspidosaurus
binasser (Berman & Lucas, 2003), and in the trematopids Tambachia (Sumida, Berman &
Martens, 1998), Fedexia (Berman et al., 2010), and Phonerpeton (Witzmann &Werneburg,
2017). A large number of palatal plates were also reported from ‘‘Broiliellus’’ hektotopos
(Berman & Berman, 1975), originally described as a dissorophid, but the taxonomic
affinities of this taxon are in need of revision, and it is not currently considered to be a
member of the family in more recent phylogenetic analyses (e.g., Schoch, 2012).

The presence of denticle-bearing plates over the large vacuities would likely have served to
significantly increase the overall surface area that could be used in prey capture. The paucity
of these plates likely resulted from their soft tissue attachment and reduced preservation
potential, rather than real anatomical absence, particularly in forms with extensive denticle
fields on the palatal bones. It is possible that these plates are distributed among early
tetrapods based on their documented presence in a colosteid-like form (Clack et al., 2012)
and perhaps even in some derived sarcopterygians, as they are reported in the porolepiform
Glyptolepis (Jarvik, 1972). However, because the plates show a strong correlation with the
large interpterygoid vacuities that characterize temnospondyls, the denticulate palatal plates
present inmore basal taxa lacking such vacuities, such as those reported around the internal
opening of the spiracle and on the basal plate of the parasphenoid in Eusthenopteron (Jarvik,
1954), may not be structurally or developmentally homologous to those of temnospondyls.

In this study, we are principally interested in the characterization of the small palatal
plates and their denticles in early temnospondyls, with a focus on a specimen from the
well-knownDolese Brothers Limestone Quarry near Richards Spur, Oklahoma. The superb
quality of preservation of these small palatal plates and their dentition is unequalled in the
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fossil record, allowing us to study these plates in great detail. These palatal plates provide
an excellent model system for studying the relationship between palatal and marginal
dentition, and we propose to undertake their anatomical and histological study as part of a
larger project on the evolution of palatal dentition. The purpose of this paper is threefold:
(1) to histologically sample denticles of small palatal plates in order to re-test the original
findings of Bystrow (1938) that indicated structural homology between denticles of the
palatal bones with true teeth, (2) to histologically sample, for the first time, palatal plates
of a dissorophoid that are comparable to those found across Temnospondyli, and (3) to
discuss the phylogenetic origin and development of these plates. In addition to a description
of the external morphology, we also incorporate histology, an informative technique for
studying the internal structures and tissues. Although paleohistological studies of extinct
fauna are becoming an increasingly frequent component of paleontological analyses, only
a few have utilized amphibian teeth as the primary study structure (e.g., Bystrow, 1938;
Schultze, 1969; Warren & Davey, 1992; Warren & Turner, 2005). This study provides an
important follow-up to the work of Bystrow to test the hypothesis of structural homology
between denticles and marginal teeth in temnospondyls. Finally, little attention has been
directed toward the palatal plates of temnospondyls beyond a simple description, but
recent work by various authors regarding the function of the interpterygoid vacuities and
the histological work presented here permit an enhanced discussion of these ossifications.
The characterization of denticulate palatal plates with acrodont implantation is important
for improving our understanding of the dentition of temnospondyls, which has previously
been restricted mostly to studies of the pleurodont marginal teeth (e.g., Warren & Davey,
1992). Denticulate palatal plates have never been histologically analyzed in early tetrapods;
accordingly, the histological study of these structures fills a gap in the knowledge of early
anamniote tetrapod dentition and their inferred feeding strategies.

MATERIALS & METHODS
Materials
The sampled material consists of a small isolated block of palatal plates from an
indeterminate dissorophoid temnospondyl (ROM 76838, Figs. 1A–1I). Plates are
distributed on the top and the bottom of the block, as well as on the sides; some are
articulated with adjacent plates while others are isolated. Some plates also overlie others,
although this is not presumed to be the natural articulation condition. Most of the sampled
plates are of the typical black coloration that results from hydrocarbon enrichment
of the material during preservation at the Richards Spur locality, but several white,
unenriched plates were also identified; these are of very low contrast to the lightly colored
calcareous matrix and are only visible due to the presence of exposed pulp cavities
infilled with a darker material. No other elements are present on the block. We make the
taxonomic assignment to theDissorophoidea on several lines of evidence: (1) among extinct
anamniote tetrapods, denticulate plates are only known in temnospondyls, an observation
that is likely phylogenetically correlated with the plesiomorphically large interpterygoid
vacuities that characterize the clade and that are typically absent in lepospondyls, (2) of
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Figure 1 The external morphology of the palatal plates in the sampled specimen (ROM 76838) and
Pasawioops. (A–C) images of the sampled block of palatal plates (ROM 76838) from various views; (D)
an image of the dorsal surface of the palatal plates; (E) an enlarged view of the denticulate surface of the
plate; (F) an individual tooth on the plate, showing fluting; (G) an SEM image of the block from which the
plates were isolated; (H) enlarged SEM image of the denticulate surface of the plate; (I) an SEM image of
a single tooth; (J) an image of the palatal view of the holotype of Pasawioops (OMNH 73019); (K) An en-
larged view of the palatal plates; (L) an enlarged view of the dentition on the palatal plates showing the ori-
entation of the dentition.
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the few lepospondyls with convergently large interpterygoid vacuities (e.g., the nectridean
Diplocaulus and the ‘microsaur’ Hyloplesion), none are reported to have palatal plates
(e.g., Bossy & Milner, 1998; Carroll, 1998), and these taxa do not occur at the fossiliferous
Early Permian karst deposit near Richards Spur, (3) terrestrial dissorophoids are the only
temnospondyls known from the locality, and (4) the external morphology of the plates
and the denticles on them are highly similar to those of the co-occurring amphibamid
Pasawioops (Fröbisch & Reisz, 2008, Figs. 1J–1L) and the dissorophid Cacops (Reisz, Schoch
& Anderson, 2009), in which the plates are articulated within the skull, and to those of
the dissorophid Dissorophus in which they can be reasonably associated with the skull
(BMG, pers. obs., 2017). The absence of aquatic forms and early larval stages of the
dissorophoid taxa at the locality provides another line of evidence in support of their
identification as palatal plates, rather than as branchial plates. The denticles of these
plates feature striations, which are seen in the denticles of olsoniforms such as C. woehri
and an indeterminate trematopid (cf. Acheloma) from Richards Spur (BMG, pers. obs.,
2017; Fröbisch & Reisz, 2012), but not in those of Pasawioops (Fröbisch & Reisz, 2008), a
pattern that also differentiates the marginal teeth of the olsoniforms from those of the
amphibamids. Therefore, we propose that these plates either belong to a dissorophid or
a trematopid, but because of the general paucity of the plates, a lack of knowledge of the
relative size of the plates among the dissorophoid families, and a lack of knowledge of the
ontogeny of the plates, we emphasize that the more specific identification is tentative and
awaits further confirmation.

