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Abstract

Most applications of flow cytometry or cell sorting rely on the conjugation of fluorescent dyes to 

specific biomarkers. However, labeled biomarkers are not always available, they can be costly, and 

they may disrupt natural cell behavior. Label-free quantification based upon machine learning 

approaches could help correct these issues, but label replacement strategies can be very difficult to 

discover when applied labels or other modifications in measurements inadvertently modify 

intrinsic cell properties. Here we demonstrate a new, but simple approach based upon feature 

selection and linear regression analyses to integrate statistical information collected from both 

labeled and unlabeled cell populations and to identify models for accurate label-free single-cell 

quantification. We verify the method’s accuracy to predict lipid content in algal cells (Picochlorum 
soloecismus) during a nitrogen starvation and lipid accumulation time course. Our general 

approach is expected to improve label-free single-cell analysis for other organisms or pathways, 

where biomarkers are inconvenient, expensive, or disruptive to downstream cellular processes.
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I. INTRODUCTION

There are many biological research tasks for which it is important to measure single-cell 

behavior [1]. These tasks, which include cell counting, cell sorting, and biomarker detection, 

are widely conducted using flow cytometry (FCM) [1–3]. Flow cytometry is a high 

throughput analysis technique that performs rapid multiparametric analyses to inspect and 

quantify large cell populations and subpopulations [2–9]. FCM analysis is usually conducted 

by first fluorescently labeling cells, and then quantifying fluorescence intensity of individual 

cells within large populations. Each cell passes through a laser beam to excite fluorophores, 

It is made available under a CC-BY-NC-ND 4.0 International license.
*Correspondence: munsky@colostate.edu. 

HHS Public Access
Author manuscript
Phys Biol. Author manuscript; available in PMC 2020 July 22.

Published in final edited form as:
Phys Biol. ; 16(5): 055001. doi:10.1088/1478-3975/ab2c60.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and each cell’s data is recorded by measuring emitted fluorescence intensity at longer 

wavelengths [5,7,9]. FCM also provides indirect measurements of cell phenotypes through 

measurements of intrinsic cellular properties, such as cell size and shape by forward-angle 

light scatter (FSC), and information about cellular granularity and morphology by side-

scattered light intensity (SSC) [8,10]. In addition to quantifying cell populations, the related 

technique of fluorescence-activated cell sorting (FACS) allows researchers to separate cell 

populations into different subpopulations with respect to their individual properties [8]. As 

the name implies, sorting decisions are primarily based upon fluorescent labels [1,11].

Despite broad application of fluorescent labels in flow cytometry measurements [10], 

application of labels can be costly and may require unnecessary effort [12–14]. Labeling can 

also alter cell behavior and interfere with cellular processes and downstream analyses by 

causing activating/inhibitory signal transduction [13,15–19]. Additionally, some stains 

require cellular fixation or are toxic, which limits downstream processing when sorting 

[18,20]. A label-free quantification strategy could help prevent these adverse consequences 

by reducing operation costs and efforts, as well as avoiding side effects of using labels on 

cells [12,15]. In label-free quantification of FCM measurements, computational methods are 

used to quantify targeted cellular information based on measurements from other channels, 

i.e., from features.

Current label-free quantification strategies employ various methods of machine learning 

within their analyses to make use of large flow cytometry datasets [12,13,15,17,21,22]. 

However, in these strategies, the best intrinsic cellular features have been selected based 

solely on information collected from fluorescently labeled cells (for instance, see [12,21]). 

For some biological processes, if labels indirectly affect intrinsic cell properties within 

training populations, then these interactions could result in unexpectedly poor quantification 

of cell populations when tested on unlabeled cells. We hypothesize that FCM datasets could 

be used to develop label-free quantification strategies even when signatures are weak and are 
perturbed during the training process. In this work, we test our hypothesis by combining 

supervised machine learning algorithms with analysis of the distributions of single-cell data 

and their corresponding fluctuation fingerprints [23].

