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Abstract: The article presents the results of research that was carried out in order to analyze the
capillary suction of cement mortar. Capillary suction is a common process that occurs when porous
material is in free contact with moisture. The result of high capillary suction may be excessive
moisture in buildings, and it is therefore important to limit the causes of such moisture. The main
aim of the presented research is to show the influence of sodium silicate (in various proportions), as
well as the quantity of aggregate, on capillary suction. Three different types of cement mortar and
one type of fine aggregates were analyzed in the research. At the beginning, the capillary suction
of the aggregates was analyzed. Afterwards, nine cement mortar bars were made, which were then
used to examine the capillary suction. As a result of this study, it was proved that M15 cement mortar
with basalt fine aggregate and a higher proportion of sodium silicate was the mortar with the lowest
capillary suction. It was found that M15 cement mortar with basalt fine aggregate and a higher
proportion of sodium silicate had 39 mm of capillary suction after 120 h of being immersed in water.
M5 cement mortar without sodium silicate had the highest index of capillary suction, which shows
that adding sodium silicate to cement mortar can significantly reduce capillary suction.

Keywords: fine aggregate; cement; mortar; capillary suction

1. Introduction

The degradation of buildings caused by excessive moisture is a common problem in
the construction industry [1]. Capillary suction is a common process that occurs when
porous material is in free contact with moisture. The problem of excessive moisture in
walls mostly occurs in old buildings. This is a worldwide problem that is of particular
importance in relation to sites that have a high historical value, are legally protected, and
have cultural heritage. The most important effect of capillary suction in buildings is the
appearance of moisture in the lower part of the buildings’ walls. Moisture in the structure
of the wall, as a result of capillary suction, penetrates into the dry parts of the wall, and
causes damage as a result [2,3]. Capillary suction can even cause building failure [4–6].

Figure 1a,d presents the possible consequences of moisture in buildings.
Every type of cement has a different mineral structure, which should be taken into

account at the stage of formulating design assumptions with regard to the place in which
the concrete mixture will be used. This is due to the fact that each type of cement has various
characteristic features, such as a different resistance to aggressive environments, a different
heat of hydration, and the possibility of being used in a composite with various admixtures
or additives. The choice of the type of cement also depends on the microstructural image of
the hardened mortars. The most commonly used types of cement mortars are M5, M10 and
M15 mortars.

In the presented study, CEM I Portland cement was used to make the masonry mor-
tar [7]. CEM I Portland cement was obtained by grinding Portland clinker with the addition
of about 5% of calcium sulphate dihydrate or anhydrite, and is a bond commonly used in
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construction (approx. 40%) [8]. CEM I Portland cement 42.5 R, which was used to conduct
the research, is characterized by a rapid increase in durability, a high heat of hydration
and a short setting time. It is used in the production of concretes of classes B20-B50, the
execution of monolithic structures, and the production of prefabricated elements [8–10].

Figure 1. Examples of moisture on buildings: (a) granary building—basement [2]; (b) granary
building—1st floor [2]; (c) a building after disaster [2]; (d) damage of bricks and mortar caused by
excessive moisture [1].

There are methods of lowering the capillary suction index that are known from the
literature. Various types of additives and admixtures added to the cement mortar are used,
e.g., polypropylene fibers. However, there has been no research on the reduction in the
capillary suction index of cement mortar with the use of sodium silicate. The main benefit
of using sodium silicate is that it enables a significant reduction in the capillary suction
index of the mortar. Sodium silicate is added to the cement mortar in very small amounts,
due to which the costs associated with its use are low. It is a non-toxic, non-hazardous
and environmentally friendly product. In addition, sodium silicate does not react with
other compounds, which means it is relatively stable. Table 1 presents selected articles
concerning capillary suction.

Table 1. Current knowledge on capillary suction in cement mortars (based on [11–27]).

No. Author Main Findings

1 Knarud et al. [11]
When tested with their face down, it was found that pillar specimens (consisting of

three bricks with mortar joints) had higher water absorption coefficients than individual
bricks for all test series.

