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Abstract: Schizophrenia is often regarded as a “dysconnectivity” disorder and recent work using graph
theory has been used to better characterize dysconnectivity of the structural connectome in schizophrenia.
However, there are still little data on the topology of connectomes in less severe forms of the condition.
Such analysis will identify topological markers of less severe disease states and provide potential predic-
tors of further disease development. Individuals with psychotic experiences (PEs) were identified from a
population-based cohort without relying on participants presenting to clinical services. Such individuals
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have an increased risk of developing clinically significant psychosis. 123 individuals with PEs and 125
controls were scanned with diffusion-weighted MRI. Whole-brain structural connectomes were derived
and a range of global and local GT-metrics were computed. Global efficiency and density were signifi-
cantly reduced in individuals with PEs. Local efficiency was reduced in a number of regions, including
critical network hubs. Further analysis of functional subnetworks showed differential impairment of the
default mode network. An additional analysis of pair-wise connections showed no evidence of differences
in individuals with PEs. These results are consistent with previous findings in schizophrenia. Reduced
efficiency in critical core hubs suggests the brains of individuals with PEs may be particularly predisposed
to dysfunction. The absence of any detectable effects in pair-wise connections illustrates that, at less severe
stages of psychosis, white-matter alterations are subtle and only manifest when examining network topol-
ogy. This study indicates that topology could be a sensitive biomarker for early stages of psychotic illness.
Hum Brain Mapp 36:2629–2643, 2015. VC 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Key words: psychosis; schizophrenia; connectomics; tractography; graph theory; structural connectiv-
ity; diffusion MRI; psychotic experiences; network efficiency; ALSPAC; birth cohort; psychosis risk;
neuropsychiatry; epidemiology
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INTRODUCTION

Schizophrenia has long been conceptualized as a
“dysconnectivity syndrome” [Friston, 1998] in that the
interconnections between modular systems in the brain are
awry [David, 1994]. Several neuroimaging studies using
magnetic resonance imaging (MRI) have uncovered dyscon-
nectivity in several neural pathways using both structural
and functional neuroimaging [Pettersson-Yeo et al., 2011;
Shenton et al., 2001; Wheeler and Voineskos, 2014] and have
suggested that they may arise early in the course of, or even
predate the disorder [Carletti et al., 2012]. The heterogeneity
of structures that are implicated in schizophrenia suggests
that the associated abnormalities manifest globally, rather
than being focal to one particular region or pathway.

Richer insights into dysconnectivity in schizophrenia
have recently been achieved using graph theory (GT), a
powerful mathematical framework that quantifies topolog-
ical features of networks [Bullmore and Sporns, 2009;
Guye et al., 2010; Rubinov and Sporns, 2010; Stam and
Reijneveld, 2007]. GT can be used to measure aspects of
network integration, segregation, centrality, and other
architectural features and has been applied in numerous
studies examining structural and functional networks in
clinical groups [Griffa et al., 2013; Petrella, 2011]. The
approach provides more insights into structural changes
that can take place in less severe forms of the disease,
which may be too subtle to be detected at the local level.

Previous studies have reported several structural con-
nectome changes in schizophrenia patients by applying
GT to tractography data from which clear patterns have
emerged [Griffa et al., in press; Van den Heuvel et al.,
2010, 2013; Wang et al., 2012; Zalesky et al., 2011; Zhang
et al., 2015] (summarized in Table I—See also [Fornito and
Bullmore, 2014; Rubinov and Bullmore, 2013]). Although
there is variability in the findings, there are also some
clear trends. In particular, there are reductions in measures
of network integration, (specifically, reductions in density,

strength, efficiency, and increases in path length—see
methods for descriptions of these measures). These find-
ings suggest that the structural layout of the brains of
schizophrenia patients predispose them to the functional
disturbances associated with schizophrenia. Other meas-
urements such as mean clustering coefficient and small-
worldness were generally found to be conserved.