To demonstrate our approach, we conduct feature selection and regression analysis to find 

optimized label-free feature combinations and quantify lipid accumulation in microalgae 

cells, that can usually produce lipid content of 15% to 35% (potentially up to 80%), 

depending upon cultivation conditions, growth media, and algal species [24–26]. For such 

microalgae to become sources of alternative fuels, it will be necessary to monitor and 

maximize their ability to accumulate lipids [27]. To enable such quantification, we collect 

and examine FCM measurements of Picochlorum soloecismus under nitrogen replete 

conditions, and nitrogen deplete conditions that will stress cells and induce them to 

accumulate lipids. To measure lipid accumulation, we started with a traditional label-based 

strategy using BODIPY 505/515 fluorescent dye. We measured cell properties with and 

without the BODIPY stain, and we sought to find signatures in the latter preparation that are 

capable of reproducing quantities of the former preparation. Using these labeled and 

unlabeled data, we applied linear and nonlinear supervised machine learning algorithms to 

select the most informative features and predict lipid content. As opposed to current methods 
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[12,13,15,17,21,22], we show that accurate label-free cell quantification requires rigorous 

incorporation of statistical information from biological experiments using both labeled and 

label-free measurements.

II. RESULTS

Figure 1 depicts our initial strategy for label-free quantification. We monitored P. 
soloecismus microalgae for a total of 46 days following nitrogen starvation, and measured 

data using FCM at 23 different time points. At each time point, we created two identical 

subsamples as depicted at the top of Fig. 1. To obtain ground truth values for lipid 

accumulations, we labeled cells in one subsample using BODIPY, and we left the other one 

unlabeled. We measured the BODIPY signal in the labeled sample using a BD Accuri™ C6 

flow cytometer for 10,000 labeled cells per sample. We also collected another set of FCM 

measurements for 60,000 to 136,000 unlabeled cells. Our FCM analyses recorded 13 

features per cell, including the 488 nm excitation, 530/30 nm collection channel (FL1) 

corresponding to the BODIPY dye. We sought to predict the BODIPY signal intensities 

using other measured features –flow cytometry measurements of forward scatter (FSC), side 

scatter (SSC) and other fluorescence wavelengths (FL2 488 nm excitation, 585/40 nm 

collection, FL3 488 nm excitation, 670LP (long pass) collection, and FL4 640 nm excitation, 

675/25 nm collection).

As described in the methods section, we sought to identify label-free quantification through 

several iterative training-validation strategies. First, we conducted a linear regression 

analysis on FCM measurements of labeled cells (the training step), and then the model was 

used to predict the lipid content of unlabeled P. soloecismus cells. The model was then 

applied to a different dataset gathered from labeled and unlabeled cells, and we evaluated the 

prediction accuracy using the Kolmogorov-Smirnov distance.

We performed training on three time points of our data. Time points corresponded to days 1, 

14, and 46, which were were selected based on the lowest, the middle, and the highest 

BODIPY signal intensities. We then validated our model on another three time points 

corresponding to the second lowest, another middle, and the second highest BODIPY signal 

intensities (days 0, 15, and 37).

Figure 2 shows the results of applying the simple linear regression analysis using labeled 

data only. Figure 2(a) shows that at each time point the predicted labeled training data has a 

strong correlation with the measured data. Figure 2(b) suggests that a preliminary regression 

analysis provides a strong classification for the labeled training data, which was consistent in 

Fig. 2(c) for validation on labeled cells (KS distances between predictions and 

measurements for labeled cells were 0.0480, 0.0527, and 0.0190 for the three validation time 

points). However, the same regression model failed drastically when it was used to estimate 

the lipid content in the absence of labels, and Fig. 2(d) shows that the difference between 

predicted and measured values of the lipid content for unlabeled cells is extreme (KS 

distances were 0.9737, 0.9460 and 0.9233 for the same validation time points as above). 