2 Guimarãesa et al. [12]

The results of the experimental campaign of absorption in samples of clay brick with
and without joints, and also clay brick with joints with different contact configurations

showed that when moisture reaches the interface there is a slowing of the wetting
process due to the hygric resistance of the interface.

3 Castro Mendes et al. [13]
Macropores are advantageous in the case of lightweight mortars with smaller thermal
conductivity, water absorption and capillarity. The decrease in the inlet of water leads to

a smaller chance of moisture problems.

4 Lanzón et al. [14]
Powdered silicone and sodium oleate showed the best resistance to water penetration,
while metallic soaps in the form of calcium stearate and zinc stearate showed the lowest

efficiency at low dosages.

5 Veiga et al. [15]

The old lime mortars studied in the research had capillarity coefficients that are similar
to new lime mortars (between 90 and 10 min). However, they had much slower

absorptions during the first few minutes. This means that the absorption rate of old
mortars remains almost constant during the first 90 min, while new mortars have a

much higher rate of absorption during the first few minutes, after which they stabilize.
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Table 1. Cont.

No. Author Main Findings

6 Xiao et al. [16]

The results showed that when the freeze–thaw environment is the same, the
replacement rate of the recycled coarse aggregate is faster, the cumulative water

absorption by the RAC is greater, and the initial water absorption (capillary rise) is
faster. When the freeze–thaw environment is different, there are more freeze–thaw
cycles, the accumulated water absorption (capillary rise) by the RAC at the same

replacement rate of recycled coarse aggregate is greater, and the initial water absorption
(capillary rise) is faster.

7 Rirsch et al. [17]

It was found that the characteristics of mortar considerably affect the height of rising
damp. Additionally, a strong correlation between rising damp and the Sharp Front
Model was observed. It was also found that the rate of absorption of water into the

mortar is a crucial factor in determining the height of the rising damp.

8 Belleghem et al. [18]

The entrance of capillary water into the mortar (cracked and uncracked) was simulated
using the 3D Richards equation together with the finite element method (FEM). The

developed model was characterized by realistic boundary conditions of the process of
water evaporation. The model was validated using gravimetrical water absorption and

X-ray radiography.

9 Morón et al. [19]
According to the results of the studies, recycled mortars show a higher water absorption
during capillary action due to the larger capillary system formed in this type of mortar

(as a result of the high absorption of recycled aggregates).

10 Santamaría-Vicario et al. [20]

The results of the study indicate that the joint use of both steelmaking slags and
additives enables the production of masonry mortars with low water absorption by

capillarity index, with water vapor permeability being high. Mortars made with EAFS
and LFS slags need additives in order to retain mixing water and to ensure their correct

setting and hardening.

The authors of the articles listed in Table 1 used, among others, powdered silicone
and sodium oleate for their research regarding capillary suction. Sodium silicate was not
used in any of the above-mentioned research to protect against capillary suction. Different
types of admixtures and cement mortars were used in these studies. The research was also
carried out with the use of recycled materials. However, none of the mentioned authors
used sodium silicate. Capillary suction is common in old buildings, and its visible effect
is moisture in the lower parts of a building’s walls. Solutions that can be found in the
literature show how the capillary suction index can be lowered.

However, the solutions presented in the above table are more expensive and com-
plicated than the one proposed by the authors of this article. Therefore, the novelty of
this study involves the designing of a cement mortar with the addition of sodium silicate
in order to reduce the capillary suction index. Moreover, the goal of the research was to
demonstrate the impact of the use of different proportions of sodium silicate and basalt
fine aggregate on capillary suction. The main aim of the presented research is to show
the influence of sodium silicate (in various proportions) and the quantity of aggregate on
capillary suction. What is the impact of sodium silicate on the capillary suction of cement
mortar? Does the type of cement mortar (amount of fine aggregate used) affect the height
of the capillary suction?

Considering the above, the main aim of this research is to analyze the effect of selected
properties of mortar components on the capillary suction of cement masonry mortar. The
aim is also to find out the effect of sodium silicate admixture on the capillary suction of
cement mortar.