The literature also reveals some trends in network topol-
ogy at the local level. [Van den Heuvel et al., 2010] showed
that path length was higher in frontal and cingulate corti-
ces, where Wang et al., [2012] and Zhang et al., [2015] also
found reduced efficiency. A recent study [Van den Heuvel
et al., 2013] shows that there is specific dysfunction in the
“rich club” network in individuals with schizophrenia—a
set of nodes that have a high tendency to be densely con-
nected with each other [Van den Heuvel and Sporns, 2011].
This subnetwork comprises the superior parietal cortex,
cuneus, frontal cortices, hippocampus, thalamus, and puta-
men. This also overlaps with the well-defined default
mode network (DMN) [Raichle et al., 2001] and the struc-
tural core identified by Hagmann et al., [2008].

The findings summarized in Table I were mostly derived
from studies of patients with established illness who had
been treated for many years with antipsychotic medication.
It is, therefore, unclear whether the findings represent a core
process in the development of the condition or are a down-
stream consequence of confounding factors. Zhang et al.,
[2015] identified network deficits in drug-na€ıve first-episode
schizophrenia patients, making an important distinction
between early and more chronic stages of the disease.
Another study looked at network topology in individuals
with 22q11 deletion syndrome [Ottet et al., 2013], which
confers significantly increased risk of psychotic symptoms
and found similar reduction in network integration, while
other graph indices were preserved. Finally, Collin et al.,
[2014] have recently reported reduced rich club connectivity
in first degree relatives (siblings) of patients with schizo-
phrenia, mirroring the findings of Van den Heuvel et al.,
[2013].
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Although these findings demonstrate reduced network
integration in the connections in different manifestations
of the disease, no study has yet performed the same analy-
sis on an epidemiologically derived sample of individuals
with psychotic experiences (PEs), who have not received a
clinical diagnosis or sought any clinical intervention. Iden-
tifying topological changes in such a group would be a
powerful means of identifying (a) neurological correlates
of psychosis unconfounded by treatment. (b) biomarkers
of disease risk and progression. Several studies have
shown that PEs confer increased risk of developing clini-
cally significant psychosis and are highly correlated with
other risk factors. [Kelleher and Cannon, 2011; Poulton
et al., 2000; Welham et al., 2009].

In this study, we investigated the network topology of
structural connectomes in individuals with PEs from a
large UK geographical birth cohort assessed systematically
and prospectively rather than in help-seeking individuals
with psychotic disorders. Our aim was to test the hypothe-
sis that such individuals had similar topological deficits to
those described in the research literature, investigating
patients presenting with psychotic disorder. We computed
GT measurements of both global and local topology and
also investigated a subset of functional networks to identi-
fying particular functional modes that may be vulnerable
to dysfunction.

MATERIALS AND METHODS

Subjects

We employed a population-based sampling approach.
Such an approach minimizes biases that can occur in
recruiting subjects from clinical environments. Source of
such bias include the reliance on self-reporting, referral,
and selection biases.

Subjects were recruited from the Avon Longitudinal
Study of Parents and Children (ALSPAC) [Golding et al.,

2001] cohort. The original sample consisted of pregnant
women whose expected dates of birth were between April
1991 and December 1992. Thirteen thousand nine hundred
and seventy one of the children survived until their first
birthday, and detailed information has been collected peri-
odically for health research. Four thousand three hundred
and twenty subjects from the cohort were assessed for PEs
using the Psychotic-like symptoms semi-structured inter-
view [Horwood et al., 2008; Zammit et al., 2008], conducted
at 17/18 years of age by trained psychologists. The definite
or suspected presence of PEs was judged according to clini-
cal criteria of the Schedule for Clinical Assessment in Neu-
ropsychiatry [Wing et al., 1990] and excluded any such
experiences occurring due to waking, falling asleep, fever,
or drug consumption. Four hundred and thirty three sub-
jects (about 10% of those tested) were found to have one or
definite or suspected PE, all of whom were invited to
undergo scanning, of whom 126 (29.1% of those invited)
were scanned. Three thousand eight hundred and eighty
seven subjects showed no signs of PEs, of whom 126
(3.24% of those eligible) were invited to undergo scanning.
The control group were selected at random until the num-
bers in each groups were balanced. At the time of scanning,
all subjects were around 20 years old. Further demo-
graphics for the sample are provided in Table 2.

Informed consent was obtained prior to scanning. Ethi-
cal approval was granted by the Cardiff University School
of Psychology Ethics Committee and the ALSPAC Ethics
and Law Committee. Of the subjects initially scanned,
three PE subjects and one control were unable to complete
the full MRI acquisition, reducing the sample sizes of the
two groups to n 5 123 and n 5 125, respectively.

