
genes
G C A T

T A C G

G C A T

Article

miR403a and SA Are Involved in NbAGO2 Mediated
Antiviral Defenses Against TMV Infection in
Nicotiana benthamiana

Pengfei Diao †, Qimeng Zhang †, Hongyu Sun, Wenjie Ma, Aiping Cao, Ruonan Yu,
Jiaojiao Wang, Yiding Niu * and Hada Wuriyanghan *

Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
* Correspondence: ydniu@imu.edu.cn (Y.N.); nmhadawu77@imu.edu.cn (H.W.)
† These authors contributed equally to this work.

Received: 17 June 2019; Accepted: 9 July 2019; Published: 12 July 2019
����������
�������

Abstract: RNAi (RNA interference) is an important defense response against virus infection in plants.
The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and
RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in
virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral
immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well
understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV
(Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct
recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that
NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally
induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of
NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV
infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced
TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus
family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2
expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV
defense by regulation of target NbAGO2 gene in N. Benthamiana.
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1. Introduction

Virus diseases threaten crop production and agriculture globally. Plant evolved and developed
sophisticated mechanisms to defend against virus infections. RNA interference (RNAi) is an antiviral
defense mechanism in plants. The history of our understanding of RNAi for viral defense can be traced
back to 1928, when Wingard reported the recovery of virus infected plant from later virus infection [1].
RNAi phenomenon was then reported in petunia in 1990 and was termed as “co-suppression” and
later as post transcriptional gene silencing (PTGS) [2]. In 1993, Lindbo et al. suggested a working
mechanism for RNAi while studying gene silencing phenomena in transgenic plants [3]. In 1998, Fire
et al. silenced endogenous gene expression in Caenorhabditis elegans by injection of double-stranded
RNA (dsRNA), which was therefore identified as the molecule mediating sequence specific inhibitory
effects during RNAi process [4]. In 1999, Hamilton and Baulcombe found that 25-nucleotide antisense
RNA served as the intermediate for RNAi [5]. RNAi was also found in fungus and virus infected
plant, and was coined as quelling and virus-induced gene silencing (VIGS) respectively [6–8]. Briefly,
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RNAi mechanism is as follows: dsRNA of different sources are excised by the RNase III family
endoribonuclease Dicer/DCL (Dicer-like) to generate small interfering RNA (siRNA) with the length
of approximately 21–24 nucleotides. The guide strand, which is complementary to target RNA, is
incorporated into the RNA-induced silencing complex (RISC), the main component of which is the PIWI
family Argonaute (AGO) protein. RISC-incorporated siRNA then finds the target RNA by base-pairing
and degrades it by the activity of AGO protein. RNA dependent RNA polymerase (RdRp, RDR)
amplifies the silencing signal via the synthesis of secondary siRNAs from primary single-stranded
siRNAs [9].

Although both AGO and Dicer/DCL proteins are involved in RNAi process, their functions
are diverged in defense responses against different viruses. Furthermore, there are many AGO and
DCL members in plants and they showed specialized roles against different pathogens. In model
system Arabidopsis thaliana, the functions of these two family proteins were heavily investigated.
AGO1 plays key role against viruses like turnip crinckle virus (TCV, Tombusvirus) [10], cucumber
mosaic virus (CMV, Cucumovirus) [11], potato virus X (PVX, Potexvirus) [12] and turnip mosaic virus
(TuMV, Potyvirus) [13]. AGO2 is involved in antiviral role against TuMV [14], TCV, CMV [15] and
PVX [16]. AGO4 functions against PVX [17], CMV [18], beet curly top virus (BCTV, Geminivirus) [19]
and Plantago asiatica mosaic virus (PlAMV, Potexvirus) [20]. DCL1 is involved in antiviral role against
nuclear DNA viruses like cauliflower mosaic virus (CaMV, Caulimovirus) [21], while DCL2 plays
role against TuMV [22] and TCV [23]. RDR1 is involved in antiviral role against tobacco rattle virus
(TRV, Tobravirus) [24], TuMV [22] and CMV [25]. RDR2 contributes to plant responses to TRV [24]
and TuMV [22]. In other plant species, RDR1 plays antiviral role against sugarcane mosaic virus
(SCMV, Potyvirus) in maize [26] and against PVX and tobacco mosaic virus (TMV, Tobamovirus) in
tobacco [27]. In rice, RDR1 and RDR6 functions against brome mosaic virus (BMV, Bromovirus) and rice
stripe virus (RSV, Tenuivirus), but not wheat dwarf geminivirus (WDV, Geminivirus) [28]. In virological
model species Nicotiana benthamiana (N. benthamiana, Nb), several but limited studies were reported on
antiviral role of AGO and DCL family proteins. NbDCL4 plays key role against zucchini yellow mosaic
virus (ZYMV, Potyvirus) in N. benthamiana [29]. Although NbRDR1 is involved in antiviral rsponses
in both tobacco and Arabidopsis thaliana, but is not functional in N. benthamiana [30]. NbRDR6 plays
role against TCV, PVX and TMV in N. benthamiana [30]. NbRDR6 is also involved in plant responses
to potato virus Y (PVY, Potyvirus) and the Y satellite of CMV but not TRV or CMV alone [31]. AGO
proteins are key players in RNA interference pathway and RNAi-mediated antiviral mechanisms.
Higher plants encode many AGOs, but their functions are not fully known. The role of NbAGO2
was broadly investigated in Arabidopsis thaliana, and its antiviral role in N. benthamiana was also
reported for TBSV (Tombusvirus), PVX (Potexvirus), TuMV (Potyvirus) and TCV (Tombusvirus) [32,33].
Therefore, we investigated the role of NbAGO2 in RNAi-mediated antiviral role against infection by
TMV, a virus belonging to Tobamoviridae. From its first use in Arabidopsis thaliana in 1996, Artificial
microRNA (amiRNA) has been applied in many model and monocot species including Oryza sativa
and Brachypodium distachyon [34–36]. Virus-based expression vector was also developed for amiRNA
expression [37]. We used amiRNA technology to silence NbAGO2 expression and investigated its role
for TMV responses. Our results showed that NbAGO2 played key roles in antiviral responses against
TMV in N. benthamiana, and miR403a and SA was implicated in these responses.