2. Materials and Methods
2.1. Basalt Fine Aggregate

In this research, basalt fine aggregate with a density of ρd = 3.07 g/cm3 was used.
Basalt fine aggregate is produced from effusive igneous rock (based on the information
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provided in [28]). Figure 2 shows the particle size and chemical composition of the basalt
fine aggregate. The grain size of the basalt fine aggregate varies between 0.25 and 2.5 mm.
The dominant element in the composition of basalt fine aggregate is SiO2 (42.24%).

Figure 2. Properties of the basalt fine aggregate: (a) particle size distribution; (b) chemical composi-
tion.

2.2. Cement

In this research, Portland cement CEM I 42.5 R was used. The chemical and physical
properties of the cement are shown in Table 2.

Table 2. The chemical and physical properties of the Portland cement CEM I 42.5 R (based on the
information provided in [29]).

Name of Property Unit Average Value Requirement

Setting time (min) 251 ≥60

Consistency (%) 27.4 No requirements

Specific surface area (cm2/g) 3655 No requirements

Content of SO3 (%) 2.76 ≤4.0%

Content of Cl− (%) 0.045 ≤0.10%

Content of Na2Oeq (%) 0.50 No requirements

Figure 3a,b shows the particle size distribution and chemical composition of the
Cement CEM I 42.5 R. The grain size of cement varies between 0.02 and 0.14 mm. The
dominant element in the composition of cement is CaO (64%).

2.3. Sodium Silicate

In this research, Dragon R-145 sodium silicate (Na2O + SiO2) was used. According to
the product’s label, it is also called silicic acid, silicic salt, or sodium silicate solution. As
stated by the producer, it is an isolator against water absorption. Sodium silicate protects
cement mortar against moisture. Table 3 shows the chemical and physical properties of the
sodium silicate.
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Figure 3. Properties of the Cement CEM I 42.5 R: (a) particle size distribution; (b) chemical composi-
tion (based on the data provided in [30]).

Table 3. The chemical and physical properties of the sodium silicate (own study based on the data
provided in [31]).

Appearance: White, colorless or semi-translucent liquid

Odor: Odorless

pH: 11–13 in a temperature of 20 ◦C

Melting point/pour point [◦C]:
For a pure substance:
Softening point 550–670 ◦C
Pour point 730–870 ◦C

Flash point: Non-flammable substance

Upper/lower flammability/explosive limits: Research is not necessary—non-flammable
substance

Explosive properties: Research is not necessary—inorganic substance

Breakdown temperature: No data—the substance does not decompose at
temperatures below 1400 ◦C

Solubility: Sodium silicate water solution—sodium
silicate is mixed with water in any ratio.

2.4. Determination of the Capillary Suction of the Fine Aggregate

For the capillary suction test, a 1.5 m long pipe made of plexiglass with an internal
diameter of 143 mm was used. The lower end of the pipe was finished with geotextile.
The pipe was filled with fine aggregate up to the height of 1 m. Then, having previously
prepared a large vessel filled with water up to 1 cm, the pipe with the fine aggregate was
installed in the vessel.

For the capillary suction test, basalt fine aggregate was used, which had a density
volume (ρd) of 3.07 g/cm3.

Figure 4 shows a diagram of the experimental test stand for testing the capillary
suction of the fine aggregate.
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Figure 4. Diagram of the experimental test of the fine aggregate (own elaboration based on [32]).

The capillary suction test was carried out on basalt fine aggregate, from which 3 differ-
ent samples were taken in order to conduct the capillary suction test.

2.5. Preparation of Cement Mortar Bars

According to PN-EN 480-1, 40 mm × 40 mm × 160 mm bars were prepared.
Table 4 shows the proportions of the M5, M10, and M15 masonry mortars that were

used to make the bars.

Table 4. Mix designs of the masonry mortars.