MRI Acquisition

MRI data were acquired on a 3T General Electric HDx
MRI system (GE Medical Systems, Milwaukee, WI) using
an eight-channel receive-only head RF coil. A cardiac-gated
diffusion-weighted spin-echo echo-planar imaging sequence
was used to acquire high angular resolution diffusion
weighted images (HARDI) [Jones et al., 1999]. Sixty gradi-
ent orientations and six unweighted (b 5 0 s/mm2) images
were acquired with the following parameters: TE 5 87 ms,
b 5 1,200 s/mm2, 60 slices, slice thickness 5 2.4 mm,
FoV 5 230 3 230 mm, Acquisition matrix 5 96 3 96, result-
ing in data acquired with a a 2.4 3 2.4 3 2.4 mm isotropic
resolution. Following zero-filling to a 128 3 128, in-plane
matrix for the fast Fourier transform. The final image reso-
lution was, therefore, 1.8 3 1.8 3 2.4 mm.

In addition, T1-weighted structural images were
acquired with a 3D fast spoiled gradient echo sequence
(TR 5 7.8 ms, TE 5 3.0 ms, voxel size 5 1 mm3 isomorphic).

MRI Preprocessing

HARDI data were preprocessed in ExploreDTI v4.8.3
[Leemans et al., 2009]. Data were corrected for motion,

TABLE 2. Demographic data for the sample and statis-

tic tests to identify significant group effects in demo-

graphic variables

With PEs Without PEs Statistics

n 123 125
Age (years) 20.05 6 0.002 20.10 6 0.002 F(1)=0.479,

P 5 0.49
Gender v 2

(1) 5 2.275,
P 5 0.19

Male 37 49
Female 86 76

Handedness v 2
(2) 5 0.234,
P 5 0.89

Right 92 92
Left 9 9
No dominant
hand

22 25
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eddy currents, and field inhomogeneities prior to tractogra-
phy. Motion artefacts and eddy current distortions were cor-
rected with B-matrix rotation using the approach of Leemans
and Jones [2009]. A comparison of subject motion between
the two groups is shown in Supporting Information.

Field inhomogeneities were corrected using the approach
of Wu et al. [2008]. Each diffusion-weighted image (DWI)
was nonlinearly warped to the T1-weigted image using the
fractional anisotropy (FA) map from the DWIs as a refer-
ence. Warps were computed using Elastix [Klein et al.,
2010] using normalized mutual information cost function
and constraining deformations to the phase-encoding direc-
tion. The corrected DWIs are, therefore, in the same (undis-
torted) space as the T1-weighted structural images.

Tractography

Whole-brain tractography was performed using the
damped Richardson–Lucy algorithm [Dell’acqua et al.,
2010], This is a modified spherical deconvolution method
which is more robust to spurious peaks in the fiber orien-
tation distribution (FOD) than standard spherical deconvo-
lution methods [Tournier et al., 2007]. The tractography
algorithm used is that of Basser et al. [2000] which uses a
uniform step size. Seed points were arranged in a 3 3 3 3

3 mm grid in white matter, step size 5 1 mm, angle thresh-
old 5 45�, length threshold 5 20–500 mm, FOD thresh-
old 5 0.05, b 5 1.77, k 5 0.0019, g 5 0.04, number of
iterations 5 200 (See Dell’acqua et al., [2010] for full details
of these parameters).

Additional anatomical constraints were introduced to
ensure minimal contamination from spurious streamline

trajectories through gray matter. A segmentation of the T1
weighted images was performed using FSL-FAST and was
used to apply a clipping mask to the streamlines, such
that streamlines were forced to terminate when they
entered gray matter. There was no explicit masking of cer-
ebro-spinal fluid (CSF), however, the termination criteria
used for the dRL algorithm, which is based on the ampli-
tude of the FOD peak, ensures that no streamlines enter
isotropic regions such as CSF.

Connectivity Matrices

Figure 1 shows a flowchart for the process of obtaining
connectivity matrices. The automated atlas labeling (AAL)
atlas [Tzourio-Mazoyer et al., 2002] was registered to the
HARDI data using a nonlinear transformation [Klein et al.,
2010]. The streamline termination points were coregistered
to each AAL region. The numbers of streamlines connecting
each pair of AAL regions were aggregated into a 116 3 116
connectivity matrix. This matrix was then binarized at a
range of thresholds based on streamline count, in the range
of 0–20 streamlines. This was deemed the upper limit for
which edges are unlikely to be due to false positives.