2. Materials and Methods

2.1. Plant Cultivation and Treatment

Wild type and 16c GFP (Green fluorescent protein)-transgenic (GFP16c) N. benthamiana plants were
used. Wild type N. benthamiana was provided by Prof. Xiaohan Mo from the Yunnan Tobacco Research
Institute (Kunming, China) and the GFP16c line was provided by Prof. Feng Li from Huazhong
Agricultural University (Wuhan, China). N. benthamiana seeds were cultured in sterilized nutrient
soil and vermiculite (1:1) at growth temperature of 22–25 ◦C with photoperiod of 14:10 (light:dark)
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and 70% relative humidity. Three-leaf stage seedlings were used for following experiments. 0.5 mM
MeSA (Methylsalicylic acid) in water solution was sprayed on the leaves and the leaves were collected
one day after treatment. Water solution was sprayed as mock treatment. For GFP visualization,
TMV-GFP infected plants were illuminated with a hand-held UV lamp at 320 nm or under Nikon
SMZ18 microscope (Nikon, Tokyo, Japan).

2.2. SA Content Measurement

The content of endogenous salicylic acid (SA) was determined by UV Vis Spectrophotometry.
A set of standard solutions, containing 5, 10, 20, 30, and 40 µg/mL of SA, were prepared in 60% ethanol
solution and one of the standard solution was used for measuring maximum absorption wavelength
within a 280–320 nm wavelength range (5 nm interval), which was used as a subsequent detection
wavelength. The maximum absorption wavelength was 310 nm and the linear regression equation
according to the absorbance of five standard solutions was deduced. N. benthamiana leaves infected
with TMV and mock solution were collected and frozen in liquid nitrogen after five hours. The collected
leaves were ground in liquid nitrogen and soaked with 5 mL 60% ethanol, and the supernatant after
centrifugation was used to detect absorbance at 310 nm, which was then converted to SA concentration
according to the standard curve [38].

2.3. Vector Construction

2.3.1. Construction of hpGFP Vector

For silencing of GFP gene, GFP interfering sequences were amplified by Forward primer

5′-TGCGGGATATCGGACGACGGGAACTACAAGA-3′

and reverse primer

5′-TGCGGGATATCAAAGGGCAGATTGTGTGGAC-3′

from genomic DNA of GFP16c line. The fragment was cloned into pQBV3 entry vector by EcoRV and
then was subcloned into binary vector pCB2004B to produce hairpin construct for insert GFP fragment.