Extended results for the linear regression are provided in supplementary Fig. S1.
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To address the possibilities that we were overfitting the data or that linear regression was too 

simple an analysis to extract the informative label-free features, we also applied three more 

advanced machine learning approaches to learn lipid content from the intrinsic features: (i) 

quadratic, which corresponds to linear regression applied to linear and second order products 

of the original features (Methods and Fig. S2); (ii) gradient boosting machine learning 
(GBML) as utilized for label-free classification in Blasi et al. [12] (Fig. S3); and finally a 

multilayer perceptron neural network (MLPNN) [28] as shown in Fig. S4. To reduce effects 

of over-fitting, the latter two approaches (GBML and MLPNN) both employ cross-

validation analysis on random partitions of the labeled training data. However, as shown in 

Figs. S2–S4, each of these advanced approaches appeared to work very well on the labeled 
training and validation data, but all were insufficient to predict the lipid content for 

unlabeled data.

To explain the failure of the labeled-cell-trained regression model on unlabeled cells, we 

suspected that some channels in the flow cytometer might be adversely affected by 

application of the BODIPY stain. Indeed, Fig. 3 shows that some intrinsic features (FL2-A 

and FL2-H, corresponding to the second channel of the flow cytometer) change substantially 

when BODIPY is added to the cells. This channel is the closest to the FL1 channel that 

measures the lipid content, where the BODIPY fluorescent dye is added. Moreover, it is 

conceivable that the level of this disruption could be correlated with the amount of lipid in 

the cells, which means that it could be equally present in both training and validation data 

for the labeled cells. As a result, these changes could disrupt the training and cross-

validation procedures and account for prediction failure when tested on unlabeled cells.

To mitigate this effect, we removed features FL2-A and FL2-H from the regression analysis 

and then repeated the linear regression. Figure 4(a–b) shows quantification results when the 

above two features are removed. We found that removing corrupted features led to 

substantial improvement for the quantification of unlabeled data (KS improved from 0.92–

0.97 in Fig. 2(d) to 0.11–0.38 in Fig. 4(b)). The supplementary Fig. S5 provides extended 

plots of the outcomes of regression analyses upon removal of corrupted features. It is 

interesting to note that removal of disrupted features reduces accuracy of lipid prediction for 

labeled cells. This occurs because the labeling inadvertently modulates some “intrinsic” 

features in the labeled cells and introduces extraneous feature-target correlations that are 

actually detrimental to predictions for unlabeled cells. A troublesome consequence of these 

correlations between labels and intrinsic features is that these disrupted features are immune 

to removal when cross-validation analysis is applied exclusively to labeled cells.

Next, we used the genetic algorithm on combinations of labeled and completely unlabeled 

data to explore if further feature reduction could enhance label-free classification. Figure 

4(c–d) shows the results following the application of the genetic algorithm, which 

automatically selected FSC-A, SSC-A, FL3-A, FSC-H, and the width of the signal as the 

most informative features. Down-selecting to these most informative features resulted in a 

slightly smaller KS distance (0.10 – 0.35) between measured and predicted values of the 

lipid content for unlabeled cells. Extended results are provided in supplementary Fig. S6.
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During automated feature selection for linear regression (Fig. 4(c–d)), we did not 

incorporate higher order effects (e.g., “interactions”) between predictor variables. To 

enhance our modeling and potentially extract more information from the data, we added an 

expanded set of products of feature values to the input. As shown in Fig. 4(e,f), expansion of 

the input matrix of features to include quadratic and first order interaction terms, followed 

by label-free feature selection via the genetic algorithm, resulted in a slight improvement to 

label-free predictions for the lipid content. For more detailed results after introducing the 

quadratic features and application of the genetic algorithm on higher order effects, see Fig. 

S7 in the supplementary information. In this case, the genetic algorithm identified the 

product of FSC-A and FL4-H, the square of FSC-H, and the product of FL4-H and signal 

width as the most informative attributes. Selected features by the genetic algorithm on linear 

and quadratic features are presented in more detail in supplementary Table S1.