We also examined the holotype specimen of Pasawioops mayi (OMNH 73019) described
by Fröbisch & Reisz (2008) that consists of a complete skull with articulated mandibles.
More than two dozen semi-articulated palatal plates are found in the left interpterygoid
vacuity and were briefly described and figured in the original description. Here we provide
images of these plates at high magnification for comparison with those of ROM 76838
(Figs. 1J–1L). Although palatal plates are known from many temnospondyl taxa, this
specimen represents one of the few documented occurrences of a nearly complete
articulated mosaic preserved within the interpterygoid vacuity.

Histological analysis
ROM 76838 was imaged using a Leica DVM6 tilting microscope with LAS X software
prior to sampling. Individual plates were removed from the block using an air scribe
and a pin vise. A total of fifteen plates (all single elements save for an overlapping pair)
were removed, divided between several containers, and glued to a pre-poured base layer
of resin under a microscope so as to maximize the consistency of the orientation of the
denticles for sampling. The plates were then embedded in a resin of Castolite AP and an
associated hardener under vacuum and allowed to set for 24 h. The embedded plates were
then separated into individual blocks that were hand-ground using both a Hillquist 1010
grinding cup and a lap wheel with a 600-mesh grit to remove the resin until a surface of the
specimen was exposed. Each specimen was ground in a step-wise fashion to create a sagittal
cut of each plate in the anteroposterior axis, with repeated examination under a microscope
to evaluate the quality of the exposed cross-section. Because of the small size of the dental
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plates and corresponding challenges with their sectioning, the exposed plane differs slightly
from an exact sagittal cut in some slides. Once an informative section was exposed, it was
glued to a frosted plexiglass slide using Scotch-Weld SF-100 cyanoacrylate glue and allowed
to set for at least 30 min. The slides were cut to a uniform height of 0.7 mm using a Buehler
Isomet 1000 wafer blade low-speed saw and then ground on the Hillquist to achieve optical
clarity. Slides were polished using a 1-micron grit aluminum oxide powder to remove
polish lines without significant loss of material. Slides were imaged on a Nikon AZ-100
microscope, with a Nikon DS-Fi2 camera attachment, using Nikon NIS-Elements imaging
software registered to RRR. Following the imaging of the initial slides of the indeterminate
dissorophoid palatal plates, it was determined that cuts in a different plane were necessary
to evaluate the possibility of plicidentine, and an additional six plates were isolated for the
same preparation. Adobe Illustrator CS6 and Adobe Photoshop CS6 were used to compile
figures and illustrations found within.

DESCRIPTION
External morphology
The external morphology of the denticles is similar to those seen on the denticulate
palatal bones of temnospondyls (Figs. 1E–1F, 1H–1I). The denticles are conical at the
base, as with the marginal dentition of many temnospondyls, with no clear compression
in one axis compared to any other. Toward the crown, fluting on the teeth and the
development of carinate edges become more pronounced. They are sharply recurved
posteriorly, and the crowns, where preserved, are oriented nearly parallel to the ventral
surface of the plate. It is important to note that patterns of external morphology of the
teeth on the palatal plates likely mirror the marginal teeth. For example, the denticles of
the holotype of Pasawioops (OMNH 73019), both on the palatal plates and on the palatal
bones, are similar to the marginal teeth in that both bear no fluting and are not carinate
(Figs. 1J–1L). This is in contrast to the dentition of the co-occurring olsoniforms, Cacops
and Acheloma, both of which feature fluting and carinate edges on the marginal teeth and
the denticles on the palatal bones (Reisz, Schoch & Anderson, 2009; Polley & Reisz, 2011).
Vacant denticle sockets are often marked by a circular depression that is surrounded by an
elevated ridge. There is no clear pattern to the distribution of vacant versus filled sockets,
and due to the small size of the denticles, it is likely that some were accidentally removed
during preservation or during preparation. Given that the denticles are significantly more
numerous than the marginal dentition, they may not have followed a similar alternating
replacement pattern. The arrangement of the denticles consists of even spacing and a
relatively linear orientation parallel to the anteroposterior axis.