No. Cement
(kg) Water (kg) Fine Aggregate (kg) Sodium Silicate (kg)

M5 cement mortar

3 0.5 0.48 3.5 0

6 0.5 0.48 3.5 0.002

9 0.5 0.48 3.5 0.005

M10 cement mortar

13 0.5 0.44 2.86 0

16 0.5 0.44 2.86 0.002

19 0.5 0.44 2.86 0.005

M15 cement mortar

23 0.5 0.34 2.14 0

26 0.5 0.34 2.14 0.002

29 0.5 0.34 2.14 0.005

First, a cement masonry mix was made, which was then transferred to appropriate
forms (bar dimensions 40 mm × 40 mm× 160 mm). Then, 24 h later, the bars were
disassembled and moved in order to mature for 28 days. After 28 days of maturation, a
capillary suction test was conducted.

2.6. Determination of the Capillary Suction of the Cement Masonry Mortar

The bars (40 mm × 40 mm × 160 mm) made from the cement masonry mortar were
transferred to a bath with water and immersed up to the height of 1 cm. After 5 min, 15 min,
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30 min, 1 h, 2 h, 3 h, 5 h, 10 h, 24 h, 48 h, 72 h, 96 h and 120 h, respectively, the height of the
capillary suction was measured.

Figure 5a shows the scheme of the stand for the capillary suction test of the cement
masonry mortar bars (the side view). Figure 5b shows the scheme of the stand for the
capillary suction test of the cement masonry mortar.

Figure 5. A cement masonry mortar bar: (a) side view; (b) scheme of the stand for the capillary
suction test of the cement masonry mortar.

3. Results

In order to design a cement mortar with a low capillary suction, the capillary suction
of the fine aggregate should first be analyzed. This is due to the fact that fine aggregate is a
component of cement mortar.

3.1. The Capillary Suction of the Basalt Fine Aggregate

Table 5 shows the results of the research on the increase in capillary suction, which
was conducted on basalt fine aggregate (three samples of basalt fine aggregate were taken).
The capillary suction was measured in a specific time and given in millimeters. The last
column shows the average capillary suction from the three samples. At the early stage
of the research, each sample showed a rapid growth of capillary suction, but this growth
slowed down after time.

The line graph of the capillary suction shown below (Figure 6) presents the level of
increase in water with regard to a specific time. In the first minutes, the values of the
capillary suction index increase rapidly, with time the index of capillary suction increases
slowly.

Figure 6. Capillary suction of the basalt fine aggregate in relation to time.
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Table 5. The results of the capillary suction of the basalt fine aggregate.

Basalt Fine Aggregate

h (mm)

Time Sample 1 Sample 2 Sample 3 Average

5 min. 54 56 56 55.33

15 min. 109 113 112 111.33

30 min. 111 116 116 114.33

1 h 125 128 127 126.67

2 h 138 141 142 140.33

3 h 149 156 159 154.67

5 h 210 214 213 212.33

10 h 236 240 239 238.33

24 h 245 249 247 247.00

48 h 254 258 255 255.67

72 h 266 270 271 269.00

96 h 282 286 286 284.67

120 h 308 315 314 312.33

3.2. The Capillary Suction of the Cement Masonry Mortars

Figure 7 shows the capillary suction of the M5 cement mortar in the form of a bar graph.
Three pieces of M5 cement masonry mortar bars were tested (for the precise specification
of the bars, see Table 5). In this research, each of the three bars was measured 13 times. The
cement mortar bar with the basalt fine aggregate became soaked after 10 h.

Figure 7. The results of the capillary suction of the M5 cement mortar bar with basalt fine aggregate:
without sodium silicate, with a lower proportion of sodium silicate, and with a higher proportion of
sodium silicate.
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Figure 8 shows the capillary suction of the M5 cement mortar in the form of a bar
graph. Basalt fine aggregate and sodium silicate in various proportions were used (for the
precise specification of the bars-see Table 5). Each type of bar obtained very similar results,
irrespective of the amount of sodium silicate. A graph of the capillary suction in the first
hour of the research is also shown. The results of the bars are very similar to each other.
In the M5 cement mortar bar, the impact of the sodium silicate on capillary suction is not
visible. The reason for these results is the amount of fine aggregate used in the cement
mortar bars.