Finally, we introduced a new strategy based on weighted models (see Methods section). Our 

weighted model was formed by a linear combination of three models, each learned from 

labeled and unlabeled data at three training time points. The weights applied to these three 

models were estimated (using a secondary regression analysis) from measured statistics of 

the unlabeled features. Importantly, the re-weighting of the models allows incorporation of 

the 530/30 nm FCM channel, which was previously discarded due to the fact that it was 

needed for the measurement of BODIPY in the labeled cells.

Figure 5 shows the results of our new label-free quantification strategy for labeled cells (Fig. 

5(a)) and unlabeled cells (Fig. 5(b–g)). It can be seen here that using a weighted modeling 

strategy based on statistics of unlabeled features enables the model to predict the BODIPY 

signal with a remarkably high accuracy. The expanded weighted model analysis allows for a 

substantially improved ability to quantify lipid content for both labeled and unlabeled cells. 

The very small KS distance (0.14, 0.09, and 0.09) on the three validation time points 

represent an exceptional success in predicting the BODIPY signals based on label-free 

measurements.

For the final machine learning model, the genetic algorithm selected the product of SSC-A 

and SSC-H, the square of FL3-A, the product of FL4-A and SSC-H, and square of FL3-H as 

the most informative features for the construction of the regression analyses at the three 

training time points. Table S1 of the supplementary information presents these selected 

features in detail. For the secondary regression analysis used to define the weights of the 

regression analyses, the optimum found by the genetic algorithm relied on statistical 

information from all fluorescence channels (including the 530/30 nm channels that was 

previously discarded during labeled cells measurements). The selected columns of the test 

statistic are presented in supplementary Table S2.

After we validated the final label-free lipid estimation model, we fixed all parameters and 

sought to test it for label-free quantification on a much larger set of time points. The final 

model yielded exceptional prediction accuracy of the BODIPY signal for this previously 

unseen testing data, as can be seen in the predicted distribution of lipid content at specific 

time points (Fig. 5(c–f) and supplementary Fig. S8). Figure 5(g) also shows that the trained 
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model correctly quantified average and standard deviation of lipid accumulation (in log 

scale) at each day following nitrogen starvation.

III. CONCLUSIONS

Single-cell quantification and classification are crucial tasks in many biological and 

biomedical applications, and flow cytometry (FCM) is one of the most common tools used 

for these tasks. Computational strategies have substantial potential to identify label-free 

markers and mitigate the expense or disruptive effects of traditional FCM analyses. In this 

article, we have demonstrated the use of mathematical tools and statistical methods, 

including regression analysis and machine learning to extract quantitative information from 

intrinsic properties of unlabeled cell populations. We discovered that computational 

classifiers that are learned using intrinsic features measured in labeled cell populations may 

appear to be highly predictive when compared to other labeled cells, but these same models 

may then fail dramatically when tested on truly label-free data (Figs.2 and S2–S4).

The key to our integrated strategy is careful consideration of the variations within 

heterogeneous single-cell populations. Drawing inspiration from our past work to identify 

gene regulation models from single-cell distributions [23,29,30], we reasoned that 

distributions of labeled and unlabeled cell populations should have shared statistics that 

could help to circumvent the issue of data corruption due to label applications. Under that 

inspiration, we developed a multi-stage regression approach that incorporates collections of 

both labeled and unlabeled data in the same conditions. From these data sets, we learn which 

features’ statistics are conserved, which features vary between different treatments, and 

which features are most valuable to predict lipid content in unlabeled cells when trained 

using labeled cells. Figure 6 depicts a flow diagram of our new approach and its three main 

components of (i) linear regression applied to features and feature products to discover the 

correlations between intrinsic features and lipid content within labeled cells; (ii) genetic 

algorithms to automatically select features that contain useful information, but which avoid 

misleading or distracting artifacts contained within large FCM datasets; and (iii) a new 

model-weighting strategy to allow application of different statistical models in different 

situations.

