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OBJECTIVE—We explored whether the distribution of adipose
cell size, the estimated total number of adipose cells, and the
expression of adipogenic genes in subcutaneous adipose tissue
are linked to the phenotype of high visceral and low subcutane-
ous fat depots in obese adolescents.

RESEARCH DESIGN AND METHODS—A total of 38 adoles-
cents with similar degrees of obesity agreed to have a subcuta-
neous periumbilical adipose tissue biopsy, in addition to
metabolic (oral glucose tolerance test and hyperinsulinemic
euglycemic clamp) and imaging studies (MRI, DEXA, 1H-NMR).
Subcutaneous periumbilical adipose cell-size distribution and the
estimated total number of subcutaneous adipose cells were
obtained from tissue biopsy samples fixed in osmium tetroxide
and analyzed by Beckman Coulter Multisizer. The adipogenic
capacity was measured by Affymetrix GeneChip and quantitative
RT-PCR.

RESULTS—Subjects were divided into two groups: high versus
low ratio of visceral to visceral � subcutaneous fat (VAT/
[VAT�SAT]). The cell-size distribution curves were significantly
different between the high and low VAT/(VAT�SAT) groups,
even after adjusting for age, sex, and ethnicity (MANOVA P �
0.035). Surprisingly, the fraction of large adipocytes was signifi-
cantly lower (P � 0.01) in the group with high VAT/(VAT�SAT),
along with the estimated total number of large adipose cells (P �
0.05), while the mean diameter was increased (P � 0.01). From the
microarray analyses emerged a lower expression of lipogenesis/
adipogenesis markers (sterol regulatory element binding protein-1,
acetyl-CoA carboxylase, fatty acid synthase) in the group with high
VAT/(VAT�SAT), which was confirmed by RT-PCR.

CONCLUSIONS—A reduced lipo-/adipogenic capacity, fraction,
and estimated number of large subcutaneous adipocytes may
contribute to the abnormal distribution of abdominal fat and
hepatic steatosis, as well as to insulin resistance in obese
adolescents. Diabetes 59:2288–2296, 2010

W
hite adipose tissue (WAT) plays a critical role
in obesity-related metabolic dysfunctions. Dan-
forth (1) and Shulman (2) raised the hypothesis
that inadequate subcutaneous fat stores result

in lipid overflow into visceral fat and other nonadipose
tissues, which was elegantly explored by Ravussin and Smith
(3). Sethi and Vidal-Puig proposed that impaired subcu-
taneous WAT expandability might cause obesity-associated
insulin resistance (4). In adults, increased fat cell size, a
marker of impaired adipogenesis, was reported to be related
to insulin resistance and predicts the development of type 2
diabetes (5). Recent studies by McLaughlin et al. (6) reported
in adults that an increase in the proportion of small adi-
pocytes, but not increased fat cell size, and an impaired
expression of markers for adipogenesis are related to insulin
resistance. Little is known about adipocyte size and adipo-
genic capacity during adolescence, a time when the expan-
sion of WAT results from combined adipocyte hypertrophy
and hyperplasia. In contrast, adult adipocytes exhibit a
remarkably constant turnover (7). Recently, we described a
group of obese adolescents presenting with a reduced sub-
cutaneous abdominal fat depot, increased visceral fat, he-
patic steatosis, and marked insulin resistance (8). Building
on these findings, we asked the following question: is the
adipogenic capacity of the abdominal subcutaneous fat de-
pot in obese adolescents associated with a decreased pro-
portion of large adipose cells and reduced expression of
genes regulating adipocyte differentiation? We hypothesized
that, in some obese adolescents, the lack of expandability of
the subcutaneous abdominal fat might be linked to adipocyte
size, its adipogenic expression, and the fat accumulation in
liver and muscle. To test this hypothesis, we used metabolic
and imaging techniques, together with direct measurements
of adipocyte size and gene expression, in two groups of
obese adolescents with marked differences in the proportion
of visceral to subcutaneous abdominal fat.