The plates bearing the denticles are smooth on the dorsal surface (embedded in the oral
mucosa) and aside from the denticle sockets on the ventral surface, lack ornamentation on
both dorsal and ventral surfaces. Many feature a slightly raised lip around the margin of the
entire plate. The morphology of the plates is somewhat variable, ranging from quadrilateral
to trilateral contours; the significance of this variation is unclear but does not appear to be
the result of post-mortem damage; broken plates are clearly identifiable by the absence of a
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raised lip at a margin. Some plates clearly articulate with adjacent plates while others appear
more isolated. This variation in plate morphology is also seen in other dissorophoids, such
as Pasawioops (Fröbisch & Reisz, 2008), Platyrhinops (Carroll, 1964; Clack & Milner, 2010
(for 2009)), and Cacops (Reisz, Schoch & Anderson, 2009). In the plates sampled here, there
is relatively little difference in size of plates. In contrast, the articulated plates of Pasawioops
vary markedly in size; some are nearly twice as large as others, and many of those around
the lateral margins of the vacuities are more circular and significantly smaller than those
located within the interior of the vacuities. There is no apparent pattern of size distribution
of the more interior plates. Additionally, some plates of Pasawioops, although relatively
large, are nearly entirely smooth, with only a handful of denticles concentrated near the
center. No such plates were present in ROM 76838. Finally, the holotype of Pasawioops
features slender, elongate denticulate plates that overlie the cultriform process; the distinct
morphology of these likely relates to a presumed attachment to the process rather than to
a mucosa as with the plates that we sampled here.

Histological features
The denticles display essentially all of the main features that are considered to define teeth
and the associated peridontia in that they are characterized by the presence of a pulp cavity,
vascular canals, enamel, and dentine, complete with dentinal tubules and lines of von Ebner
(Figs. 2 and 3). Slight variation in some features, such as the extent of the canals and the
shape of the pulp cavity likely results from natural variation as well as the minor deviation
from an exact sagittal cut, as noted in the methods (Fig. 3). As is further discussed below,
comparisons of the various dental features between plates, such as enamel thickness, are
not possible because of the slight variation in sectioning planes.

A pulp cavity is present in all of the sampled plates (Figs. 2 and 3). The exact morphology
is somewhat variable due to the variation in sectioning plane. Sections in which the pulp
cavity appears in-filled likely represent a section that captured the innermost dentinal wall
that encloses the cavities. In some sections, an associated vascular canal(s) can be seen
descending from the pulp cavity in a near-vertical orientation perpendicular to the dorsal
surface of the plate (Figs. 2 and 3). The vascular canals are likely continuous with the dorsal
surface of the plates; as with the pulp cavity, variation in the morphology and degree of
penetration of the canals is likely the product of the plane of sectioning, as well as the
three-dimensional nature of the canals. These canals are the only vascularity that can be
identified in the sampled plates.

Enamel is present on the majority of the denticles sectioned and is best visualized under
cross-polarized light (Fig. 2G), although it can also be identified under plane-polarized
light (Fig. 2A) and with the use of a lambda filter (Fig. S1A). The enamel is acellular and
highly mineralized, covering the distal portion of the crown, and tapering towards but not
reaching the attachment site. Measuring enamel thickness at the apex of the crown for
comparable purposes between plates was not possible due to the aforementioned variation
in sectioning.
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Figure 2 Histological characterization of two denticulate plates considered to be representative of
the sample (ROM 76838). (A–D) TS01135; (E–G) TS01140. (A) A schematic representation of TS01135
to show relative location of the histological features; (B) enlarged view of the crown of the tooth; (C) en-
larged view of a fragment of dentine belonging to a previous generation of teeth at this position; (D) en-
larged view of the Sharpey’s fibers that are embedded with in the plate; (E) enlarged view showing possible
plicidentine at the junction between the tooth and plate; (F) enlarged view Sharpey’s fibers imaged under
cross-polarized light; (G) the same view as (E) in cross-polarized light. Scale bar= 500 µm.
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Figure 3 Histological sections showing incomplete ankylosis of the teeth to the palatal plates of ROM
76838. (A) TS01142 showing incomplete ankylosis of a tooth to the plate; (B) close-up of the attachment
site of the same tooth; (C) TS 01134 showing incomplete ankylosis of a tooth to the plate; (D) close-up of
the attachment site of the same tooth; (E–F) incomplete ankylosis in TS01145 and TS01167. Scale bar=
500 µm.

Dentine is readily found in all of the sectioned dental plates, with pervasive dentine
tubules found throughout the crown portion of the tooth, originating in the DEJ (dentine-
enamel junction) and terminating in the pulp cavity (Figs. 2 and 3). The lines of von Ebner
are readily identifiable in the mineralized dentine; unfortunately, in polyphyodont taxa,
these lines are not informative to the age of the tooth (Erickson, 1996). The dentine-enamel
junction is only identifiable in some sections (e.g., Figs. 2A and 2F, Fig. S1A).

Alveolar bone is easily identifiable as the attachment tissue, as it surrounds the basal edge
of each tooth and is distinctly separated by a reversal line from the organized lamellar bone
that makes up the plates (Figs. 2 and 3). Alveolar bone is typically fibrous or trabecular in
appearance (sensu LeBlanc & Reisz, 2015) at the junction of the tooth and lamellar bone.
However, it has a more paralleled-fiber appearance at the base of each denticle where
it forms the base of attachment between the dentition and the plates, and post-mortem
fractures tend to occur along this junction. The extent of ankylosis varies between sections
and is often incomplete (Fig. 4). This cannot be attributed to a taphonomic loss of alveolar
bone, as the unattached edge of the tooth is undamaged, while the opposing side is ankylosed
to the plate by alveolar bone. There does not seem to be any pattern regarding the position
of incomplete ankylosis; this can again be attributed to the variable planes of section.
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Figure 4 Histological sections showing the variation in palatal plate anatomy of ROM 76838. Scale
bar= 500 µm. (A) TS01115; (B) TS01136; (C) TS01137; (D) TS01142; (E) TS01134; (F) TS01168; (G)
TS00141; (H) TS01147.