The combination of regression analyses, genetic algorithms and model weighting 

approaches yields a final set of models and weights that are uniquely determined from the 

statistical properties of unlabeled cell population measurements. Using this approach, we 

can then extract sufficient information to provide efficient label-free quantification of lipid 

content in Picochlorum soloecismus over time during nitrogen starvation. Our final model 

accurately estimates lipid content distributions over time that span several orders of 

magnitude (Figs. 5 and S8). Moreover, although direct verification of lipid content for 

unlabeled single-cells is not possible, our final regression models preserved single-cell 

prediction accuracy for lipid content in labeled cells, especially at later time points when 

lipid content is highest (Pearson’s correlation coefficient of R = 0.74–0.87; see Fig. S8).

Together, the proposed computational tools could help circumvent the need for biochemical 

labels to reduce expense and open new avenues for single-cell research. For example, label-
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free quantification will be instrumental to sort cells into different subpopulations, without 

the (potentially terminal) cellular disruptions associated with standard biochemical markers. 

Once trained through several rounds of regression and genetic algorithms, our final model 

for algal lipid quantification reduces down to a simple linear operation applied to a handful 

of 7 second-order products of features of the unlabeled cells. Such operations are easily 

computed in less than a microsecond per cell, making the label-free analysis ideal for use in 

gating and sorting applications as a stand-in for fluorescence in fluorescence-activated cells 

sorting (FACS) analyses. Such populations could then be instrumental in future advanced 

studies such as analysis with subsequent growth assays, application to directed evolution to 

improve productivity or yield, exploration of additional perturbation responses, and other 

assays that require live, unmodified cells for subsequent analyses.

IV. METHODS

A. Cell preparation and flow cytometry measurements

P. soloecismus was grown in f/2 media containing half the recipe nitrogen and using Instant 

Ocean sea salt (Blacksburg, VA) at 38 g/L [31,32]. Cultures were grown at room 

temperature on a 16 hour light/8 hour dark cycle and mixed by stirring. PH was maintained 

at 8.25 with on-demand CO2 injection when the pH increased above the set-point. Cells 

were collected and stored at 4 °C prior to analysis.

Stained populations of cells were incubated with 22.6 µM BODIPY 505/515 (Thermo Fisher 

Scientific) with 2.8% DMSO in media for 30 minutes at room temperature prior to analysis. 

Analysis was conducted using a BD Accuri™ C6 flow cytometer with BD CSampler™ (BD 

Biosciences). Unstained samples were collected with a set volume of 10 µl on a high flow 

rate (66 µl/min), for stained samples 10,000 events were collected on a low flow rate (14 l/

min). Data was exported in .csv format for subsequent analysis.

B. Linear regression analysis

In an initial attempt to identify label-free signatures of lipid content, we considered linear 

regression applied to match intrinsic features of labeled cells to lipid content (Fig. 1). In 

regression analysis, there are two main types of variables: the response variable (denoted y) 

and the explanatory variables (the set of predictors, denoted x) [33]. In this study, the 

response vector is the accumulation of the lipid content for each cell (called the target) and 

the predictor is a matrix containing the data for intrinsic cellular properties measured by 

FSC, SSC, and other fluorescence wavelengths (called the features). In regression analysis, 

the response is approximated as a function of the predictors as

yi = f xi + εi (1)

where xi = (x1,…, xN)i is the vector of N intrinsic features for the ith cell, and εi is a random 

measurement error for that cell [34]. In linear regression, the response (target) and predictor 

(feature) variables are assumed to satisfy the linear relationship [34]
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Y = XM, (2)

where the vector Y = y1, …, yNc

T
 is the vector of targets for Nc training cells; 

X = x1
T, …, xNc

T T
 is the corresponding matrix of features for the same cells; and M is the 

regression parameter or regression coefficient.