RESEARCH DESIGN AND METHODS

The Yale Pathophysiology of Type 2 Diabetes in Obese Youth Study is a
long-term project aimed at examining early alterations in glucose metabolism
in relation to fat patterning in obese adolescents. As part of this study, all
subjects undergo a detailed assessment of abdominal fat distribution by
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magnetic resonance imaging (MRI). As previously described, we found that
the metabolic profile worsens with the increasing visceral to visceral �
subcutaneous fat (VAT/[VAT�SAT]) ratio (8). On the basis of the distribution
of the VAT/(VAT�SAT) ratio obtained in our entire multiethnic cohort of 141
adolescents (8), we used the 50th percentile (0.11) as a cutoff value to recruit
and enroll subjects in the current biopsy study. Thirty-eight obese adolescents
agreed to have a subcutaneous periumbilical adipose tissue biopsy and were
divided into two groups: low (�0.11) and high (�0.11) VAT/(VAT�SAT) ratio.
Their clinical characteristics are described in Table 1. None of the subjects
were on any medications nor had any known disease. The nature and potential
risks of the study were explained to all subjects before obtaining their written
informed consent. The study was approved by the ethics committees of the
Yale University Hospital.
Metabolic studies. All subjects were invited to the Yale Center for Clinical
Investigation (YCCI) for an oral glucose tolerance test at 8:00 A.M. after an
overnight fast. Baseline fasting blood samples were obtained with the use of
an indwelling venous line for measurement of glucose, insulin, lipid profile,
free fatty acids, adiponectin, and leptin levels. An oral glucose tolerance test
was then performed and blood samples were obtained every 30 min for 180
min for the measurement of plasma glucose and insulin as previously
described (9). The composite whole-body insulin sensitivity index (WBISI)
was calculated using the formula described by Matsuda and DeFronzo (10).
The hyperinsulinemic euglycemic clamp. In the morning at 8:00 A.M., after
an overnight fast of 10–12 h, insulin sensitivity was measured by the
hyperinsulinemic euglycemic clamp, during which time insulin was adminis-
tered as a prime continuous infusion of 80 mU/m2�min for 120 min (11).
Abdominal fat distribution. Whole-body composition was measured by
dual-energy X-ray absorptiometry (DEXA) with a Hologic scanner (Boston,
MA). Abdominal MRI studies were performed on a GE or Siemens Sonata 1.5
Tesla system (12). Five slices, obtained at the level of the L4/L5 disc space,
were analyzed for each subject, as previously reported (13).

Liver fat assessment: fast MRI. Hepatic fat fraction (HFF), an estimate of
the percentage of fat in the liver, was measured by fast-gradient MRI (12). HFF
was measured in a single slice of the liver; we validated this method against
proton magnetic resonance spectroscopy (1H-MRS) and found a strong
correlation (r � 0.93, P � 0.001) (14).
Muscle lipid partitioning: 1H-NMR. Localized 1H-NMR spectra of the soleus
muscle were acquired on a 4T Biospec system (Bruker Instruments, Billerica,
MA, as previously described) (15). Intramyocellular lipid was measured in 20
of the 38 subjects.
Adipocyte size and number. Samples (2 g) of subcutaneous adipose tissue
were obtained inferior to the umbilicus after administration of 0.25 lidocaine
with adrenaline (epinephrine) for local anesthesia, from which two 20–30-mg
samples were used immediately for adipose cell-size distribution analysis by
the osmium fixation, Beckman Coulter (Miami, FL) Multisizer III, curve-fitting
analysis technique previously described (6). In addition to determining the
fraction of large adipose cells (fraclarge) and the “peak diameter” of the large
adipose cells as described, the “% of adipose cells above” (% large cells) and
“% below” (% small cells) the nadir were calculated.

A secondary end point, the number of subcutaneous adipose cells, was
estimated by the following formula: cell number � volume of subcutaneous
abdominal adipose tissue/weighted volume per cell. Volume of adipose tissue
was obtained from MRI scans, and average volume per cell was calculated as
the weighted volume based on the relative number of cells per volume bin in
the cell-volume histogram generated by the Multisizer software. We used the
following formula: average volume per cell � � 4/3�(d

i/2)3pi (that is, the sum
of the volumes corresponding to each bin times the relative frequency (p) of
that bin (i) (16). The number of large cells was then calculated by applying the
percentage of large cells to the total number of cells.
GeneChip. RNA expression was studied in 34 subjects (16 low and 18 high
VAT/[VAT�SAT] group) using Affymetrix Human Gene 1.0 ST arrays, covering
28,869 genes. Total RNA was isolated using TRIzol reagent and was further

TABLE 1
Clinical characteristics of the obese adolescents (N � 38)

Low VAT/(VAT � SAT)
ratio (0.08 � 0.01)