2.3.2. Construction of amiR Based Silencing Vector for NbAGO2 Gene

For construction of viral pCV (CaLCuV)-based (cabbage leaf-curl virus) amiR vector, following
oligonucleotides were designed by amiR design function in www.benthgenome.com website.

amiR1:

5′-GGATCTAGATTGATCTGAAGGAGCTGAGTTGGAGGGTTTAGCAGGGTGAAGTAAAG-3′

5′-GGAGGTACCTTGATCTGAAGTCGCTGAGTAGAAGAGTGAAGCCATTAAAGGG-3′

amiR2:

5′-GGATCTAGAAAGCTAGGTGGGATAAGTCGTGGAGGGTTTAGCAGGGTGAAGTAAAG-3′

5′-GGAGGTACCAAGCTAGGTGGTCTAAGTCGAGAAGAGTGAAGCCATTAAAGGG-3′

amiR3:

5′-GGATCTAGAGACCACAGGACGCAGAAGATTGGAGGGTTTAGCAGGGTGAAGTAAAG-3′

5′-GGAGGTACCGACCACAGGACTGAGAAGATAGAAGAGTGAAGCCATTAAAGGG-3′.

www.benthgenome.com
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The above primers were used to amplify amiR fragment using Arabidopsis thaliana miR159b as
template backbone and the amplicons were cloned into pCVA vector by XbaI/KpnI sites. The same
amplicons were cloned into pBI121 vector by XbaI/KpnI sites to produce non-viral binary vector based
amiR constructs.

2.3.3. Construction of NbAGO2 Overexpression Vector (Ox-NbAGO2)

To overexpress NbAGO2 gene, open reading frame (ORF) region of NbAGO2 was amplified by
the primers

5′-TACGGATCCATGGATCGTGGAAATTACCG-3′

and
5′-TCAGAGCTCTCAGACAAAGAACATTTTGAAC-3′

from cDNA of N. benthamiana and the amplicon was cloned into pBI121 vector by BamHI/SacI sites.

2.3.4. Construction of STTM-Based Inhibitory Vectors for Endogenous microRNAs

For development of STTM (Short tandem target mimic) constructs for miR390a, miR393a and
miR403a, the following sequences and their complementary sequences were designed and synthesized.
miR390a, 5′-ctcgagGGTGCTATCCCCTATCCTGAGCTTGTTGTTGTTGTTATGGTCTAATTTAAATAT
GGTCTAA AGAAGAAGAATGGTGCTATCCCCTATCCTGAGCTTgaattc-3′; miR393a, 5′-ctcgagCCAA
AGGGCTAATAGCATGATGTTGTTGTTGTTATGGTCTAATTTAAATATGGTCTAAAGAAGAAGAAT
CCAAAGGGCTAATAGCATGATgaattc-3′; and miR403, 5′-ctcgagAGTTTGTGCCTAGTGAATCTAA
GTTGTTGTTGTTATGGTCTAATTTAAATATGGTCTAAAGAAGAAGAATAGTTTGTGCCTAGTGAA
TCTAAgaattc-3′. The restriction endonuclease sites are shown in lower-case letter, and the STTM spacer
sequences were underlined. The oligonucleotides and complementary sequences were annealed to
produce dsDNA and this dsDNA was then ligated into the pGreen-GUS-Competitor vector by XhoI and
EcoRI respectively.

2.4. Plant Inoculation, Gene Silencing and Virus Infection

The above constructs were transformed into Agrobacterium tumefaciens GV3101 competent cells. The
transformants were grown to optical density OD600 = 1 at 28 ◦C, cells were collected by centrifugation
and resuspended in inoculation buffer (10 mM 2-(N-Morpholino)ethanesulfonic acid (MES), 10 mM
MgCl2, 200 µM acetosyringone). OD600 values of agrobacterium inoculation solution were all adjusted
to 1.0 unless stated otherwise. The inoculation solution was leaf-infiltrated into three-leaf stage N.
benthamiana by needleless syringe. For pCV-based silencing experiment, pCVB was simultaneously
transformed and co-infiltrated with recombinant pCVA vectors. For virus infection, infectious clone of
TMV expressing green fluorescent protein (TMV-GFP), pJL24, was infected as the same way. For pJL24,
OD600 value of Agrobacterium inoculation solution was 0.1. In all experiments, inoculation buffer with
empty vector was used as mock treatment.

2.5. Total RNA Extraction and cDNA Preparation

Leaf tissues were grounded in liquid nitrogen by using mortar and pestle. The powder was
homogenized in Trizol reagent (CWBio, Beijing, China) and extracted following manufacturer’s
protocols. DNase was used to remove contaminated genomic DNA. Total RNA quality was confirmed
by measurement of OD260/OD280 using NanoDrop2000 Spectrophotometer (ThermoFisher Scientific,
Waltham, MA, USA) and agarose gel electrophoresis. One µg of total RNA was used as template and
cDNA was synthesized by random hexamer using GoScript Reverse Transcription System (Promega
Corporation, Madison, WI, USA).
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2.6. Assessment of NbAGO2 Expression by qRT-PCR Experiment and Semi-Quantitative RT-PCR