Gee et al. (2017), PeerJ, DOI 10.7717/peerj.3727 11/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.3727


Plicidentine, defined as infoldings of the dentine into the pulp cavity at the base of the
tooth, has long been known in early tetrapods, being first documented in the temnospondyl
Mastodonsaurus by Owen (1841). It has since been found to be widespread throughout
numerous temnospondyls (often referred to as ‘labyrinthine infoldings’ in older literature)
but is also known in a variety of extinct and extant fishes (e.g., Schultze, 1969; Schultze,
1970; Long, 1989; Meunier et al., 2015). Although the classical model of dental evolution
suggested a loss of plicidentine in amniotes (e.g., Laurin & Reisz, 1995), these infoldings
occur in a broad number of amniote groups, including ichthyosaurs (Maxwell, Caldwell
& Lamoureux, 2011b), choristoderes (Gao & Fox, 1998), lepidosaurs (e.g., Kearney, Rieppel
& Wood, 2006; Maxwell et al., 2011), captorhinids (De Ricqlès & Bolt, 1983), parareptiles
(e.g., Modesto & Reisz, 2008; MacDougall, LeBlanc & Reisz, 2014; MacDougall, Modesto &
Reisz, 2016), and synapsids (Brink, LeBlanc & Reisz, 2014). In lateral sections (Fig. 2E) of
the plates and associated denticles, slight infolding of the dentine can be seen at the base
of the tooth, dorsal to the pulp cavity, indicative of plicidentine. Although plicidentine is
most easily visualized in a cross-sectional profile, this proved to be a particularly difficult
section to produce, and our cross-sections in the dorsoventral axis could not produce clear
evidence of plicidentine. We have tentatively identified weak infolding in the lateral profile
(Fig. 2E), but additional work is required to verify the presence of this infolding.

In a single sectioned plate (Fig. 2B), a fragment of dentine can be seen embedded
within the alveolar bone, neighbouring a complete tooth. This dentine fragment could
have originated from a broken tooth; however, it should be noted that there are no other
features to indicate the presence of a tooth that may have occupied this position, such as
vascular canals or additional alveolar bone. The alveolar bone does not extend beyond the
fragment of dentine, indicating that if alveolar bone had extended past the area where the
fragment is embedded, it has been either eroded away, or remodelling has taken place. This
dentine fragment likely indicates a position of a tooth from a previous generation that has
since been replaced. This fragment, coupled with the varying degrees of ankylosis found in
the dentition (Fig. 4), is indicative of cycles of tooth development and replacement.

The palatal plates are composed of compact lamellar bone that lacks many features
commonly associated with bone, such as a diploë region, Haversian systems, and secondary
bone. Present in all of the plates are incremental growth marks in the lamellar bone, which
are identifiable by means of a variation in color associated with differential staining. The
growth marks do not coincide with a change in density in the bone cell lacunae, which
are densely distributed throughout the bone and which lack a consistent pattern in their
arrangement. The osteocyte lacunae are consistently oblong in outline in all specimens;
they are more numerous in some plates and often found in higher density at the tooth bases
(Fig. 1E) or at the distal edges of the body of the plate (Fig. 4A, Fig. S1D). The canaliculi
cannot be visualized, although this is likely the result of the relatively small scale of the
plates. Primary or secondary osteons do not appear to be present in any of the sectioned
plates, likely indicating slow sequential deposition of bone matrix. The absence of erosion
cavities, as well as reversal lines (beyond those found at the tooth bases), also supports the
characterization of the plates as lacking secondary remodelling. Also present in most of the
palatal plates are abundant Sharpey’s fibers, which were identified on the basis of the large
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number of parallel striations that are oriented obliquely (mainly in the dorsoventral axis)
to the body of the plate (Figs. 2D, 2F). The Sharpey’s fibers cut across the growth marks
found in the bone and are present throughout the length of the plate, indicating that these
plates were embedded in soft tissue throughout their development and subsequent growth.
The Sharpey’s fibers appear relatively thin, but in some plates, there are high-density
clusters of these fibers toward the curved ends of the plate. The significance of differences
in the relative abundance and distribution of these fibers is not apparent in the absence of
a positional context. Plates located at the margins of the vacuities where they abut against
and possibly overlap onto the palatal bones may differ slightly in morphology compared to
plates located in the interior of the vacuities that are only in contact with other palatal plates.

DISCUSSION
Structural characterization of denticles
One of the main findings of this study is the characterization of the denticles of the palatal
plates of a dissorophoid temnospondyl as being structurally identical to true teeth based on
the presence of features such as enamel, dentine, a pulp cavity, and alveolar bone. The same
features were identified in the denticles of the palatal bones of Benthosuchus by Bystrow
(1938:figs. 26–27), supporting the hypothesis that denticles of the palatal bones and those
of the palatal plates are structurally homologous to each other and to true teeth, although
superficial aspects of the external morphology (e.g., striations, recurvature) are somewhat
variable among temnospondyls, as with the marginal dentition. It is important to note that
Bystrow himself paralleled the palatal denticles to dermal denticles of crossopterygian fishes,
following Gross (1935), but he did identify the same typical dental tissues that we identify
here in support of structural similarities. An additional consideration is the definition of
‘true teeth.’ Reif (1982:291) previously suggested that denticles should be differentiated
from true teeth on the basis of their superficial formation in the mesenchyme, in contrast
to the deeply invaginated dental lamina of ‘true teeth,’ such as the marginal dentition, in
which replacement teeth form prior to the loss of the older teeth. However,Huysseune, Sire
& Witten (2009:469) note that a dental lamina is not essential for tooth formation, thereby
negating Reif’s distinction on the basis of the dental lamina and supporting the homology
proposed in this study.

