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The mammalian cytoskeleton forms a mechanical continuum that spans across the cell,
connecting the cell surface to the nucleus via transmembrane protein complexes in the
plasma and nuclear membranes. It transmits extracellular forces to the cell interior,
providing mechanical cues that influence cellular decisions, but also actively generates
intracellular forces, enabling the cell to probe and remodel its tissue microenvironment.
Cells adapt their gene expression profile and morphology to external cues provided by the
matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear
volume. The cytoskeleton is a complex filamentous network of three interpenetrating
structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin
cytoskeleton is considered the main contributor to mechanosensitivity. This view is now
shifting owing to the mounting evidence that the three cytoskeletal filaments have
interdependent functions due to cytoskeletal crosstalk, with intermediate filaments
taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers
mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate
filaments. We propose a view of the cytoskeleton as a composite structure, in which
cytoskeletal crosstalk regulates the local stability and organization of all three filament
families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell
adaptation to external cues at the tissue scale.
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INTRODUCTION

The cytoskeleton is a fascinating cellular machinery that performs multiple, to some extent
contradictory, functions. It acts as a stable structural scaffold providing cells with a specific
functional shape and protecting against external forces. Accordingly, genetic defects in
cytoskeletal proteins are associated with mechanical defects in cells and tissues, which for
instance result in kidney scarring (Feng et al., 2018), skin fragility (Haines and Lane 2012), and
muscle failure (Adil et al., 2021). On the other hand, the cytoskeletal structures are also dynamic
enough to enable cell migration, division and mechanosensitive response to the environment
(Chaudhuri et al., 2020).

Although the cytoskeleton is highly dynamic at the subcellular (nm) scale, it nevertheless
maintains structural integrity at the cell scale (microns) and at the tissue scale (up to
millimeters). This disparity is most likely due to the composite nature of the cytoskeleton, based
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around three protein filament networks with distinct structural,
mechanical and biochemical properties: actin filaments,
microtubules, and intermediate filaments (Figures 1A,B). All
three filaments are reversible polymers that self-assemble from
weakly interacting subunits whose local availability is a critical
determinant of local cytoskeletal dynamics (Plastino and

Blanchoin 2018; Ohi et al., 2021). Both actin filaments and
microtubules are structurally polar filaments, respectively
composed of actin monomers that hydrolyze ATP, and tubulin
dimers that hydrolyze GTP. They both exhibit fast ( ~ seconds to
minutes) turnover rates fueled by ATP/GTP hydrolysis (Theriot
and Mitchison 1991; McNally 1996). By contrast, intermediate

FIGURE 1 |Cytoskeletal crosstalk between intermediate filaments (IFs), actin filaments (AFs) andmicrotubules (MTs) contributes to mechanosensing: (A) at the cell
surface: mechanical signals emerging from the matrix (A1) or from neighboring cells (A2); (B) in the propagation of mechanical signals across the cell cytoplasm and (C)
up to the cell nucleus. (A1) At cell-matrix adhesions, actin/vimentin crosstalk regulates focal adhesion turnover, which results in dissipation of local stresses.
Fluorescence image from (Gregor et al., 2014) shows the intimate spatial relation between vimentin (vm), plectin and vinculin, orchestrating focal adhesion turnover;
scale bar is 10 µm. (A2) At cell-cell adhesions, actin/intermediate filament crosstalk is activated upon tensile (pulling) forces and participates in the regulation of cellular
prestress. (B) In the dense cytoplasm, mechanical forces are transmitted through all three cytoskeletal networks. The intermediate filament network affects the (de)
polymerization rates of the other two networks, and the three networks co-align. Fluorescence image from (Vohnoutka et al., 2019) demonstrates the dense organization
of vimentin, microtubules (MT) and actin. Vimentin spans from membrane sites to the nucleus (DAPI) and forms a cage surrounding the nucleus. Scale bar is 50 µm. (C)
At the nucleus, forces are transmitted between the cytoskeleton and chromatin through LINC complexes, affecting nuclear shape and heterochromatin density, while
intermediate filaments protect the nucleus from large deformations. Fluorescence image from (Feliksiak et al., 2020) shows microtubules and vimentin around the
nucleus (DAPI); scale bar = 15 µm. Areas marked by A-B-C demonstrate the tight association of vimentin with nuclear grooves.
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filaments are non-polar filaments that lack intrinsic enzymatic
activity (Li et al., 2006; Robert et al., 2015). Their remodeling
occurs by slow ( ~ hours) exchange of filamentous tetramers
(Çolakoğlu and Brown 2009; Nöding et al., 2014; Robert et al.,
2015). It has been proposed that this long-lived intermediate
filament network mechanically integrates the cytoskeleton and
provides structural memory that helps maintain cell polarity
(Gan et al., 2016).