High VAT/(VAT � SAT)
ratio (0.15 � 0.04) P value

Adjusted P value
(age, race, sex)

n 20 18
Age (years) 15.5 � 2.8 14.7 � 2.4 0.357
Sex (female/male) 14/6 10/8 0.357#
Race (C/AA/H) 3/10/7 8/4/6 0.089#
Tanner stage (II-III/IV-V) 6/14 7/11 0.873#
Anthropometrics

BMI (kg/m2) 37.0 � 8.1 36.6 � 6.8 0.851 0.636
% fat 40.7 � 3.6 38.6 � 6.0 0.262 0.322
Lean body mass (kg) 56.9 � 11.5 55.4 � 9.9 0.717 0.593
Waist (cm) 105.0 � 19.0 108.1 � 13.5 0.585 0.732
Systolic BP 115.4 � 10.9 119.9 � 10.6 0.228 0.235
Diastolic BP 66.6 � 8.6 71.8 � 8.8 0.093 0.031

Body fat distribution
Abdominal

Visceral fat (cm2) 55.0 � 26.3 91.7 � 31.1 0.000 0.007*
Subcutaneous fat (cm2) 603.7 � 230.8 520.7 � 181.5 0.231 0.105*
VAT/(VAT � SAT) ratio 0.08 � 0.01 0.15 � 0.04 0.000 0.000*

Ectopic fat content
IMCL 1.3 � 0.6 1.2 � 0.4 0.549 0.454*
HFF (%) 2.7 � 6.8 10.0 � 12.0 0.033 0.032*

Metabolic measurements
Fasting glucose (mg/dl) 96.6 � 9.0 97.1 � 7.9 0.860 0.888*
2-h glucose (mg/dl) 115.4 � 18.7 139.6 � 34.0 0.013 0.002*
AUC-glucose (mg/dl/min) 116.6 � 16.8 130.7 � 27.5 0.086 0.091*
Fasting insulin (�U/ml) 29.0 � 13.5 39.8 � 24.2 0.108 0.218*
M (kg/LBM � min) 11.6 � 5.6 8.1 � 4.8 0.046 0.043*
Matsuda index (WBISI) 2.5 � 2.1 1.5 � 0.9 0.081 0.082*
Adiponectin (�g/ml) 9.3 � 5.0 6.5 � 3.9 0.079 0.037*
Leptin (ng/ml) 31.2 � 15.1 34.9 � 15.7 0.489 0.652*
Lipids

HDL (mg/dl) 43.8 � 9.2 37.0 � 7.6 0.024 0.163*
TG (mg/dl) 101.2 � 60.8 136.3 � 81.7 0.158 0.843*
FFA (�M/l) 501.1 � 152.8 615.6 � 180.7 0.072 0.632*

Data are means � SD. #�2; *log transformed; P values �0.05, shown in bold, are statistically significant.