The presence of abundant Sharpey’s fibers provides histological evidence to support
the hypothesis that the plates were embedded in the soft tissue membrane covering the
interpterygoid vacuities. The possible identification of plicidentine may be useful for
providing new insights into whether the infolding is the result of phylogenetic inheritance
(e.g., Schultze, 1969; Schultze, 1970; Hill, 2005), functional significance in reinforcing
the tooth attachment (e.g., Scanlon & Lee, 2002; MacDougall, LeBlanc & Reisz, 2014), or a
combination of the two (e.g.,Maxwell, Caldwell & Lamoureux, 2011a).However, additional
sampling is necessary to determine with greater confidence the presence of plicidentine and
to evaluate the degree of infolding, if present. Variable degrees of infolding between palatal
denticles (either on plates or on palatal bones) and marginal dentition could be reflective
of the different modes of attachment (acrodont versus pleurodont) or the presumed
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differences in modes of replacement that result from variable attachment. As we sampled
a dissorophoid taxon that is ecologically, phylogenetically, and temporally distinct from
Benthosuchus and analyzed denticles of the palatal plates rather than those of the palatal
bones, we believe there is good reason to infer that the structural homology of the marginal
dentition with denticles of both palatal bones and palatal plates is widespread throughout
Temnospondyli.

Function
The function of the palatal plates in temnospondyls is likely strongly correlated with at
least some of the hypothesized function(s) of the interpterygoid vacuities. Several recent
publications have suggested a multiplicity of functions of the characteristic vacuities, none
of which are mutually exclusive, including: (1) a palatal buccal pump (Schoch, 2014), (2)
additional muscle attachment sites and increased optimization of bite force and stress
distribution forces (Lautenschlager, Witzmann &Werneburg, 2016), and (3) retraction
of the eyeballs during feeding and accommodation of cranial musculature (Witzmann
&Werneburg, 2017). The retraction of the eyeballs in a manner similar to some extant
lissamphibians to facilitate swallowing of large prey items (e.g., Deban &Wake, 2000;
Levine, Monroy & Brainerd, 2004) is particularly appealing in the context of this paper, as
the presence of a denticulate, flexible membrane would likely facilitate this process. Such
flexibility could only be maintained through a sheet comprised of relatively small plates
regardless of the overall size of the skull (Fig. 5); in all taxa documented to have these
plates by our survey of the literature, the plates remain relatively small and likely increase
primarily in count, rather than in size, in larger taxa (Fig. 6). Independent of the mobility
of the vacuities, the strong recurvature of the teeth and their dense concentration, forming
a continuous sheet with the palatal bones, would likely have facilitated increased contact
with prey items and a unidirectional movement of prey toward the throat in concert with
the tongue. Other proposed functions have less direct bearing on the function of the plates,
although modeling approaches similar to those employed by Lautenschlager, Witzmann
&Werneburg (2016) that incorporate the presence of the denticulate sheet formed by
the plates could be helpful in assessing whether the plates influence bite force and stress
distribution mechanics by providing a semi-rigid covering within the vacuity.

Development
Although the use of extant analogues for inferring patterns of evolution in extinct relatives
has often proven useful in anamniote tetrapods (e.g., Schoch, 2009; Fröbisch et al., 2010), no
modern analogue for palatal plates embedded in soft tissue exists in any extant terrestrial
tetrapods, let alone in any lissamphibians. As a result, the developmental origin and
trajectory (e.g., replacement of worn or damaged denticles and plates, response of the plate
mosaic to the expanding vacuity during ontogeny) of the plates remains somewhat unclear.
It is impossible to correlate these plates with any ontogenetic stage given their isolation and
the lack of contextual information from other taxa. Even in taxa like Pasawioops (Fröbisch
& Reisz, 2008), with plates that are confidently associated with a skull, the plates are rarely
known from more than one specimen in which the ontogenetic maturity of the skull is
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Figure 5 A schematic diagram featuring a cross section of a dissorophid skull with the position of the
denticulate palatal plates in the interpterygoid vacuities. (A) representation of the palatal plates in the
oral mucosa covering the interpterygoid vacuity in a resting state; (B) representation of the plates during
ventral expansion of the epithelium (e.g., during feeding).

constrained only relatively, rather than absolutely. The most parsimonious explanation
at present is that each plate represents an individual ossification, originating within the
covering of the interpterygoid vacuity. This could account for the diversity of morphotypes
seen among the plates of any one individual; naturally variable rates of expansion of the
plates would lead some to be slightly larger that others, and also for some to acquire
different shapes based on constraints imposed by surrounding plates.

Replacement
The replacement of the pleurodont marginal dentition found in dissorophoid
temnospondyls is most likely by a single tooth position, although it bears noting that this is
often assumed due to the relative homogeneity of tooth attachment in temnospondyls and
extant lissamphibians and has not been rigorously tested in extinct anamniote tetrapods
(Davit-Béal et al., 2007). The replacement of denticles is certainly difficult to define,
considering that their attachment is acrodont. While acrodonty is frequently associated
with a lack of replacement in extant reptiles, there is little work on the replacement of
acrodont dentition of anamniote tetrapods (e.g., Bolt & DeMar, 1983), Here we present
the most likely mode of replacement, where the dentition found on the palatal plates
mirrors that of the pleurodont marginal dentition, in that a new tooth would form in
soft tissue, ventral to the surface of the palatal plate and would eventually ankylose to
the plate via alveolar bone. This process of progressive ankylosis was captured in several

Gee et al. (2017), PeerJ, DOI 10.7717/peerj.3727 15/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.3727


plates where the teeth were not fully ankylosed, leaving unattached edges of dentine
(Fig. 4). Other teeth feature partial or ‘weak’ ankylosis, possibly indicating the progression
of attachment. Similar incomplete ankylosis in denticles of Benthosuchus was figured by
Bystrow (1938: figs. 26–27). It is important to note that this non-symmetrical ankylosis is
not an indicator of hinged tooth attachment, as seen in snakes and some squamates (e.g.,
Patchell & Shine, 1986; Budney, Caldwell & Albino, 2006). This possibility can be ruled out
on the basis that we observed fully ankylosed teeth; coupled with the absence of Sharpey’s
fibers that would otherwise indicate the presence of the ligament necessary for hinged
tooth attachment (Budney, Caldwell & Albino, 2006), this leads us to conclude that the
area lacking complete ankylosis is related to replacement of the dentition. A new tooth
would migrate towards an existing tooth position and eventually ankylose to the plate by
eroding the existing tooth, leaving only a dentine fragment such as that identified in one
plate (Fig. 2). However, an intermediate stage of the step-wise erosion was not captured
histologically, by SEM, or with traditional imagining techniques in any of the plates. The
same mode of tooth attachment is suggested by Bystrow (1938), but it is important to note
that the replacement of denticles on the palatal bones is also characterized by successive
deposition of new bone on top of existing denticles, which is not seen in the plates.