Figure 8. Capillary suction of the M5 cement mortar bar with the basalt fine aggregate: without
sodium silicate, with a lower proportion of sodium silicate, and with a higher proportion of sodium
silicate.

Figure 9 shows the results of the capillary suction study, in which three pieces of
M10 cement masonry mortar bars were used (for the precise specification of the bars, see
Table 5). In this research, each of the three bars was measured 13 times. The numbers below
the graph represent the respective bars that were described Table 5.

By analyzing Figure 9, it can be seen that bar nr 19 (M10 cement mortar with basalt
fine aggregate and a higher proportion of sodium silicate) had the lowest capillary suction
(50 mm) after 120 h of being immersed in the water. On the other hand, bar nr 13 (M10 ce-
ment mortar with basalt fine aggregate without sodium silicate) had the highest capillary
suction (116 mm) after 120 h of being immersed. The reason for the lower capillary suction
of the bar nr 19 is that more sodium silicate can be added to the cement mortar.

Figure 10 shows the capillary suction of the M10 cement mortar in the form of a bar
graph. Basalt fine aggregate and sodium silicate were used in various proportions (for
the precise specification of the bars, see Table 5). The cement mortar bar with the basalt
fine aggregate (without sodium silicate), and the bar with the basalt fine aggregate with a
greater proportion of sodium silicate, had similar results. However, the bar with basalt fine
aggregate and a greater proportion of sodium silicate had a lower capillary suction than the
other bars. The cement mortar bars without sodium silicate and with a lower proportion of
sodium silicate had the highest levels of capillary suction, and their values, as shown in the
graph, definitely differ from the cement mortar bar with a higher proportion of sodium
silicate.
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Figure 9. The results of the capillary suction of the M10 cement mortar bar with basalt fine aggregate:
without sodium silicate, with a lower proportion of sodium silicate, and with a higher proportion of
sodium silicate.

Figure 10. Capillary suction of the M10 cement mortar bar with the basalt fine aggregate: without
sodium silicate, with a lower proportion of sodium silicate, with a higher proportion of sodium
silicate.
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Figure 11 shows the results of the capillary suction study in which three M15 cement
masonry mortar bars were used (for the precise specification of the bars, see Table 5). In
this research, each of the three bars was measured 13 times.

Figure 11. The results of the capillary suction of the M15 cement mortar bar with basalt fine aggregate:
without sodium silicate, with a lower proportion of sodium silicate, with a higher proportion of
sodium silicate.

The capillary suction of the M15 cement masonry mortar is shown in the bar chart in
Figure 11. Table 4 describes the characteristics of a given bar class (the mixture of concrete
components affects the capillary rise results), while Table 5 describes the test results that
show the time in which a given bar of concrete mortar reached a specific level of capillary
rise.

When analyzing Figure 11, bar nr 29 (M15 cement mortar with basalt fine aggregate
and a higher proportion of sodium silicate) had the lowest capillary suction (39 mm) after
120 h of being immersed in the water. On the other hand, bar nr 23 (M15 cement mortar with
basalt fine aggregate without sodium silicate) had the highest capillary suction (97 mm)
after 120 h of being immersed. The reason for the lower capillary suction of the bar nr 19 is
that more sodium silicate can be added to the cement mortar.

Figure 12 shows the capillary suction of the M15 cement mortar in the form of a bar
graph. The basalt fine aggregate and sodium silicate were used in various proportions (for
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the precise specification of the bars, see Table 5). The cement mortar bar with the basalt
fine aggregate (without sodium silicate) had the highest capillary suction when compared
to the other bars. However, the bar with basalt fine aggregate and a greater proportion
of sodium silicate had a lower capillary suction than the other bars. The cement mortar
bar without the sodium silicate had the highest level of capillary suction, and its values
definitely differ from the cement mortar bar with the sodium silicate. Tests of the capillary
suction showed that the M15 mortar, when compared to the M5 and M10 mortars, had the
lowest rate of capillary suction. The reason for this was the proportions of the components
that were used in the mortar when compared to the M5 and M10 mortars.