R. KURSAWE AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, SEPTEMBER 2010 2289



purified using an RNeasy kit (Qiagen, Valencia, CA). The quality of total RNA
was evaluated by the A260/A280 ratio and by electrophoresis on an Agilent
Bioanalyzer. Afterward total RNA was submitted to the Keck Microarray
Resource for sample processing and chip hybridization according to the
manufacturer’s instructions. Data processing is described in the supple-
mentary material available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db10-0113/DC1.
Quantitative real-time PCR. The quantification of several differentially
expressed genes by real-time RT-PCR was performed using an ABI 7,000
Sequence Detection system (Applied Biosystems, Foster City, CA). The
nucleotide sequences of the primers and PCR conditions are added in the
supplementary material available in an online appendix. For each run,
samples were run in duplicates for both the gene of interest and 18S.
Quantitative analysis was determined by �/�CT method normalized to both a
control and 18S message.
In vitro lipogenesis test. Adipose tissue (50 mg) was incubated in 0.5 ml of
Krebs-Ringer bicarbonate buffer (pH 7.4) containing 5% bovine serum albumin
and 2 mmol/l glucose, at 37°C for 1 h in the presence of 0.5 mCi (18.5 kBq) of
[U-14C] glucose (Amersham Biosciences) with or without 10 nmol/l insulin.
After transferring the fat sample into 1 ml PBS, we stopped the reaction by
adding 4 ml of liquid scintillation fluid (Betafluor, National Diagnostics USA,
Atlanta, GA). Test tube was incubated overnight at room temperature with
vigorous shaking. A 3 ml aliquot of the upper phase was transferred to a
scintillation vial, and the radioactivity was measured using a Packard liquid
scintillation counter. Lipogenic activity was expressed as nmol of glucose
incorporated per h per mg of adipose tissue. The difference between basal and
stimulated condition was calculated and expressed as percent increase in
lipogenesis.
Analytical methods. Plasma glucose levels were measured using the YSI
2,700 STAT Analyzer (Yellow Springs Instruments, Yellow Springs, OH), and
lipid levels were measured using an Autoanalyzer (model 747–200, Roche-
Hitachi). Plasma insulin, adiponectin, and leptin were measured with a
radioimmunoassay (Linco, St. Charles, MO).
Statistical analysis. Student’s unpaired t tests or the �2 test (for categorical
variables) were used to compare the clinical and laboratory characteristics
between the two groups. Potential confounders (sex, age, and race) were
entered in an ANOVA model in which the metabolic and cell-size parameters
were dependent variables and the VAT/(VAT�SAT) ratio group was the
primary grouping variable; nonnormally distributed parameters were log-
transformed before entry into the model. The composite difference between
the curve profiles of the two groups was assessed via MANCOVA, in which the
seven cell-size parameters were dependent variables and the VAT/(VAT�SAT)
ratio group was the primary grouping variable, while race and sex were
entered as fixed factors and age and BMI were entered as covariates.
Comparisons of relative gene expression as quantitated by RT-PCR were
compared with Mann-Whitney test. These analyses were performed using
SPSS 16 (SPSS, Chicago, IL). For all analyses, a P value �0.05 was considered
statistically significant.

RESULTS

Body fat patterning and metabolic characteristics.
While both groups were similar in age, sex, % total body
fat, and BMI (Table 1), the high VAT/(VAT�SAT) group
had a lower percentage of African Americans. Despite
similar degrees of overall adiposity, significantly greater
visceral and HFF were observed in subjects with a high
VAT/(VAT�SAT). Two-h glucose levels were higher in the
group with high VAT/(VAT�SAT), who also were found to
have lower plasma adiponectin levels and were more
insulin resistant (by M/lean body mass) than the low ratio
group, even after adjusting for age, race, and sex. Signifi-
cantly lower HDL levels (P � 0.024) and a trend toward
increased fasting free fatty acids (P � 0.072) were found in
the group with the high VAT/(VAT�SAT).
Adipose cell-size distribution and number. Fig. 1A and
B illustrates the adipose cell-size distribution profile for
each individual in the low and high ratio groups, and Fig.
1C shows representative adipose cell-size profiles for the
two groups using the average parameters determined by
the curve-fitting analyses. The two curves are distinctly
different, showing a shift to the right in those with a high
ratio. MANOVA analysis applied to the seven curve-fitting

parameters showed that the overall cell-size distribution
was statistically significantly different between the low
and high VAT/(VAT�SAT) groups (P � 0.027). After
adjusting for age, BMI, sex, and ethnicity, MANCOVA
analysis continued to show a statistically significant dif-
ference (P � 0.035).

As shown in Fig. 2, the nadir was significantly shifted
(P � 0.001) to a larger peak diameter (P � 0.006), and the
fraction of large cells was reduced (P � 0.008) in the high
compared with the low group. Figure 2D shows the much
smaller estimated number of large cells in the subcutane-
ous fat depot of the high VAT/(VAT�SAT) group (P �
0.044) despite no significant difference in the total num-
bers of subcutaneous cells (low, 1.4 	 109 � 9.3 	 108;
high, 1.0 	 109 � 5.3 	 108; P � 0.144). Using the
Spearman correlation, we found that the peak diameter
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FIG. 1. Multisizer adipose cell profiles of 20 subjects with a low
VAT/(VAT�SAT) ratio (A) and 18 subjects with a high VAT/
(VAT�SAT) ratio (B), plotting cell diameter using linear bins against
relative frequency in percent C: Cell-size profiles of the adipose cell
size using the mean parameters from the curve-fitting formula for
subjects with a low VAT/(VAT�SAT) ratio (dashed line) and subjects
with a high VAT/(VAT�SAT) ratio (solid line) (P � 0.035 using
MANCOVA).
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(r � 0.383, P � 0.019), the fraction of large cells (r �

0.327, P � 0.048), the nadir (r � 0.403, P � 0.013), and
the number of large cells (r � 
0.398, P � 0.015)
significantly correlated with the VAT/(VAT�SAT) ratio,
which shows that the correlations previously shown in
Fig. 2 are not artifacts of dichotomization into high and
low groups.
Gene expression profiles reveal significant changes
in lipogenesis genes. Affymetrix Gene Arrays ST 1.0
were used to evaluate potential differences in the gene
expression profiles of the subcutaneous fat biopsy speci-
mens. Because ethnicity of the subjects and array batch
contributed considerable variation in the ANCOVA model,
the data were adjusted for these covariates. Subsequently,
the expression data matrix of 28,882 probe sets from 34
GeneChips was subjected to principal component analysis
to view the overall trends of the dataset. Principal compo-
nent analysis showed a clear separation of the high and
low VAT/(VAT�SAT) groups (supplementary Fig. 1, avail-
able in an online appendix).

To address the question of which pathways contribute
to these differences in the gene expression profiles of the
high and low VAT/(VAT�SAT) groups, we performed a
multivariate analysis of 61 predefined gene sets. Interest-
ingly, the insulin signaling pathway was ranked in position
six of the 61 gene sets (Table 2, P � 0.001). Of the 142
genes representing this pathway, 74 were characterized by
differential expression between the high and low VAT/
(VAT�SAT) groups (P � 0.05). PathVisio was used for
visualization of gene sets detected by the Westfall-Young
statistic. Expression differences in genes of the insulin
signaling pathway, between the high and low VAT/
(VAT�SAT) group, are mapped in Fig. 3. Green indicates

the significantly decreased expression observed in the
high VAT/(VAT � SAT) group of phosphoinositide 3-ki-
nase (PIK3R3), phosphatidylinositol-4,5-bisphosphate 3-ki-
nase (PIK3CD), phosphatidylinositol 3-kinase (PIK3R2),
protein kinase C, sterol regulatory element-binding protein
1 (SREBF1), fatty acid synthase (FASN), and acetyl-CoA
carboxylase (ACACA). In contrast, the expression levels of
the insulin receptor, phosphatidylinositol-4,5-bisphos-
phate 3-kinase (PIK3CB), fructose bisphosphatase (FBP1),
phosphoenolpyruvate carboxykinase 2, and 5�-AMP-acti-
vated protein kinase (PRKAA1 and PRKAG1) are character-
ized by a significantly increased expression in subcutaneous
adipose tissue of the high VAT/(VAT�SAT) group in compar-
ison to the low VAT/(VAT�SAT) group (Fig. 3, in red). In the
insulin signaling pathway, the highest fold-changes were
observed for the following genes: PIK3R3, FBP1, SREBF1,
FASN, and ACACA.
Real-time RT-PCR. The Gene Array data of sterol regu-
latory element binding protein-1 (SREBF1), FASN, and
ACACA, as well as four additional insulin signaling–related
genes [lipoprotein lipase (LPL), peroxisome proliferator-
activated receptor (PPAR�2), lipin 1 (LPIN1), and adi-
ponectin (ADIPOQ)] were further analyzed in adipose
tissue of the low and high VAT/(VAT�SAT) groups using
real time RT-PCR. The comparisons of the expression data
(2��Ct-values) are shown in Fig. 4. Subjects with a high
VAT/(VAT�SAT) ratio had significantly lower gene ex-
pression of SREBF1 (P � 0.0057), FASN (P � 0.0185),
ACACA (P � 0.0125), LPIN1 (P � 0.0026), LPL (P �
0.0069), PPAR�2 (P � 0.0025), and ADIPOQ (P � 0.0159)
than those with a low VAT/(VAT�SAT) ratio. Using the
Spearman correlation, significant negative relationships
were found between VAT/(VAT�SAT) ratio and the mRNA
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(B) peak diameter (cp), (C) fraction of large cells (fraclarge), (D) number of large cells (means � SD).
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levels of all seven investigated genes [SREBF1 (r �

0.618, P � 0.000), FASN (r � 
0.473, P � 0.004), ACACA
(r � 
0.507, P � 0.002), LPIN1 (r � 
0.565, P � 0.001),
LPL (r � 
0.531, P � 0.001), PPAR�2 (r � 
0.583, P �
0.000), and ADIPOQ (r � 
0.467, P � 0.005)].
In vitro lipogenesis. Given the downregulation of the
lipogenic genes in the high VAT/(VAT�SAT) group, we
investigated de novo lipogenesis in adipose tissue speci-
men of 14 subjects (six high vs. eight low VAT/[VAT�SAT]
group). The percent increase in lipogenesis after treatment
of the samples with insulin tended to be lower (low, 71.1 �
39.0; high, 31.3 � 36.7; P � 0.076) in the high VAT/
(VAT�SAT) group (data not shown).