The cDNAs were subjected to PCR experiment. The PCR reaction was run on qTOWER
2.2 (Analytik Jena AG, Jena, Germany) equipment. Fast SYBR Green Master Mix (ThermoFisher
Scientific, Waltham, MA, USA) was used for evaluation of NbAGO2 level by qRT-PCR. The primer sets
5′-ATGTGAAATGGTACGGGCTGAA-3′ and 5′-CAACAAGGTTCCACTGGCATTT-3′ were used for
NbAGO2. As an internal control, steady state level of N. benthamiana GAPDH gene was evaluated by
primer set 5′-CTGACAAGGACAAGGCTGCT-3′ and 5′-AAGCAGCTCTTCCACCTCTC-3′. The ratio
of mRNA level between treatment and mock samples was determined by the 2−∆∆CT method. At least
three biological replicates with two technical replications were carried out, and the differences were
evaluated by t-test.

2.7. Northern Hybridization Experiment

Ten µg of total RNA was resolved by agarose gel electrophoresis. RNAs were transferred
from the gel to nylon membrane (Amersham Hybond-N+, positively charged) (GE Healthcare Life
Sciences, Pittsburgh, PA, USA) by an electrokinetic capillary apparatus. 32P or digoxigenin-labelled
probes were prepared by the methods described as previously, and hybridization and signal
visualization were performed as per the literatures [39,40]. For N. benthamiana NbPR1a gene,
a contig sequence with transcript ID of JN247448 from N. benthamiana sequence database
(www.benthgenome.com) was used and the primer pairs 5′-GGATGCCCATAACACAGCTC-3′

and 5′-CCTAGCACATCCAACACGAA-3′ were used for amplification of 313bp probe sequence.
For N. benthamiana β-actin gene, a partial cDNA sequence (JQ256516.1) was used and the primer
pairs 5′-CCCAAAGGCTAATCGTGAAA-3′ and 5′-GCAGCTTCCATTCCAATCAT-3′ were used for
amplification of 483bp probe sequence. For TMV detection, nucleotide encoding capsid protein was used
and the primer pairs 5′-CAAGCTCGAACTGTCGTTCA-3′ and 5′-GACCAGAGGTCCAAACCAAA-3′

were used for amplification of 352bp probe sequence.

3. Results

3.1. Transient Silencing of NbAGO2 in N. benthamiana by amiR-NbAGO2

Artificial miRNA recently emerged as a newly developed technology for gene silencing. NbAGO2
amiR sequences were designed in www.benthgenome.com website and were used to amplify amiR
fragment using Arabidopsis thaliana miR159b as template backbone (Figure 1A, Supplementary Figure
S1). An overexpression vector for amiR-NbAGO2 was constructed in CaLCuV (cabbage leaf-curl
virus, Geminivirus) -based vector pCVA under 35S promoter [37]. The pCVA-amiR-NbAGO2 was
transformed into Agrobacterium tumefaciens strain GV3101 and agro-infiltrated into N. benthamiana
leaves together with pCVB. We used three different regions of NbAGO2 for amiR targeting, and named
them amiR-NbAGO2-1, amiR-NbAGO2-2 and amiR-NbAGO2-3 respectively (Figure 1B). Three days
later, silencing effects on NbAGO2 expression were determined by qRT-PCR experiment. As shown in
Figure 1C, overexpression of amiR-NbAGO2 significantly down-regulated the level of NbAGO2 by
53–74%. The most pronounced effect was observed for amiR-NbAGO2-2. The results demonstrated the
efficacy of amiR constructs for knockdown of NbAGO2 expression, and different amiR varied as regards
to silencing efficacy. Therefore, we used amiR-NbAGO2-2 for following experiments. As inoculation of
pCV interfere with subsequent infection of other viruses like TMV-GFP (Supplementary Figure S2),
we then used pBI121-based binary vector to overexpress amiR. Time course experiment showed that
silencing efficiency of pBI121-amiR was most evident at 6 DPI (days post infection) (Figure 2). In the
following experiments, we used pBI121-amiR-NbAGO2-2 for NbAGO2 silencing experiments. To verify
the effectiveness of amiRNAs on NbAGO2 expression, another internal control, GAPDH, was used and
the results were similar to the results from NbActin as internal control (Supplementary Figure S3).