It cannot be excluded that the entire plate could be replaced if it was lost due to unnatural
trauma, such as during feeding. Based on the apparent number of plates that would be
expected in an individual such as the holotype of Pasawioops, the brief vacancy created by a
shed plate would be unlikely to significantly impact the feeding success of the animal. There
is no evidence to suggest that the plates would be regularly replaced as part of the normal
ontogenetic trajectory, although this hypothesis cannot be excluded at present. However,
it is unclear what characteristics would be useful for identifying shed or newly formed
plates given the homogeneity and presumed comparable maturity in the sampled plates.
Although the presence of variably sized plates could be interpreted as evidence of a natural
replacement of palatal plates (assuming a positive relationship between size and maturity),
other hypotheses cannot be discarded. For example, the small size and circular shape of
plates around the margins of the vacuities in Pasawioops, a well-articulated occurrence of
the plates, may be related to the articulation of these plates with the palatal bones. In the
plates sampled here, there was very little variation in size; due to the semi-disarticulated
nature of the material, it cannot be excluded that smaller plates were hydrodynamically
sorted and removed from this sample. Overall thickness of the plate and the nature of the
growth marks are also consistent throughout the sampled plates. No extant taxa form a
comparable dentigerous ossification embedded in soft tissue that could be analyzed to infer
tooth replacement in these plates.

Taxonomic perspective
The plates are of little taxonomic utility, partly because their small size and soft tissue
attachment result in poor preservation potential. Previous authors have suggested a
widespread occurrence within Temnospondyli (e.g., Clack et al., 2012), which is supported
by our literature review (Fig. 6 and Table 1). We have also found that they are more
common than is apparent from other works that report the presence of the plates, in which
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Figure 6 Results of the literature survey on the occurrence of palatal plates in temnospondyl amphib-
ians. Phylogeny is modified from Schoch (2013). Red lines and asterisks indicate a documented occurrence
of the plates; corresponding references are listed in Table 1.

they are usually compared to a semi-random handful of other taxa in which plates have
been previously described (as well as being erroneously synonymized with branchial plates).
Based on the current list of taxa in which the plates are known (Fig. 6 and Table 1), there is
no apparent correlation with adult body size, general ecology (terrestrial vs. semi-aquatic
vs. aquatic), or inferred feeding ecology (e.g., insectivorous vs. piscivorous). Although it
can be reasonably proposed that the plates were reduced or entirely lost along the trajectory
that resulted in an absence of denticles on the palatal bones in more derived temnospondyl
groups, it should be noted that the plates are found in the Middle Triassic trematosaurid
Trematolestes hagdorni, the Late Triassic metoposaurid Metoposaurus krasiejowensis, and
the Early Jurassic brachyopid Siderops kehli; in all three, the palatal bones are confidently
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Table 1 Listing of documented occurrences of denticulate palatal plates recovered from the literature
review conducted as a part of this study. All taxa with a superscript number are tentative observations
that were not included in the phylogeny and are briefly described here. (1) The authors only identified a
shelf similar to taxa in which palatal plates are known; (2) a relatively large denticulate plate on the left ec-
topterygoid is present, but it is not clear whether this is the natural position; (3) several denticulate plates
are noted between the mandible and the displaced clavicle; Schoch (2008) suggested them to be branchial
plates but also noted them to be unusually wide; (4) the authors identified isolated denticulate plates in
the interpterygoid region but could not determine whether they covered the vacuities or the parasphenoid;
(5) a number of ‘scales’ were found in the intermandibular region near the ramus and the cultriform pro-
cess, but most were removed during preparation; (6) this observation is considered tentative only because
the authors were unable to access the original publication; (7) a few small plates with ‘dots’ that proba-
bly represent broken denticles are found on the parasphenoid; (8) a large number of variably sized plates
in the anterior portion of the vacuity were identified as scleral plates; more plates in the posterior half, as
well as denticles, may have been removed during preparation based on photos of the specimen; (9) a num-
ber of small denticulate plates are cemented near the base of the cultriform process and were paralleled to
those of Chenoprosopus; (10) two isolated patches of denticles are found on the parasphenoid that were
suggested to be fragments of the overlying sheet that would have covered the basal plate.