Linear regression provides a preliminary insight about potential relationships between the 

predictor and the response variables. After defining the features and the target, the regression 

coefficient that minimizes the sum of squared difference of Y − XM 2
2 can be calculated as

M = X−LY = XTX −1XTY . (3)

To perform a preliminary regression analysis, we first selected three training time points, 

corresponding to the lowest, the middle, and the highest BODIPY fluorescence intensities 

(in this experiment, days 1, 14, and 46, respectively). We chose these days to capture the 

greatest possible range of lipid accumulation phenotypes. For each time point, we 

considered FCM measurements from a random set of 3000 labeled cells. We computed the 

regression coefficient, M, by Eq. (3) using the labeled data sets XL
train  and YL

train . Next, we 

selected another three validation time points, corresponding to the second lowest, another 

middle, and the second highest BODIPY fluorescence intensities (in this experiment, days 0, 

15, and 37, respectively). This time, we extracted information for both labeled, XL
valid  and 

YL
valid , and unlabeled cells, XU

valid . Using the M computed from training data, we 

proceeded to predict the lipid content of the labeled and unlabeled validation data sets by the 

regression coefficient computed previously.

C. Nonlinear approaches

To generalize our initial simple linear regression approach, we then added new features 

corresponding to all possible products of the individual features as follows:

yi = f (x1, x2, …, xN,
x1  2 , x2  2 , …, xN − 1  2 , xN  2 ,
x1x2, …, xN − 1xN) + ε .

(4)

This expanded linear regression analysis, which uses all possible quadratic features, is 

referred to as the quadratic regression model. To further generalize the analysis, we also 

formulated a multilayer perceptron neural network (MLPNN) [28] and also applied the 

gradient boosting machine learning (GBML) method presented by Blasi et al. [12] to predict 
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the BODIPY signals in our FCM measurements (see Figs. S2–S4 in the supplementary 

information for details).

D. Feature selection

To select the optimal features, we applied iterative training-validation strategies, in which we 

applied a fitness function based on label-free measurements to select the most informative 

features. To select the best combination of features we employed a supervised learning 

strategy, in which we used linear regression analysis with and without quadratic interaction 

terms to find M for a given feature set for training data, and we applied the genetic 

algorithm [35] to the select the best combination of features to predict the validation data.

Direct measurement of lipid content is unavailable for unlabeled cells, so direct validation of 

label-free lipid predictions is not possible. However, since the labeled and unlabeled cells 

were sampled from the same original population and at the same time, we reasoned that the 

labeled and unlabeled populations should have the same distributions or statistics for their 

single-cell lipid levels. Therefore, to validate label-free predictions, we compare label-free 

distribution predictions to the labeled measurement distributions using the Kolmorogorov-

Smirnov statistic (KS), [36]. The genetic algorithm was used to find the set of features that 

led to the smallest KS statistic for the unlabeled validation data.

We conducted all linear regression and genetic algorithm computations in MATLAB™ 

R2017b environment. For the MLPNN, computations were performed in Python 2.7 (see 

supplementary information for the MLPNN).

E. Weighted model

To further improve predictions of BODIPY signals for unlabeled cells, we considered a 

weighted model that could be learned from all measurement of unlabeled features, including 

the fluorescent channel in which BODIPY was measured in the labeled cells. To achieve this 

weighted model, we first learned three separate regression coefficients M1, M2, and M3 

based on the three training time points (days 1, 14, and 46). While these models were fixed 

for all subsequent computations, we defined a combination model that could be formulated 

as a weighted sum:

M = α1M1 + α2M2 + α3M3 . (5)

In the above equation, a = [α1, α2, α3] contains the weights applied to their corresponding 

Mi’s with respect to the measured unlabeled features. Hence, at each given time point, there 

is a unique weighted model M based on fixed regression coefficients M1, M2, and M3 and 

unlabeled features.

We then sought to learn a secondary model to estimate a from populations of unlabeled data. 