www.benthgenome.com
www.benthgenome.com
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Figure 1. Silencing of NbAGO2 via transient expression of different amiRs from pCV-based vector.
(A) Oligonucleotides for amiR was designed, and the sequences were used as primers to amplify
Arabidopsis thaliana miR159b to produce amiR construct. After transcription and processing, mature
amiR binds to complementary site at target mRNA. amiR* denotes amiR star strand. (B) The positions
of amiR target sequences on NbAGO2 were shown with different colors, and qPCR primers for detection
of NbAGO2 expression were shown with arrowhead. The numbers indicated the positions of amiR
target sites and qPCR primers. (C) Different amiR constructs cloned in pCVA vector were transiently
expressed in N. benthamiana leaves by agroinfiltration. At 3 DPI, plants were harvested and were
assayed for NbAGO2 expression by quantitative real-time PCR. Plants inoculated with empty pCV
vector (EV) served as control treatment, and NbAGO2 expression in control group was arbitrarily
designated as 1. N. benthamiana NbActin gene served as the internal control. Significant differences
between control and treatment groups were calculated by Student’s t-test. Double and three asterisks
indicated significant difference at p < 0.01 and p < 0.001, respectively.

Figure 2. Silencing of NbAGO2 via transient expression of amiR2 from PBI121-based vector.
pBI121-amiR2 construct was transformed into GV3101, infiltrated on N. benthamiana leaves, and
the leaves were collected at different DPI. NbAGO2 expression was determined by quantitative real-time
PCR. Plants inoculated with empty pBI121 vector (EV) served as control treatment. NbAGO2 expression
in control was arbitrarily designated as 1. NbActin gene served as the internal control. Significant
differences between control and treatment groups were calculated by Student’s t-test. Double and three
asterisks indicated significant difference at p < 0.01 and p < 0.001, respectively.
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3.2. Silencing of NbAGO2 Compromised dsRNA-Mediated Gene Silencing in N. benthamiana

To confirm that NbAGO2 is functionally involved in RNAi process, a GFP16c N. benthamiana line
which overexpresses green fluorescent protein (GFP) was used. First, we used pCB2004B-hpGFP to
transiently silence GFP expression in GFP16c plant. The result showed that GFP expression was largely
silenced by transient overexpression of hpGFP by agroinfiltration, and both GFP fluorescence and
GFP mRNA levels decreased by hpGFP expression. One should note that GFP signal in GFP16c plant
was mostly localized in vascular tissue. Next, we used this system to investigate the involvement
of NbAGO2 in RNA silencing. Down-regulation of NbAGO2 by amiR-NbAGO2 recovered both the
GFP fluorescence and GFP mRNA levels in the hpGFP expressed GFP16c plant, while in the control
plant GFP was significantly silenced (Figure 3A,B). The loss of silencing by NbAGO2 knockdown via
amiR-NbAGO2 transient expression verified the participation of NbAGO2 in RNAi process.

Figure 3. Silencing of NbAGO2 compromised hairpin induced RNAi in N. benthamiana. (A) Three-leaf
stage GFP16c transgenic plants were inoculated with different combinations of vector constructs. GFP
fluorescence was visualized under Nikon SMZ18 microscope at 3 DPI. (B) The infiltrated leaf tissues
were harvested, total RNAs were extracted, and GFP mRNA levels were determined by Northern blot
experiment. Expression of N. benthamiana β-actin served as internal control. The number below the
panel indicates the ratio of the blot band intensity between GFP and NbActin, in which the ratio in first
lane was arbitrarily designated as 1.

3.3. Expression of NbAGO2 was Induced by Both MeSA Treatment and TMV Infection

Salicylic acid (SA) is reported to be broadly engaged in virus infection and defense response. We
also investigated the involvement of SA in the TMV infection process in N. benthamiana. Exogenous
MeSA was sprayed on three-leaf stage N. benthamiana seedlings and the seedlings were collected 2,
10 and 24 h post spray. To verify the effectiveness of SA treatment, expression of SA marker gene
NbPR1a was determined by Northern blot experiment. As shown in Figure 4A, NbPR1a was strongly
induced by MeSA treatment after 10 h, demonstrating that foliar application of MeSA is effective in N.
benthamiana. Quantitative real-time PCR was performed to determine the mRNA level of NbAGO2.
Under MeSA treatment, transcript level of NbAGO2 was shortly elevated at 10 h by 2.4-fold and then
declined to basal level by 24 h (Figure 4B). We then evaluated the expression of NbAGO2 in response to
TMV infection. NbAGO2 was significantly induced by TMV infection during 1–4 DPI (Figure 5A). In
tobacco, SA was responsible for plant resistance to virus infection, especially of TMV. Our data showed
that SA level was significantly elevated by TMV infection (Figure 5B), and NbPR1a was also induced
by TMV infection in N. benthamiana (Figure 4A).
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Figure 4. Exogenous spray of MeSA induced NbAGO2 expression. (A) 500 µM of MeSA was sprayed
on N. benthamiana leaves and the leaves were collected at 10 h post spray. Total RNAs were isolated
and NbPR1a level was determined by Northern blot experiment using NbPR1a sequence specific probe.
The same blot also includes the TMV infected leaf sample after 10 h of infection. NbActin served as
internal control and its mRNA level was evaluated by same way using NbActin specific probe. The
number below the panel indicates the ratio of the blot band intensity between NbPR1a and NbActin, in
which the ratio in first lane was arbitrarily defined as 1. (B) The same leaf tissues treated by MeSA were
collected at different time points and NbAGO2 expression was determined by quantitative real-time
PCR. Plants sprayed with water solution served as control treatment. NbAGO2 expression in control
was arbitrarily designated as 1. N. benthamiana GAPDH gene served as the internal control. Significant
differences between groups were calculated by Student’s t-test. Single asterisk indicated significant
difference at p < 0.05.