Taxon Reference

Acanthostomatops vorax Witzmann & Schoch (2006:369, fig. 4)
Adamanterpeton ohioensis Milner & Sequeira (1998:278, fig. 2)
Archegosaurus decheni Witzmann (2006a:148, figs. 8, 17)
Aspidosaurus binasser Berman & Lucas (2003:250, fig. 3)
Balanerpeton woodi Milner & Sequeira (1993:339)
‘‘Broiliellus’’ hektotopos Berman & Berman (1975:72–73, fig. 2)
Cacops morrisi Reisz, Schoch & Anderson (2009:793, fig. 3)
Colosteid-like tetrapod Clack et al. (2012:22, fig. 2A)
Denderpeton acadianum Godfrey, Fiorillo & Carroll (1987:800, fig. 1D)
Dissorophus sp. BMG, pers. obs., 2017
Eoscopus locklardi Daly (1994:8)
Erpetosaurus radiatus Romer (1930:110, fig. 15)
Fedexia striegeli Berman et al. (2010:309; fig. 9B)
Kamacops acervalis Gubin (1980:83–88)
Metoposaurus krasiejowensis Sulej (2007:56–60, fig. 2E)
Onchiodon labyrinthicus Witzmann (2005:481)
Pasawioops mayi Fröbisch & Reisz (2008:1020, fig. 3)
Phonerpeton pricei Witzmann &Werneburg (2017:1247, fig. 4B)
Platyrhinops lyelli Carroll (1964:231–233, fig. 21)

Clack & Milner (2010:288, figs. 2c, 6a, c, 7a–b)
Prionosuchus plummeri Cox & Hutchinson (1991:568)
Sclerocephalus haeuseri Boy (1988:116, abb. 4C)

Schoch & Witzmann (2009:148, figs. 6B, E)
Witzmann &Werneburg (2017:1247, fig. 4A)

Sclerothorax hypselonotus Schoch et al. (2007:122, fig. 3C)
Siderops kuehli Warren & Hutchinson (1983:18)
Stegops divaricata Steen (1930:862, pl. II, fig. 2)

Romer (1930:115, fig. 18)

(continued on next page)
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Table 1 (continued)

Taxon Reference

Tambachia trogallas Sumida, Berman & Martens (1998:617, figs. 6–7)
Trematolestes hagdorni Schoch (2006:34, figs. 2C, 4B)
Uranocentrodon senekalensis Van Hoepen (1915:134)
1Australerpeton cosgriffii Eltink et al. (2016:848)
2Bothriceps australis Warren, Rozefelds & Bull (2011:743, fig. 3)
3Callistomordax kugleri Schoch (2008:91)
4Capetus palustris Sequeira & Milner (1993:670)
5Chenoprosopus lewisii Hook (1993:284, fig. 2A)
6Glyptolepis groenlandica Jarvik (1972: fig. 30) as referenced in Clack et al. (2012:24)
7Lyrocephaliscus euri Mazin & Janvier (1983:19, fig. 1)
8‘‘Metoposaurus’’ bakeri Case (1932:22, pl. 2, fig. 5)
9Nigerpeton ricqlesi Steyer et al. (2006:23, fig. 2B)
10Saharastega moradiensis Damiani et al. (2006:567, fig. 3B)

devoid of denticles (Warren & Hutchinson, 1983; Schoch, 2006; Sulej, 2007). No denticulate
palatal ossifications are reported in early lissamphibians such as the albanerpetontids,
Triadobatrachus (Rage & Rocek, 1989), or Karaurus (Ivakhnenko, 1978). If the primary
function was an extension of the denticulate palatal bones for a gripping surface, then the
reduction of denticles could have led to a reduction of the plates, particularly if they share
a developmental trajectory. Alternatively, retention of the plates could have balanced the
gradual reduction and eventual loss of the denticles on the palatal bones; this may be the
condition of the three aforementioned Mesozoic taxa given the evidence for the absence
of denticulate palatal bones in these derived forms. If the plates partially functioned as a
semi-rigid bracing mechanism within the vacuity for stress distribution, they may have
been retained in some capacity for biomechanical purposes.

Importance of nomenclature
One of the other considerations that resulted from this study is the importance of
maintaining consistency in definitions and nomenclature in the literature. As noted in
the introduction, the definition of a ‘denticle’ varies widely by taxonomic group, and in
the case of Drosophila, does not even refer to comparable feeding structures. This is not
terribly problematic as the various groups for which a definition of ‘denticle’ exists are so
distantly related as to be unlikely to occur within the same study except in the context of
a discussion of nomenclature, as in this paper. At present, we do not suggest eliminating
the term as it pertains to early tetrapods in light of the longstanding use of the term,
as well as the continued merit of the quantitative definition of Lombard & Bolt (2003).
However, if additional studies of denticles in other early tetrapods support our findings
that the structures are teeth that are simply reduced in size (which is reasonable to expect at
present), the definition should be amended to reflect that they are structurally equivalent
to true teeth rather than tooth-like protrusions of a more ambiguous nature.