We defined sr = μ1
r , …, μn

r , σ1
r , …, σn

r  as a vector that contains the population means and 

standard deviations of each feature (including quadratic features) in any population of 

unlabeled cells. We then constructed the population sample statistics matrix S = s1
T, …, sR

T

Tanhaemami et al. Page 9

Phys Biol. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using R different randomly sampled sub-population from the original training and validation 

data. For each rth random population, we also performed a computational search to find an 

optimized model scaling factor ar that yields the best possible comparison between 

measured and predicted targets in the training and validation data, and we collected these 

into the matrix A = a1
T, …, aR

T T
. With these definitions, we formulated a secondary 

regression analysis for ar as a function of sr with the assumed linear form

ar = srQ + ε, (6)

for which we could estimate the weight quotient Q as

Q ≈ S−LA . (7)

In this expression, Q defines a relationship between the unlabeled features (from computing 

s) and the weights (a). To prevent overfitting in the determination of the weights, we 

generated another set of random population samples from our training and validation data, 

and we used the genetic algorithm to down select among the best columns of S (or rows of 

Q) to utilize for the estimate of a.

Once fixed using the training and validation data, the multi-scale regression operators M1, 

M2, M3 and Q could be applied to any new data sets XU and their summary statistics s to 

calculate a = sQ, estimate M using Eqn. 5, and predict the lipid content using Eqn. 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow diagram of preliminary regression analysis to quantify lipid content based using 

intrinsic (presumably label-free) features. The model is learned using labeled data and then 

tested on both labeled and unlabeled data.
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Fig. 2. 
Preliminary regression analysis. (a) Correlations between measured and predicted values of 

lipid content for labeled training data. Pearson’s correlation coefficients are shown for each 

time point. (b) Histograms of lipid content for labeled training data. Measured in blue and 

predicted in red. Kolmogorov-Smirnov distances between the distributions are shown. (c) 

Histograms of the lipid content for labeled validation data. (d) Histograms of the lipid 

content for unlabeled validation data. Training data corresponds to days 1, 14, and 46; 

validation data corresponds to days 0, 15, and 37. All lipid content measurements are in 

arbitrary units of concentration (AUC). Bin sizes vary logarithmically.
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Fig. 3. 
Comparison of the features with and without BODIPY stain. (a) Kernel densities of features 

for labeled and unlabeled cells, averaged over all times. Labeled cells are shown in blue, and 

unlabeled cells are in red. (b) KS distance between labeled and unlabeled features 

distributions. FL2-A and FL2-H features show clear dependence on the BODIPY stain. 

Horizontal line denotes threshold used to remove corrupted features.
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Fig. 4. 
Regression results after various approaches to feature selection. (a) Training on reduced 

features. (b) Validation of the model in (a) on unlabeled cells. (c) Training based on the 

features selected by the GA. (d) Validation of the model in (c) on unlabeled cells. (e) 

Training based on the features selected by the GA on quadratic features and interactions. (f) 

Validation of the model in (e) on unlabeled cells. For all cases, measured values are shown 

in blue and predicted in red. Kolmogorov-Smirnov distances between distributions are 

shown. Training data corresponds to days 1, 14, and 46; validation data corresponds to days 

0, 15, and 37.
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Fig. 5. 
Results of analysis. Distributions of lipid content for (a) labeled training data. and (b) 

unlabeled validation data. KS distances between distributions are shown. (c–f) Testing the 

final strategy on four unlabeled testing time points: Days 7, 16, 20, and 34. See Fig. S8 for 

corresponding results for all 17 testing time points. “KS data” is the average KS distance 

between measured lipid distributions. (g) Average lipid content at each day after nitrogen 

starvation. The blue and red shaded areas show the standard deviation as measured and 

predicted, respectively.
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Fig. 6. 
Flow diagram of the final multi-stage label-free quantification strategy.

Tanhaemami et al. Page 18

Phys Biol. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Conclusions
	Methods
	Cell preparation and flow cytometry measurements
	Linear regression analysis
	Nonlinear approaches
	Feature selection
	Weighted model

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6