Figure 5. TMV infection elevated NbAGO2 expression and endogenous SA level. (A) Three-leaf
stage N. benthamiana was infected with TMV, and the leaves were collected at different DPI. NbAGO2
expression was determined by quantitative real-time PCR. Plants inoculated with inoculation buffer
containing empty vector expression GV3101 served as control treatment. NbAGO2 expression in control
was arbitrarily designated as 1. NbActin gene served as the internal control. (B) Three-leaf stage
N. benthamiana was infected with TMV, and the leaves were collected 5 h post infection. SA level was
determined by UV Vis Spectrophotometry at 310 nm. Significant differences between mock and infected
groups were calculated by Student’s t-test. Single, double, and three asterisks indicated significant
difference at p < 0.05, p < 0.01, and p < 0.001, respectively.

3.4. Down-Regulation of NbAGO2 Promoted TMV Infection

As shown above, NbAGO2 was responsive to TMV infection and MeSA treatment. Involvement
of NbAGO2 in TMV infection was further investigated as follows. NbAGO2 was first silenced by
pBI121-amiR-NbAGO2 agroinfiltration, and after one day the same leaf region was agroinfiltrated with
TMV-GFP, an infectious TMV engineered to express green fluorescent protein, which was retained in
the infiltrated area for at least 6 days. The inoculated leaves were monitored daily for the appearance of
GFP fluorescence. As shown in Figure 6A, silencing of NbAGO2 caused stronger accumulation of virus
(GFP fluorescence) as compared to control empty vector (pBI121) inoculated leaves. In accordance with
this, overexpression of NbAGO2 (Ox-NbAGO2) resulted in weaker virus accumulation, and this effect
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was abolished by simultaneous amiR-NbAGO2 expression. In addition, virus spread was reduced by
treatment with MeSA (Figure 6B). TMV RNA level was also determined by Northern blot experiment
with CP (Capsid protein) region-specific probe, and the result was consistent with GFP fluorescence
data (Figure 6C,D). Taken together, we concluded that NbAGO2 was an antiviral factor effective against
TMV, and SA was implicated in this process by inducing NbAGO2 expression, at least to some extent.

Figure 6. NbAGO2 contributed to TMV defense in N. benthamiana. (A) N. benthamiana plants were
first inoculated with different combinations of vector constructs by agroinfiltration, and infected with
TMV-GFP after one day of inoculation. GFP fluorescence was visualized by hand-held UV lamp at
320 nm, and the photographs were taken five days post TMV infection. pBI121, empty pBI121 vector;
amiR-NbAGO2, amiR-NbAGO2 construct in pBI121 vector; Ox-NbAGO2, NbAGO2 overexpression
construct in pBI121. (B) N. benthamiana plants were sprayed with 500 µM MeSA daily, and infected with
TMV-GFP after the first spray. GFP fluorescence was visualized by hand-held UV lamp at 320 nm, and
the photographs were taken five days post TMV infection. (C,D) Detection of TMV genomic RNA by
Northern blot experiment. The same treated samples from above were subjected to detection of TMV
RNA. Total RNAs were isolated and TMV RNA level was determined by Northern blot experiment
using capsid protein sequence specific probe labelled with 32P. NbActin served as internal control and
the mRNA level of NbActin was evaluated in the same way using 32P labelled NbActin specific probe
(lower panel). The band corresponding to TMV genomic DNA was indicated by the arrowhead. The
number below the panel indicates the ratio of the blot band intensity between TMV and NbActin, in
which the ratio in control lane was arbitrarily designated as 1.