GT Metrics

A range of commonly used graph theoretical measure-
ments were used to characterize network topology at the
global and local level. All GT metrics were computed
using the Brain Connectivity Toolbox [Rubinov and
Sporns, 2010]. The following network level GT metrics
were computed:

Figure 1.

Flowchart of derivation of weighted graphs from tractography data. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Density

Density is a basic measure of network integration. It is the
total number of edges in the network as a proportion of the
total number of possible connections. Density is bounded by
[0,1]. To node-level equivalent is node degree, which is the
number of edges connected to a node. Node degree is
bounded by [0,n], where n is the number of nodes.

Global efficiency and characteristic path length

Global efficiency and characteristic path length [Latora
and Marchiori, 2001] are measures of network integration.
Global efficiency is formally the inverse of the characteris-
tic path length, which is the mean minimum (geodesic)
distance required to travel from one node to another. It
represents how efficiently information can be transmitted
across the network. Local efficiency and minimum dis-
tance are the equivalent node-level metrics. Local effi-
ciency of a node is the inverse of its minimum distance,
which is the minimum (geodesic) distance required to
travel from one node to another, while traversing the node
of interest. Minimum distance and characteristic path
length are bounded by [1, m] where m is the number of

edges (assuming the network is fully connected). Effi-
ciency measures are bounded by [1/m, 1].

Given that global efficiency is heavily dependent on
density [Ginestet et al., 2011; Van Wijk et al., 2010], we
also computed global efficiency with variable thresholds,
such that density is kept constant across subjects. Densities
of 0.05 to 0.1, in increments of 0.005 were tested, which is
approximately the range of densities observed for this
sample. This additional analysis will enable differentiation
of effects on efficiency due to the quantitative effects of
density and those that are due to more qualitative factors,
such as network reorganization.

Mean clustering coefficient

Mean clustering coefficient [Onnela et al., 2005; Watts
and Strogatz, 1998] is a measure of functional segregation.
It is the tendency of the network to organize into function-
ally distinct clusters, with numerous and strong edges
within clusters and few and weak edges between clusters.
Formally, the clustering coefficient of a node is the ratio of
the sum of the weights across all complete triangles
around the node, to the number of edges connecting the
node. Clustering coefficient is bounded by [0,1].

Figure 2.

a: All results for network-level analysis obtained using standard streameline thresholds.

*Pcorr<0.05. b: Results for global efficiency obtained using density thresholds. (Results across all

thresholds tested are shown in Supporting Information). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Modularity [Newman, 2006] is a more precise measure of
functional segregation but is sensitive to communities of
more complex configurations, with large number of edges
within modules but small numbers of edges between mod-
ules. Modularity values are bounded by [0,1].

Mean betweenness

Mean betweenness [Freeman, 1979] is a measure of cen-
trality. Betweeness of a node is defined as the fraction of
all shortest paths in the network that pass through a given
node. This measures the importance of nodes to overall
network integrity. The mean betweenness [Van den Heu-
vel et al., 2010; Tijms et al., 2013] is a measure of overall
network integrity. Formally, betweenness of a node is the
sum of ratios of shortest paths traversing the node, versus
the number of shortest paths in the whole network.
Betweeness is bounded by [0,1].

Smallworldness

Smallworldness [Humphries and Gurney, 2008; Watts
and Strogatz, 1998] is characterized by a high degree of
clustering but each node can be reached easily by a low
path length. It is typically used as a measure of “wiring-
efficiency” and is a structure found in many naturally
occurring systems. Formally, smallworldness is the ratio of
the normalized clustering coefficient vs. the normalized
path length. The normalized versions of these two meas-
urements are the original measure, normalized to the
equivalent measure from a randomly generated network
with the same density. The clustering coefficient of the
random network was obtained using the analytic solution
given by [Watts and Strogatz, 1998]. The mean path length
of the random network was obtained using the analytic
solution of Fronczak et al., [2004]. The final smallworld-
ness value is bounded by [0,1].