Each of the three cytoskeletal networks has its own set of
dedicated regulatory proteins that control their structure,
dynamics and mechanics with high spatial and temporal
precision (Plastino and Blanchoin 2018; Dutour-Provenzano
and Etienne-Manneville 2021; Gudimchuk and McIntosh
2021). Cells are thus able to form different specialized
cytoskeletal arrays, such as the branched actin networks at the
leading edge of migrating cells, the microtubule spindle in
dividing cells, and an intermediate filament cage-like structure
that protects the nucleus of cells during confined migration. The
posttranslational addition of various chemical groups further
enhances the complexity of the cytoskeletal proteome, hence
the ability of the cell to fine-tune cytoskeletal functions
(MacTaggart and Kashina 2021).

It is increasingly recognized that the functions of the three
structural systems are tightly coupled via crosslinkers, motors,
adhesion complexes and shared signaling factors. Recently, our
understanding of the molecular mechanisms of cytoskeletal
crosstalk and its consequences for cell shape, mechanics and
fundamental processes such as directional migration, has grown
(Huber et al., 2015; van Bodegraven and Etienne-Manneville
2020). Still, the role of cytoskeletal crosstalk in cellular
mechanosensitivity remains poorly understood. Traditionally
actin filaments are considered as the main contributor to
mechanosensitivity, since they actively apply contractile
(traction) forces to the extracellular matrix and to adjacent
cells via specialized adhesion complexes and transmit
mechanical signals to the nucleus, for instance via LINC
complexes (Sun et al., 2016; Yap et al., 2018). Microtubules
are thought to play mainly a regulatory role through their
interactions with the actin cytoskeleton and with cell-matrix
and cell-cell adhesions (Dogterom and Koenderink 2019; Rafiq
et al., 2019; Pimm and Henty-Ridilla 2021). Intermediate
filaments are usually considered as passive cytoskeletal
elements that maintain cell/tissue integrity. However, there is a
growing appreciation that intermediate filaments play a central
role in cellular mechanosensitivity, forming a mechanically
strong yet responsive network that links to the actin and
microtubule cytoskeleton, cell adhesions, and nuclear
complexes (Chang and Goldman 2004). This is especially
intriguing because intermediate filaments exhibit much more
tissue diversity than the other cytoskeletal subsystems. The
actin and microtubule cytoskeleton are differently organized in
different cell types, but their molecular composition is relatively
conserved, with a limited number of isoforms. By contrast, there
are ~ 70 intermediate filament genes in humans, with further
diversity arising from alternative splicing. For instance, different
types of epithelial cells express different sets of keratins,
mesenchymal cells express vimentin, muscle cells express

desmin, and neurons express neurofilaments. Intermediate
filaments are hence widely used as markers for differentiation
(Redmond and Coulombe 2021; Sjöqvist et al., 2021). Herein, we
review evidence pointing to the importance of cytoskeletal
crosstalk in cellular mechanosensitivity, with a particular focus
on the role of intermediate filaments. We demonstrate how
intermediate filaments span from cell-cell and cell-matrix
adhesion sites, through the cytoplasm and up to the nucleus
(see Figure 1), thereby orchestrating long-range mechano-
chemical crosstalk between the cytoskeleton, cell adhesions,
and internal processes.

CONTRIBUTIONS OF CYTOSKELETAL
CROSSTALK TO MECHANOSENSING AT
THE CELL MEMBRANE

Mechanosensing at Cell/Extracellular
Matrix Contacts
Cell-matrix contacts are key players in mechanotransduction as
they enable cells to apply forces on the extracellular matrix, in
response to its mechanical properties (Sun et al., 2016). These
matrix contacts are essential for determining cell polarity,
directional migration and the cell’s ability to remodel the
extracellular matrix (Brabletz et al., 2021). The role of actin-
based transmembrane adhesion complexes, including but not
limited to focal adhesions, in mechanosensitivity has been
extensively reviewed (Kechagia et al., 2019). The role of the
other two cytoskeletal filament families in mechanosensitivity
of cell-matrix contacts is recently gaining more attention (Leube
et al., 2015; Sanghvi-Shah and Weber 2017; van Bodegraven and
Etienne-Manneville 2020).