3.5. STTM_miR403a Suppressed TMV Infection

As a core element in RISC formation, AGO2 plays an important role in RNAi-mediated disease
resistance response. We therefore hypothesized that some miRNA, especially which participate in
RNAi, may have an effect in the process. We chose three miRNAs to further verify this. Among them,
miRNA390a and miRNA393a were reported to influence the activity of AGO2 by binding to it [41],
while miRNA403a was reported to mitigate AGO2 expression by posttranscriptional regulation [42].
Short tandem target mimic (STTM) is a complementary RNA which blocks small RNA functions in
plants by sponge activity. Therefore, we designed an STTM inhibitory vector for each miRNA to
examine functions of these miRNAs in virus defense according to the methods described by Tang et
al. [43]. After co-inoculation with STTM constructs and TMV-GFP via agroinfiltration in N. benthamiana
plants, the GFP fluorescence was observably weakened in STTM_miR390a, STTM_miR393a, and
STTM_miR403a co-infected area at 6 DPI compared to pGreen_GUS_competitor, which served as
the control construct (Figure 7A). Subsequently, fluorescence intensity was quantified, and the GFP
intensity of STTM co-expressed groups, especially that of STTM_miR403a, showed statistical differences
compared with the control (Figure 7B). In the subsequent analysis, we found that miR403a had a target
site in 3′ UTR of NbAGO2 transcript (Supplementary Figure S4). STTM_miR403a expression reduced
NbAGO2 mRNA level (Figure 7C), while STTM_miR390a, STTM_miR393a expression did not alter
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NbAGO2 mRNA level. Our data showed the regulatory role of miR403a on the expression of NbAGO2
as well as its role in antiviral response.

Figure 7. STTM_miR403a suppressed TMV infection. (A) N. benthamiana plants were co-inoculated
with vector constructs and TMV-GFP by agroinfiltration. GFP fluorescence was visualized by hand-held
UV lamp at 320 nm, and the photographs were taken at 6 DPI. STTM_miR390a, STTM_miR393a, and
STTM_miR403a constructs were cloned in pGreen_GUS_Competitor vector. (B) The GFP fluorescence
of infection area in (A) was converted into gray density by Gel-Pro Analyzer software (V4.0, Media
Cybernetics, Inc., Rockville, USA), Dunnett’s multiple comparisons test was used for comparison
of GFP intensity value of seven infected leaves. (C) Total RNAs were extracted from the same leaf
regions from above experiments, and NbAGO2 expression was determined by qRT-PCR experiment
using NbActin mRNA level as internal control. Single, double, and three asterisks indicated significant
difference at p < 0.05, p < 0.01, and p < 0.001, respectively.