Statistical Analysis

Subjects with PEs and without PEs were compared
using a 1-way ANCOVA model, covarying for gender,
age, and handedness. Handedness data were obtained
from previous measurements obtained from the ALSPAC
data dictionary (details are available at: http://www.bris.
ac.uk/alspac/researchers/data-access/data-dictionary).

Post-hoc t-tests were performed where significant F-statis-
tics were found. To correct for bias and instability in
inferred group differences, and to address the multiple com-
parison problem, multithreshold permutation correction
(MTPC) [Drakesmith et al., in press] was applied to the F-
statistics. This correction method is based on permutation-
based correction methods applied in more traditional neuroi-
maging analysis [Maris and Oostenveld, 2007; Nichols and
Holmes, 2002; Smith and Nichols, 2009]. In this case, correc-
tion is applied by computing a distribution of null test statis-

tics across thresholds. The full MTPC process is detailed
below:

1. Apply thresholds, s, to the networks, from 0 to T and
compute GT metrics for all networks across all
thresholds.

2. Compute test statistic (in this case F) on GT metrics
with the correct group assignments for each threshold.

3. Permute the group assignments across n iterations
and recompute test statistics for each permutation
and each threshold, giving a distribution of null test
statistics at each threshold.

4. Take the maximum test statistic across all thresholds
for each permutation, resulting in one summarized
null statistic for each permutation. To additionally
correct for multiple comparisons of node-level met-
rics across regions, take the maximum across nodes
as well as thresholds.

5. Identify the critical value (denoted here as Fcrit) for
the test-statistic from the top ath percentile of the
null test statistics, where a is the desired confidence
level (e.g., 5%).

6. Identify clusters where the true test statistic is higher
than the critical value for each threshold and com-
pute the AUC for these clusters (denoted AMTPC).
The peak statistic and the corresponding threshold
are denoted FMTPC and sMTPC, respectively.

7. Compute a critical AUC from the mean of the super-
critical AUCs for the permuted tests (denoted Acrit).

8. Reject the null hypothesis if the AUC of the signifi-
cant clusters exceeds the critical AUC (AMTPC>Acrit).

The 95th percentile of this distribution is treated as the
critical value (P< 0.05). Any clusters of super-critical F-statis-
tics exceeding a critical cluster size were treated as evidence
of genuine group differences and lead to rejection of the null
hypothesis. Correction was performed across thresholds of 0
to m 5 20 streamlines and n 5 500 permutations. In the case
of node-level statistics, correction for multiple comparisons
was also performed by additionally taking the maximum of
the null test statistic across regions as well as thresholds.

Network-Based Statistics

Network-based statistics (NBS) [Zalesky et al., 2010] was
used to test for local effects in the edges of the networks.
This method performs a statistical test on connection-by-
connection basis. All 248 connectivity matrices were con-
catenated and tested with the same design employed for
the GT. NBS was run with an initial F threshold of 3.1 and
2,500 permutations.

Analysis of Subnetworks

In addition to examining the topology of the whole-brain
network, the topologies of 23 structural subnetworks were
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also tested. This allowed us to examine how the structural
connectivity underlying specific functional modes differs
between groups, while excluding that of regions that do
not show little or no involvement in the functional mode.

Twenty one subnetworks were obtained by masking the
structural connectivity matrices with maps of temporally
functional modes (TFMs) [Smith et al., 2012], downloaded
from http://www.fmrib.ox.ac.uk/analysis/TFMs/. These
maps identify spatially and temporally independent net-
works, which were derived using independent components
analysis (ICA) from fMRI data. The mask was obtained by
thresholding the TFMs at z> 4 and registering them to the
AAL atlas. Any AAL regions with a proportional overlap
of 50% or more with the thresholded TFM were deemed to
be part of the TFM. This mask of regions was then used to
derive a subnetwork of the full structural connectome. The
AAL regions were not uniquely assigned to TFMs. TFM5
and TFM15 were excluded from the analysis as these net-
works are likely to be components related to physiological
noise rather than true brain function [Smith et al., 2012].

In addition to the 21 TFMs, subnetworks defined by the
DMN and the rich-club network were also tested. The
DMN was derived by the method described in Smith
et al., [2012]: Each TFM was multiplied by the average
activity in the posterior cingulate cortex across all TFMs
and then summed across all TFMs. This was then masked
in the same way as the TFNs. The rich-club network was
derived by selecting the same nodes reported to be part of
the rich-club network by Van den Heuvel and Sporns,
[2011] and masked in the same way as the TFNs.