A more serious consideration that should be noted is that a wide variety of names exist
to define the denticulate plates themselves; for example, they have been referred to as
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‘‘denticulate(d) ‘‘skin’’ (Carroll, 1964:233; Berman & Berman, 1975:72), ‘‘dermal plates’’
(Fröbisch & Reisz, 2008:1020), ‘‘dermal platelets’’ (Clack & Milner, 2010(for 2009):288),
‘‘dermal scales’’ (Godfrey, Fiorillo & Carroll, 1987:800), ‘‘palatal platelets’’ (Clack et al.,
2012:21), ‘‘palatal plates’’ (Witzmann, 2006b:10), and ‘‘palatal ossicles’’ (Schoch, 2006:34;
Witzmann &Werneburg, 2017:1247). These nomenclatural inconsistencies likely account
for the previous lack of recognition of such widespread taxonomic occurrence of
palatal plates as we have summarized here. Often, different authors use some of these
interchangeable terms to refer to different structures. For example, the term ‘dermal plates,’
which was used by Fröbisch & Reisz (2008:1020) to describe the palatal plates of Pasawioops,
was alternatively used to refer to palpebral ossifications of Platyrhinops by Clack & Milner
(2010 (for 2009):289). Aside from the more common use of the term ‘platelet’ to refer to
coagulating blood compounds, it is also not clear as to what, if any, technical distinction
exists between ‘plate’ and ‘platelet,’ and because the former appears to be more common
in the literature, it should be emphasized. The term ‘ossicle’ is generically defined as a very
small bony element, but it is most often used to more specifically refer to bones of the inner
ear of various vertebrates, such as mammals (e.g., Rosowski, 1992) and amphibians (e.g.,
Sigurdsen, 2008; Maddin & Anderson, 2012). It has also been used to refer to denticulate
branchial plates (e.g., Milner, 1982:640; Schoch, 2008:91), dermal ossifications (e.g., Case,
1898:519; Schoch et al., 2007: fig. 6H), ornamented plates on the mandible (e.g., Englehorn,
Small & Huttenlocker, 2008:299), and scleral ossifications of both anamniotes (e.g., Olori,
2013:402; Schoch & Sues, 2013:441) and amniotes (e.g., Sidor, 2001:1432). Additionally,
the term is used with regard to calcareous components of echinoderm exoskeletons (e.g.,
Maliva, 1989; Dickson, 2004). Although the term ‘plate’ is fairly generic in use, as with the
term ‘ossicle,’ we prefer the use of the former because it implies a more definedmorphology
than the latter, which is a size-based characterization. Furthermore, the problem with any
nomenclature that incorporates the term ‘dermal’ is that it implies a similar formation
and development to other bony plates that are embedded in the skin, such as scutes and
osteoderms, which are found in the connective tissue of the dermis in a wide variety of
extant and extinct amniotes, as well as in the dissorophid temnospondyls. It is unclear
whether the membranous covering of the interpterygoid vacuities to which these plates
were presumably attached was some form of oral mucosa (termed a ‘buccal mucosa’ by
Witzmann &Werneburg (2017)) with a structurally homologous outer epithelial layer and
sub-epithelial connective tissue. If the membrane was a mucosa, then the term ‘dermal’
would be more appropriate, but this requires further work to better characterize the
soft tissue structures of the membrane. Histologically, the plates are clearly distinct from
temnospondyl osteoderms (Witzmann & Soler-Gijón, 2010). Additionally, there is no
modern analogue in any extant anamniote tetrapod that could shed light on the formation
and development of bony plates in the mouth cavity. Therefore, it is not recommended to
utilize the term ‘dermal’, as it could incorrectly imply a parallel or a homology to more
definitive dermal plates when there are no presently known shared affinities between
the two beyond the implantation in a soft tissue. The term ‘tooth plates,’ although not
inaccurate in light of the findings presented here, is already used to refer to the dental
structures found in lungfish (e.g., Kemp, 1977), chimaeras (e.g., Ishiyama, Sasagawa &
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Akai, 1984), and ptyctodontid placoderms (e.g., Ørvig, 1985). Accordingly, we believe that
it is most appropriate and informative to refer to them as ‘palatal plates,’ which indicates
their position in the palatal region and their general flat profile. The complementary use of
the descriptor terms ‘denticulate’ or ‘dentigerous’ is acceptable but also nonessential since
the palatal plates are always known to bear at least some denticles.

CONCLUSION
Here we have provided histological evidence that denticles in a temnospondyl amphibian
(in this case, those of palatal plates) are structurally congruent with teeth based on the
presence of enamel, dentine, pulp cavity with vascular canals, and associated periodontia.
This supports the previous work of Bystrow (1938) regarding the denticles of palatal bones
of Benthosuchus and provides a phylogenetic (dissorophoid vs. trematosauroid), temporal
(Early Permian vs. Early Triassic), ecological (terrestrial vs. aquatic), and positional (palatal
plates vs. palatal bones) bracketing on temnospondyl denticles that have been histologically
sampled. Given the similarity in external morphology of denticles on the palatal plates and
those on the palatal bones across anamniote tetrapods, it seems reasonable to conclude
that this characterization is applicable to at least the denticles of other temnospondyls,
but additional work across a broad taxonomic range would be necessary to confirm this.
We have also provided the first histological description of denticulate palatal plates in a
temnospondyl, which can be characterized by the dominance of primary bone matrix,
the absence of a cancellous interior region, the absence of secondary remodelling (via
the absence of secondary osteons and erosion cavities), the presence of growth marks, a
high abundance of Sharpey’s fibers, and a low abundance of vascular channels. Although
previous workers have suggested that these plates were implanted in soft tissue coverings
of the interpterygoid vacuities, this was formulated mainly on the basis of their position in
well-preserved specimens. The presence of abundant Sharpey’s fibers in the palatal plates
provides a strong line of evidence to support their positioning within a connective tissue
lamina. However, a great deal of uncertainty still pertains to the denticulate plates. Although
we have shown that they occupied the interpterygoid vacuities and likely facilitated the
capture and movement of prey items, their developmental trajectory and evolutionary
origin remain unresolved. The most significant question that requires additional work
in the future is the mechanism of tooth replacement on the plates. Despite the large
number of plates that were sectioned, we captured only tentative evidence for replacement
by origination within the soft tissue and subsequent ankyloses to the plate through the
identification of incompletely ankylosed teeth (Fig. 4), and only in one plate (Fig. 2B)
did we capture evidence of a dentine fragment located adjacent to a complete tooth that
may represent an older, eroded tooth. Additional considerations, such as different rates
of replacement throughout ontogeny or during different seasons, cannot be excluded
since it is likely that all of the palatal plates of ROM 76838 belong to the same individual.
Future work should be directed toward analyzing palatal plates of other taxa to test for
any associated phylogenetic differences in plate morphology (e.g., relative thickness of
plates, relative abundance of Sharpey’s fibers), as well as to better inform the ontogeny and
development (including mode of replacement) in these poorly known structures.
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Institutional abbreviations

OMNH Sam Noble Oklahoma Museum of Natural History, Norman, OK, USA
ROM Royal Ontario Museum, Toronto, ON, Canada

Anatomical abbreviations

ab alveolar bone
de dentine
en enamel
lb lamellar bone
ode old dentine
pc pulp cavity
pld plicidentine
spf Sharpey’s fibers
vb lines of von Ebner
vc vascular canal
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