4. Discussion

SA-mediated defenses were involved in plant response against a variety of pathogen types
including viruses, bacteria and fungi [44]. Involvement of SA in plant response against virus infection
was first established for the well-known interaction between TMV and its resistance gene N from
tobacco [45]. Furthermore, SA was reported to be inductively accumulated after virus infection,
highlighting the importance of this plant hormone in compatible plant–virus interactions [46,47].
Both RNA viruses and DNA viruses were reported to trigger SA signaling pathway [48,49]. In
fact, accumulation of SA after pathogen attack and induction of hallmark PR genes were commonly
observed [50,51]. Infection of a diverse range of plant pathogens activated SA signaling pathway
and subsequent hypersensitive reaction (HR) or systemic acquired resistance (SAR) [51]. RNAi is a
well-known antiviral defense mechanism in plants. Cross-talk of RNA silencing and SA triggered
defense responses were manifested by several reports. First, N. benthamiana AGO4 protein was involved
in translational repression and was indispensable for SA-mediated defense response by N gene [17].
Second, silencing suppressor proteins encoded by virus genome influence both RNAi and SA-induced
plant defenses against viruses [52–54]. Third, expression of some RNA silencing component genes
are influenced by SA treatment. For example, among plant RNA silencing components, activity or
expression level of RdRp1 from a variety of plant species including Arabidopsis thaliana, N. benthamiana,
maize, cotton, potato and tobacco were elicited by SA or virus infection, as led to activation of antiviral
defense responses [26,27,55–59]. Our data showed that foliar application of MeSA induced NbAGO2
expression and activated defense against TMV, as is consistent with results from other studies [60,61].
We used TMV infectious clone pJL24 and it was retained in the infiltrated area within our detection time.
Induction of NbAGO2 expression by SA indicated that cross-talk of RNA silencing and SA-mediated
antiviral defenses were mediated by RdRp or AGO2 in some plant species like N. benthamiana [62].
As for the TMV defense reaction, NbRdRp1 was reported to function in systemic leaves but not on
directly-inoculated leaves [27,55,63], while NbAGO2 played TMV defense role in inoculated leaves in
our results.
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Induction of RNAi pathway component genes by corresponding pathogens were reported in
several manuscripts. In Arabidopsis thaliana, AGO2 was induced by bacterial pathogen Pseudomonas
syringae, virus pathogens TCV, CMV and also by virus silencing suppressor proteins [41,53,64]. RdRp1
expression was induced by TMV infection [55]. Expression of DRB4 was induced by infection of viruses
such as tobacco yellow mosaic virus (TYMV, Tymovirus), TCV, CaMV [65] and TCV [66,67]. In rice, RSV
infection induced expression of AGO18 and AGO2, while RDV infection induced expression of several
OsRDR genes but not OsAGO genes [68]. Here, we showed that expression of NbAGO2 was induced
by TMV infection in virological model species N. benthamiana. NbAGO2 was shown to be involved
in both RNAi and virus defense responses here. NbAGO2 was reported to mediate defense against
tomato bushy stunt virus (TBSV, Tombusvirus) [32]. CRISPR/Cas9 mediated inactivation of NbAGO2
compromise defenses against PVX, TuMV and TCV, but not Tombusvirus and CMV infections [33].
Transgenic approach showed that AGO2 defends against TBSV, TMV and PVX, but not foxtail mosaic
virus (FoMV, Potexvirus) [69]. Our data add weight to the present evidence that AGO2 is a broad
spectrum antiviral gene whose activity is achieved by RNAi mechanism. Artificial miRNA was shown
to be effective to silence variety of genes in a diversity of plant species including N. benthamiana [70],
Arabidopsis thaliana [71], N. tabacum [72], Oryza sativa [35], Glycine max [73], Solanum melongena [74],
Medicago truncutula [75], Triticum aestivum [76], Vitis vinifera [77], Solanum tuberosum [78] and Solanum
lycopersicum [79]. Here, we also showed that artificial miRNA was an effective way to silence N.
benthamiana AGO family genes via transient expression from both virus vector and binary vector. As
infection of virus vector (pCV) hindered subsequent TMV infection, we used pBI121 for expression
of amiRNA and its effects on TMV infection. It is interesting to note that AGO2 itself is targeted by
miR403a in plants [80], and here we showed for the first time that attenuation of miR403a inhibition on
NbAGO2 by STTM technology influenced TMV infection. As for the miR390a and miR393a, both of
them were reported to bind to NbAGO2 protein competitively [41], therefore we speculated that this is
the reason that they play similar role with miR403a in our experiments. Paudel et al. reported that
NbAGO2 expression was induced by tomato ringspot virus (ToRSV; Secoviridae) isolates ToRSV-Rasp1
or ToRSV-GYV, and silencing of NbAGO2 elevated ToRSV accumulation [81]. This indicated that
NbAGO2 was involved in plant responses toward different families of viruses.

5. Conclusions

The role of NbAGO2 gene against TMV infection was investigated in N. benthamiana. NbAGO2 was
demonstrated to be involved in RNAi process in N. benthamiana. NbAGO2 mRNA level was elevated
by both TMV infection and MeSA treatment. Suppression of NbAGO2 gene by amiR technology
compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted
regulatory microRNA of NbAGO2, reduced TMV infection. Taken all this together, we conclude that
SA participates in NbAGO2 mediated TMV response and miR403a is also involved in this response by
post-transcriptionally regulating NbAGO2 expression (Figure 8).

Figure 8. Model for NbAGO2 mediated antiviral defenses against TMV infection in Nicotiana benthamiana.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/7/526/s1,
Figure S1: NbAGO2 (Unigene No. Nbv3K585706870, retrieved from www.benthgenome.com) was aligned
with Arabidopsis thaliana NbAGO2 (Accession No. NM_102866.3), Nicotiana tabacum NtAGO2 (Accession No.
XM_016619080.1), Solanum lycopersicum SlyAGO2 (Accession No. NM_001279306.2), and Glycine max GmAGO2
(Accession No. XM_006605460.3) by DNAMAN software (Version 6.0.3.99, Lynnon Biosoft, San Ramon, CA, USA).
The sequences for amiR target sites were shown on top by lines with different colors, Figure S2: N. benthamiana
leaves were first inoculated with pCV (both pCVA and pCVB), and then were infected with TMV-GFP (pJL24) one
day later. As a control, pCambia1301, the backbone of pCV infectious clone used here, was inoculated. The result
showed that first inoculation of pCV impeded TMV-GFP infections, Figure S3: The experiments in (A) and (B)
were performed the same as Figures 1 and 2, respectively. The only difference is Actin gene was used as internal
control here instead of GAPDH in Figures 1 and 2, Figure S4: Sequence alignment between miR403a and target
NbAGO2 gene from 17Wt Nicotiana Benthamiana. “|” indicates perfect match, while gap shows mismatches.
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