RESULTS

Network-Level Topology

Of all network level measurements, density and mean
efficiency showed significant differences following correc-
tion for instability and multiple comparisons (figure 2).
Density (F 5 7.843, P 5 0.006, Pcorr 5 0.020 at s 5 10) and
global efficiency (F 5 7.981, P 5 0.005, Pcorr 5 0.025 at s 5 4)
were significantly reduced in the PE group compared to
the control group. No significant effects were observed in
mean betweenness (F 5 3.219, P 5 0.074 Pcorr 5 0.361), mean
clustering coefficient (F 5 5.012, P 5 0.026, Pcorr 5 0.144),
characteristic path length (F 5 1.376, P 5 0.242, Pcorr 5 0.569),
and smallworldness (F 5 1.376, P 5 0.242, Pcorr 5 0.569) (see
Supporting Information for full details of statistics).

When testing for differences in global efficiency across
density thresholds, a smaller, but still significant, effect was
observed (F 5 4.849, P 5 0.012, Pcorr 5 0.021 at s 5 0.08).

Node-Level Topology

Nodes showing significant effects in local network topol-
ogy are illustrated in Figure 3 (Full results of all statistical
tests are provided in Supporting Information). The PE

group showed significant reductions in local efficiency of
the left occipital lobe, cuneus and posterior cingulate gyrus
and the right operculum. Reductions were also found in
the left anterior temporal and inferior frontal regions.
Reductions in node degree were identified in the left pre-
cuneus and occipital cortex. Clustering coefficient showed
selective significant reductions in the right middle cingu-
late cortex. Betweeness was found to be reduced in the
right caudate and cuneus but increased in the left inferior
temporal and right orbitofrontal cortices.

Network-Based Statistics

NBS analysis did not show any significant effects in any
network components.

Topology of Subnetworks

Results for significant differences in subnetwork topology
are shown in Figure 4 (Full statistics for all subnetworks
tested are provided in Supporting Information). The PE
group showed significant reduction of density in the DMN
(F 5 9.226, P 5 0.003, Pcorr 5 0.016) and TFM11 (F 5 9.617,
P 5 0.002, Pcorr 5 0.002). There was also a significant reduc-
tion in mean betweenness in TFM19 (F 5 12.325, P 5 0.001,
Pcorr 5 0.01). Both TFM11 and TFM19 have strong overlap
with the DMN, comprising of particularly strong connec-
tions between cuneus, posterior cingulate and anterior cin-
gulate cortices. All other subnetworks and the rich-club
network failed to show any significant effects.

DISCUSSION

Dysconnectivity is a hypothesized factor in the develop-
ment of schizophrenia and several previous neuroimaging
studies have identified altered connectivity in schizophrenia
patients [Pettersson-Yeo et al., 2011; Wheeler and Voine-
skos, 2014]. It is likely that symptoms of the disorder are
preceded by underlying structural abnormalities [Fusar-Poli
et al., 2013]. This opens the possibility of using structural
connectivity as a predictive biomarker for future develop-
ment of psychosis. In this study, we have identified differ-
ences in the topology of structural brain networks in
individuals who have PEs but have not sought any clinical
intervention. Such an approach eliminates the bias that
occurs when sampling groups from schizophrenia patients
or clinical high-risk groups and enables the investigation of
the core features of psychosis without contamination from
effects of treatment and disease complications. Using GT, it
is possible to elucidate more subtle connectomic alterations
which may be too subtle to be detected using more tradi-
tional techniques (see Supporting Information of an analysis
conducted on this sample using standard Diffusion tensor
imaging (DTI) methods).

Decreased network density and efficiency indicates there
is a diffuse nonspecific reduction of connectivity in the
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Figure 3.

Results for node-level analysis found significant at Pcorr <0.05. Significant reductions (P< C) were

found in efficiency, degree, clustering coefficient and betweenness. Significant increases (P<C)

were found in betweenness. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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brains of individuals with PEs, suggesting that the axonal
pathways connecting brain regions is likely impaired.
These results conform to previous results for schizophre-
nia patients. In particular, Zalesky et al., [2011] also
showed reduced density and mean efficiency in schizo-
phrenia. The structural alterations in these pathways may
have a causal effect on the mediated functional interac-
tions [Honey et al., 2010]. This can have implications for
potential functional changes at the network-level.