DISCUSSION

The novel finding of this study is that, in obese adoles-
cents, a high ratio of visceral to subcutaneous fat (i.e., high
VAT/[VAT�SAT]) is associated with impaired adipogene-
sis/lipogenesis as assessed by gene expression and a lower
proportion of large adipose cells and higher peak cell
diameter as assessed by cell-size distribution analysis.

It should be noted that, although the two groups had a
very similar overall degree of adiposity, as well as lean
body mass, age, sex, and pubertal stage of development,
they had a difference in ethnicity that was close to
significant (P value in �2 test � 0.089). Thus, although we
adjusted for this difference in ethnicity when analyzing the
differences between the groups, we cannot exclude that
some of the differences seen in abdominal fat distribution
and adipose cell size are ethnicity related because it is a
well known fact that, compared with Caucasians, Afri-
can Americans have a small visceral and large subcuta-
neous fat depot (8). To assess directly these potential
ethnic differences in adipose cell size and their relations
to metabolic alterations, we compared cell-size distri-
bution and gene expression in 11 Caucasian (Caucasian
and Caucasian Hispanic) versus 11 African American
subjects, pair matched for VAT/(VAT�SAT) ratio, BMI,

and age. No differences in cell-size parameters or ex-
pression of adipogenic/lipogenic genes were noted, as
well as no difference in insulin resistance (data not
shown). Thus, we think that the differences found in this
study between the two VAT/(VAT�SAT) groups are not
accounted for mainly by ethnic differences in cellularity
and gene expression of the subcutaneous fat. This is
further supported by previous studies (17–19) that
showed no difference in the mean diameter of subcuta-
neous adipocytes from obese African American com-
pared with Caucasian women.

In contrast to our hypothesis of higher insulin sensitivity
with lower VAT/(VAT�SAT) ratio, African Americans
showed no differences in insulin sensitivity, despite signif-
icantly lower VAT/(VAT�SAT) ratio. Further investiga-
tions are necessary to unravel the myth of fat distribution
and insulin resistance in African American adolescents
(manuscript in preparation).

Building on our previous findings (8,13,20), we hypoth-
esized that the particular phenotype of high VAT/
(VAT�SAT) might be one of the factors implicated in the
pathogenesis of insulin resistance. We consequently fo-
cused on the layer of subcutaneous fat, as it is the only one
that is relatively easy to biopsy in pediatrics. This depot
has been found to be important in rodent models of
insulin resistance as well (21,22). Thus, we based the
division of the groups on some strong rationale. Never-
theless, even when dividing the groups into insulin
sensitive and resistant (data not shown), we found very
similar results to those reported when separating the
groups by fat ratio.
Adipocyte morphometry. In investigating the adipose
cell-size distribution of the subcutaneous fat depot, we
found very large adipose cells with diameters in the
range of 100 –130 �m, but also about half of the cells in
the adipose tissue were small, in the 20–50 �m range.
While the identity of the latter has been questioned,
McLaughlin et al. (6) confirmed the presence of small

TABLE 2
Top 20 most differential regulated pathways out of 61

Pathway name t value
Westfall-Young

adjusted P value
No. of genes
in pathway

GPCRDB_Class_A_Rhodopsin_like 6.203137e-51 0.001 174
Smooth_muscle_contraction 1.882423e-48 0.001 140
Calcium_regulation_in_cardiac_cells 2.124932e-47 0.001 135
Cell_cycle_KEGG 2.704092e-47 0.001 87
Peptide_GPCRs 3.017272e-47 0.001 72
Insulin_signaling 1.348158e-44 0.001 142
GPCRDB_Other 2.606078e-43 0.001 70
Ribosomal_Proteins 8.182642e-43 0.001 109
Integrin-mediated_cell_adhesion 9.481823e-43 0.001 89
G_Protein_Signaling 2.189569e-41 0.001 86
mRNA processing Reactome 1.481700e-39 0.001 105
G1 to S cell cycle Reactome 6.158349e-39 0.001 65
Electron transport chain 7.287427e-39 0.001 88
Apoptosis 6.909579e-37 0.001 68
Proteasome Degradation 2.345890e-30 0.001 61
Matrix Metalloproteinases 2.799155e-11 0.001 32
Wnt signaling 4.641920e-11 0.001 57
Glycolysis and Gluconeogenesis 1.093909e-10 0.001 47
TGF beta Signaling Pathway 1.504555e-10 0.001 48
Striated muscle contraction 8.382124e-10 0.001 33