Figure 12. Capillary suction of the M15 cement mortar bar with basalt fine aggregate: without sodium
silicate, with a lower proportion of sodium silicate, and with a higher proportion of sodium silicate.

Figure 13 shows the results of the capillary suction of only the basalt fine aggregate,
as well as the results of the capillary suction of the M5, M10 and M15 cement masonry
mortars without sodium silicate with the basalt fine aggregate.

The fine aggregate had the highest level of capillary suction, and its values definitely
differ from the cement mortar bars. This situation can be caused by the components of the
cement mortars. In order to prepare the cement mortar bars, apart from fine aggregate,
cement mortar was used. Therefore, in the bars made of cement mortar, the cement and
water were used. For this reason, the capillary suction level is less in the aggregates. The
finer the aggregates in the cement mortar, the higher the capillary suction index.

Figure 14 shows the effect of the sodium silicate on the capillary suction index of
the M5, M10, M15 cement mortar bars after 120 h of being immersed. The graph shows
that the type of used cement mortar has an effect on the capillary suction index. After
120 h of testing, the M5 mortar achieved the highest index of capillary suction (without
sodium silicate, with a lower proportion of sodium silicate, and with a higher proportion
of sodium silicate). In the M5 cement mortar bar, the impact of the sodium silicate on
capillary suction is not visible. The impact of the sodium silicate can be seen in the M10 and
M15 mortars. M15 cement mortar bar with basalt fine aggregate and a higher proportion
of sodium silicate had the lowest capillary suction (39 mm) after 120 h of being immersed
in the water. Adding sodium silicate to the cement mortar bar had a positive effect on the
capillary suction index.
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Figure 13. Comparison of the results of the capillary suction of the M5, M10, M15 cement mortar bars
without sodium silicate with basalt fine aggregate.

Figure 14. The effect of the sodium silicate on the capillary suction index of the M5, M10, M15 cement
mortar bars after 120 h of being immersed.

4. Conclusions

The main aim of the presented research is to show the influence of sodium silicate (in
various proportions), as well as the quantity of aggregate, on capillary suction. For the
purpose of this article, three different types of cement mortars (M5, M10 and M15 cement
mortars) and one type of fine-grained aggregate (basalt fine aggregate) were analyzed.
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• As a result of the research, it was found that the M15 cement mortar with the fine
basalt aggregate and more sodium silicate had the lowest rate of capillary suction.
The reason for this was the sodium silicate added to the cement mortar. The amount
of aggregate added to the cement mortar is also important. When compared to the
M5 and M10 mortars, the M15 mortar contains the smallest amount of fine aggregate.

• Tests of the capillary suction showed that the M5 mortar, in comparison to the M10 and
M15 mortars, had the highest rate of capillary suction. The reason for this was the
proportions of the components that were used in the mortar when compared to the
M10 and M15 mortars.

• In the case of the M10 mortar, the best result was obtained by the bar made of the
cement mortar with basalt fine aggregate and more sodium silicate, while in the case
of the M15 mortar, the best result was obtained by the bar with basalt fine aggregate
and more sodium silicate. The reason for this was the sodium silicate added to the
cement mortar.

• An important element that enabled a favorable result to be obtained was sodium
silicate. This, as shown by the research, made it possible to reduce water absorption.

To sum up, the most advantageous mortar for making cement composites with a low
capillary suction is the M15 mortar. This is due to the fact that it has the smallest amount
of fine aggregate (which affects water rising) when compared to the M5 and M10 mortars.
An important element in the design of this mortar is also the admixture of sodium silicate,
which, as the research shows, has a significant impact on the rise of water. Ultimately, in
the presented studies, one bar obtained the best result: the M15 cement mortar bar with the
basalt fine aggregate and more sodium silicate.

However, more research should be conducted with regard to other fine aggregates, e.g.,
granite fine aggregates [30]. Tests concerning the method of propagation of the injection
mass with regard to the used cement mortar and brick (the brick’s microstructure) should
also be considered.
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