Of particular note is that there are still detectable differ-
ences in global efficiency when density is kept constant
across subjects. Changes in density are known to lead to
changes to global efficiency [Ginestet et al., 2011; Van Wijk
et al., 2010]. Our results indicate there is some additional
network restructuring in connectomes of individuals with
PEs which cannot be explained solely by a general reduc-
tion of connectivity.

Regions showing reduced node-level efficiency in the
present study overlap with many regions previously
implicated by Van den Heuvel et al., [2010]. Of particular
importance is the reduction of local efficiency in the poste-
rior cingulate and parietal regions. Several other studies
have identified these regions as key hubs of the “structural
core” of the healthy human connectome [Gong et al., 2009;
Hagmann et al., 2008; Van den Heuvel and Sporns, 2011].
The reduction of efficiency of structural connections to
and from these regions will have a particularly strong
impact on the polysynaptic interactions mediated by these
connections. This is likely to lead to high levels of dysfunc-
tion throughout the rest of the brain. Another interesting
parallel is a study of 22q11 deletion syndrome [Ottet et al.,
2013]. Although this study failed to find any significant
effects in local GT metrics, it did find negative correlations

between severity of auditory hallucinations and local effi-
ciency in the same left inferior frontal regions implicated in
the present study. Alterations of the white-matter of lan-
guage pathways have been implicated in auditory halluci-
nations, particularly those projecting to the inferior frontal
and anterior temporal cortices [Allen and Modinos, 2012;
Catani et al., 2011; Seok et al., 2007; Shergill et al., 2007].
It is possible that alterations in the routing through these
language systems contributes to the auditory hallucinations
experienced by individuals with PEs. In our sample, the
largest contributors to PEs were those associated with audi-
tory hallucinations (see Supporting Information).

Betweenness centrality is higher in the PE group in a
number of regions but lower in others. This is in contrast to
[Van den Heuvel et al., 2010], who showed consistently
reduced betweenness centrality in a number of regions. It is
likely that the networks undergo alterations during the
course of the illness, such as reduction in network integra-
tion in the network hubs. These changes will alter the
routes required for optimal information transfer, causing
some regions to become more or less integral (manifesting
in increases or decreases in betweenness centrality). In our
results, only the caudate shows decreased betweenness cen-
trality in the PE group, which suggests a restructuring of
the network such that there is decreased reliance on sub-
cortical hubs such as the caudate. Similar patterns of
change observed for clustering coefficient also suggests that
the local topology around these regions has also changed.
Again, it is likely that these measurements will vary as dif-
ferent network components become impaired at different
levels of disease severity. The alterations are consistent with
growing consensus that a prominent feature of schizophre-
nia is “hubopathy” [Rubinov and Bullmore, 2013].

Figure 4.

Subnetworks where significant effects were identified *Pcorr<0.05. Significant reductions in mean

efficiency were identified in the DMN and TFM11. Significant reduction in mean betweenness

was identified in TFM19 (see text for descriptions of these networks). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In our analysis of functionally independent subnet-
works, we identified structural connectomes underpinning
particular functional states. This includes networks associ-
ated with language, perceptual and motor processing.
Selecting networks derived from an ICA ensures the sub-
networks tested are optimized for their functional inde-
pendence, without relying on a priori assumptions of the
structure of networks subserving different functions. We
found generally, most functional subnetworks did not
show differences between individuals with PEs and
controls. However, the subnetwork comprising the DMN
showed reduced density. The DMN has been the subject
of much interest in the psychopathology literature, particu-
larly regarding functional connectivity. Lack of suppres-
sion of the DMN is associated with hallucinations and
faulty self-processing [Van der Meer et al., 2010; Whitfield-
Gabrieli and Ford, 2012], hallmarks of psychosis and dys-
function in this system is a prime candidate for core dis-
turbances which are early precursors to psychosis [Brent
et al., 2014]. We compliment this, for the first time, with
structural connectivity data from young people with PEs
showing reduced density which may in turn lead to
reduced functional connectivity. As noted previously
regarding the local efficiency, the DMN comprises several
core hubs of the healthy connectome and, therefore,
altered topology in this subnetwork confers a particular
risk of dysfunction. Having shown that network topology
is impaired in specific subnetworks, further analysis of
subnetworks in patients who develop full psychosis may
implicate a more extensive set of subnetworks. Neverthe-
less, we would speculate that it is this combination of sub-
network dysfunction in core midline structures underlying
self-related processes with more diffuse changes likely to
compromise cognitive efficiency, subtly, [Meier et al., 2014;
Woodberry et al., 2008; Zammit et al., 2004] that then leads
to the cluster of experiences that constitutes psychosis. In
future work we aim to elucidate further the functional
consequences of the topological impairments in this group,
via cognitive testing and functional neuroimaging.