Results are ranked according to significance (t values from multivariate Westfall-Young analysis).
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adipose cells in both intact adipose tissue and the osmium-
fixed cell preparation by scanning electron microscopy;
floatation of isolated adipose cells, prepared by the well
established collagenase digestion technique, followed by
osmium fixation reproduced the adipose cell-size distribu-
tions obtained by direct osmium fixation of samples of the
same intact adipose tissue. Moreover, studies of the dy-
namics of adipose tissue growth in different mouse strains
on regular and high-fat diets (16), and in genetically obese
Zucker fatty rats (23), demonstrate that the small-cell
population detected by the Multisizer plays a systematic
role in expanding and contracting fat storage in response
to weight gain and loss. RNA extraction and gene expres-
sion data in separated small adipose cells from Zucker
fatty rats (unpublished data) further support the identifi-

cation of these small cells. Consistent with our original
hypothesis, the subgroup of obese individuals with the
high VAT/(VAT�SAT) harbored a greater proportion of
the smaller adipose cells, while the diminished population
of large cells was characterized by a greater diameter. This
relationship suggests hypertrophy of the largest cells, in
conjunction with a diminished capacity of the small cells
for fat storage. This is supported by our observations that
individuals with high VAT/(VAT�SAT) have a tendency of
higher plasma levels of free fatty acids and triglycerides
and significantly greater quantities of fat stored in their
livers. Furthermore, investigating de novo lipogenesis in
subcutaneous adipose tissue specimen in a subset of our
subjects, the high VAT/(VAT�SAT) group showed a lower
percent increase in lipogenesis after treatment of the
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FIG. 3. Diagram of the insulin signaling pathway from PathVisio. Red colored boxes indicate significantly increased expression, whereas green
colored boxes indicate a significantly decreased expression in the high versus low VAT/(VAT�SAT) group. Besides the gene boxes, the P value
is given.
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samples with insulin. At the molecular level, our findings
are further supported by the reduced expression of key
regulators of de novo lipogenesis.
Gene-expression analysis. The analysis of our GeneChip
data revealed that the insulin signaling pathway is one of
the significant differentially regulated pathways between
the high and low VAT/(VAT�SAT) groups. This finding
goes along with differences in the insulin sensitivity ob-
served between the two groups. An upregulation of AMP-
activated kinases (PRKAA1 and PRKAG1) in the high
VAT/(VAT�SAT) group leads to downregulation of
SREBF1, because SREBF1 is negatively regulated by those
kinases. SREBF1 encodes the sterol regulatory element
binding protein-1, a transcriptional regulator of ACACA
and FASN (24), enzymes that catalyze the committed and
rate-limiting steps in cytosolic de novo synthesis of fatty
acids. Because ACACA and FASN are regulated primarily
at the level of transcription, it is expected that decreases in
the activities of these enzymes are reflected by decreases
in their mRNA. SREBF1 is also a transcriptional regula-
tor of LPL (24), a rate-limiting enzyme for intravascular
hydrolysis of lipoprotein-rich triglyceride particles,
which is expressed at high levels in adipose tissue (25),
especially of obese, insulin-resistant subjects (26). Fur-
thermore, SREBF1 is able to cause a 3– 4-fold increase
in the activity of PPAR� through its DNA-binding site
and, therefore, stimulates adipogenesis (24). Therefore,
downregulation of SREBF1 in the high VAT/(VAT�SAT)
group leads to downregulation of ACACA, FASN, LPL,
and PPAR�, while PPAR� downregulation further leads
to lower expression of ADIPOQ.