NBS is an approach to statistical analysis analogous to
statistical parametric mapping of volumetric data. In NBS,
the statistical mapping is performed across the edges of
the network. This analysis failed to identify any significant
effects on individual connections, indicating that the
changes that occur in psychosis are distributed throughout
the network and are too subtle to be detected by analysis
of pair-wise connections. Our results contrast with previ-
ous NBS analyses on schizophrenia patients [Zalesky
et al., 2011], which found connections comprising the
inter-hemispheric occipital and parietal connections and
parietofrontal connections were significantly impaired.
Despite this discrepancy, the parietal component of this
network overlaps significantly with the regions showing
reduced local efficiency. It is, therefore, likely that the
reduction in efficiency is a milder variant of the more
severe structural abnormalities found in schizophrenia
patients.

The work presented here is unique in a number of
ways. This is the first investigation of structural brain
topology in PEs in a population sample with a substantial
sample size with population-based controls (122 PEs, 125
controls). This study also applies a rigorous statistical cor-
rection of the GT metrics to ensure that any genuine group
differences in network topology are identified robustly.
Thresholding can have a large impact on the inferred
topology and how topologies of different groups compare
[Drakesmith et al., in press].

In contrast to previous MRI-based studies of structural
network topology that use the single tensor model for trac-
tography (with the notable exception of the recent study
by Griffa et al. [in press], who used diffusion spectrum
imaging) we used a spherical deconvolution approach.
The diffusion tensor model is incapable of resolving more
than one fiber orientation within a voxel, and thus, can
only reconstruct one fiber pathway through a voxel. Given
that 90% of voxels contain crossing fibers [Jeurissen et al.,
2013] this is a severe limitation that will likely lead to
large numbers of false negative/false positive edges, bias-
ing the GT analysis. Here, we employed the damped
Richardson-Lucy algorithm [Dell’acqua et al., 2010] which
is able to resolve crossing fiber populations, allowing more
complete and robust recovery of fiber trajectories, and
therefore, of network topologies. This difference in
approaches may explain the differences between our
observations on node-level connectivity and those reported
in previous studies of schizophrenia.

A difficult issue that persists with graph theoretical
analysis is the large difference in acquisition and analysis
pipelines. The high dependency of GT metrics on these
parameters makes comparisons of GT findings from differ-
ent studies difficult. This raises a similar issue in the litera-
ture that concern more established FA imaging. Like FA,
GT appears to have high sensitivity to conditions but often
lack specificity [Griffa et al., 2013]. Further standardization
of pipelines and more robust statistical testing may
improve the specificity of GT analysis. However, making
wider inferences on GT analysis should always be done
with caution.

Finally, as with studies that compare clinical groups
with controls, there are factors that could potentially con-
found or explain the relationship between PEs and imag-
ing measures in our nonclinical cohort, such a substance
misuse, genetic factors, and cognitive ability, and these
should be the subject of further research.

CONCLUSIONS

Our work is the first to demonstrate alterations in net-
work topology in a population of individuals with PEs
specifically identified from a population-based cohort
rather than in people seeking help from clinical services.
Such experiences confer increased risk of developing a
clinical disorder. The changes are diffuse across the
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network and too subtle to be detected when looking at
individual network components but are detectable when
exploring network topology. Network-wide reductions in
density and efficiency were detected as well as numerous
regional alterations. The alterations in the structural con-
nections, particularly in core network hubs, are likely to
contribute to significant dysfunction throughout the brain.
The findings indicate that topology of structural connec-
tomes is a potential biomarker for the development of clin-
ical psychosis.
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