Recent studies of rat and human adipose tissue have
reported that smaller adipocytes have decreased FASN
and LPL enzymatic activities that lead to less de novo
synthesis of fatty acids and reduced uptake of lipoproteins
for storage (27–29). Ranganathan et al. (30) showed that
FASN mRNA in adipose tissue strongly positively corre-
lated to insulin sensitivity and increased after treatment
with a PPAR� agonist, pioglitazone. De novo lipogenesis in
adipose tissue strongly positively correlates not only with

insulin sensitivity (31) but also with BMI and adipocyte
cell size (32). Downregulation of lipogenic gene expres-
sion in the subcutaneous tissue may therefore be seen as
“an impairment of fat cell function,” as has been suggested
previously by Hoffstedt et al. (31). Thus, larger adipocytes
may downregulate lipogenic genes to limit expansion of
triglyceride stores and prevent a metabolically detrimental
morphology (32). Thus, in the setting of obesity and
increased storage demands, if certain individuals are un-
able to mature a new crop of adipose cells owing to an
impairment in differentiation, triglyceride would have to
be stored in nonadipose tissues, as reported in insulin-
resistant individuals (33). Furthermore, our GeneChip data
showed in the group with high VAT/(VAT�SAT) ratio a
significantly lower expression of the LPIN1 gene, whose
product lipin1 is required for adipocyte differentiation
(34). Lipin deficiency causes lipodystrophy, fatty liver, and
insulin resistance in mice, whereas adipose tissue lipin
overexpression results in increased adiposity but im-
proved insulin sensitivity (35–37). A higher expression of
LPIN1 in the low VAT/(VAT�SAT) ratio group is consis-
tent with the role of lipin1 in promoting adipocyte differ-
entiation and lipid accumulation, which could result in a
diversion of lipids into adipocytes and away from ectopic
sites such as the liver.

Studies in humans have shown the decreased expres-
sion of genes related to adipose cell differentiation in
the insulin-resistant offspring of patients with type 2
diabetes, compared with insulin-sensitive controls (38),
and the upregulation of genes related to adipose cell fat
storage in response to the administration of a thiazo-
lidinedione compound that is well known to promote
increased insulin sensitivity (39). Similar observations
have been reported in Zucker fa/fa rats (40). Taken
together, our findings and those from adult studies
strengthen the hypothesis that, in obese individuals,
impairment in adipose cell differentiation is character-
ized by impaired lipogenesis and a relative reduction in
the proportion of large adipose cells, but hypertrophy of
the largest cells. The resulting decreased ability to store
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FIG. 4. Box-plots for the expression of SREBF1, FASN, ACACA, LPIN1, ADIPOQ, PPAR�2, and LPL, normalized to the expression of 18S rRNA
and based on the expression of a human control adipose tissue (2��Ct). The white boxes represent the means and SD for the group with the low
VAT/(VAT�SAT) ratio, and the black boxes represent the means and SD for the group with the high VAT/(VAT�SAT) ratio. The Mann-Whitney
test between the two groups was significant at the <0.05 level (*) or at the <0.005 level (**).
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triglyceride in subcutaneous adipose tissue is likely an
important contributor to the development of liver ste-
atosis and insulin resistance.

Our study is limited by its small size. Furthermore, we
cannot prove causality, but merely report associations.
Note that we are not claiming that small adipose cells
differ from large adipose cells with respect to gene-
expression and fat metabolism. Rather, we are proposing
that differences exist in the homogeneity of the subcuta-
neous adipose tissue that are associated with quantifiable
differences in cell-size distribution. Additional metabolic
differences may exist between small and large cells that
could contribute to the impact on whole-body metabolism
of the differences in cell-size distributions, but such a
determination would require further work to separate the
cells by size. We adjusted for possible confounding effects
of age, sex, and ethnicity. Strengths include the character-
ization of two similarly obese groups of adolescents who
differed in their abdominal fat distribution, the use of
state-of-the-art measurements of insulin sensitivity and
imaging techniques for assessment of lipid content in liver
and muscle, and the use of newer technology to charac-
terize adipose cell-size distribution in a more sophisticated
manner, along with measurements of the expression of
genes regulating adipogenesis and lipogenesis.
A hypothetical model explaining the cellular and
adipogenic profiles of the phenotype high VAT/
(VAT�SAT) abdominal fat. The cellularity and, more
importantly, the decreased adipogenic and lipogenic pro-
files profoundly affect the ability of subcutaneous fat to
expand (Fig. 5). Lipogenesis in the subcutaneous tissue is
turned down, while the amount of plasma free fatty acids
rises. The overflow in lipids leads to ectopic fat deposition in
the visceral depot and the liver, which in turn leads to an
impaired function of the target organ and to insulin
resistance.
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