Focal adhesions are mostly identified with actin-based
structures; however, multiple intermediate filament proteins
have also been identified at focal adhesions (Figure 1A1). In
epithelial cells, keratin filaments are nucleated at focal adhesions
and transported inwards assisted by the actin cytoskeleton
(Windoffer et al., 2006; Leube et al., 2015). In fibroblasts and
endothelial cells, vimentin filaments are anchored to focal
adhesions and regulate their size and adhesion strength
(Bhattacharya et al., 2009; Kim et al., 2010; Gregor et al., 2014;
Kim et al., 2016; Terriac et al., 2017; Vohnoutka et al., 2019). This
involves direct force transmission from cell surface integrins to
the cell interior (Maniotis et al., 1997), regulating actin stress
fibers (Jiu et al., 2015; Jiu et al., 2017) and the associated
mechanosensing machinery (Gregor et al., 2014). Focal
adhesion anchoring enables vimentin to promote integrin-
mediated activation of the major mechanosensor focal
adhesion kinase (FAK) and its downstream tension-dependent
signaling cascade (Gregor et al., 2014). Actomyosin-dependent
rigidity sensing controls microtubule acetylation, which in turn
tunes the mechanosensitivity of focal adhesions (Seetharaman
et al., 2021). Since microtubule acetylation also affects the
association of intermediate filaments with actin bundles at
focal adhesions, this points to a complex three-way feedback
mechanism that still remains to be disentangled. Cell adhesion is
tightly connected to migration; Vimentin tunes cell migration
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through collagen and fibronectin matrices (Ding et al., 2020;
Ostrowska-Podhorodecka et al., 2021, Ostrowska-Podhorodecka,
Ding et al. 2021). Persistent collective migration of astrocytes was
dependent on the size and turnover of focal adhesions, in a cell-
specific (leader vs. follower) manner. The regulation of focal
adhesions and cell-cell contacts requires the intermediate
filament network, which is composed mainly of glial fibrillar
acidic protein (GFAP), vimentin, and nestin (Moeton et al., 2016;
De Pascalis et al., 2018). Intermediate filaments also modulate
traction forces; in migrating fibroblasts, the vimentin
cytoskeleton was shown to slow down actin retrograde flows,
while promoting orientation of actin stress fibers and traction
forces (Costigliola et al., 2017). Intermediate filaments modulate
also forces oriented perpendicularly to the substrate, through
invadopodia (Schoumacher et al., 2010), possibly via interacting
with actin capping proteins (Lanier et al., 2015).

Intermediate filaments are further anchored to the cell surface by
proteins of the plakin family, specifically plectin in hemidesmosomes
and desmoplakin in desmosomes (Dowling et al., 1996; Mohammed
et al., 2020). Plectin is a major crosslinker connecting the three
cytoskeletal filament families (Svitkina et al., 1996; Wiche et al.,
2015). Molecular dynamic simulations suggested that plakins act as
mechanosensors: pulling forces resulted in plectin and desmoplakin
unfolding and exposure of the SH3 domain, which may potentially
trigger downstream signaling cascades (Daday et al., 2017).
Experimentally, activated plectins were shown to promote
microtubule destabilization through their interaction with MAP2,
which antagonizes the MAP2-mediated stabilization of MTs
(Valencia et al., 2013). Recent studies indicate that FAs and
hemidesmosomes are mechanically coupled (Nardone et al., 2017;
Wang et al., 2020).

Mechanosignalling at Cell-Cell Contacts
Cell-cell interactions play a crucial role in physiological
mechanosensitive processes such as tissue morphogenesis, but
also in pathological processes such as inflammatory bowel
diseases (Adil et al., 2021). Cells interact through cadherin-
based adherens junctions that connect the actin networks of
neighboring cells in epithelia and endothelia, and desmosomes
that connect the intermediate filaments of neighboring cells and
reinforce tissues that experience high mechanical stress such as
the epidermis (Rübsam et al., 2018; Broussard et al., 2020)
(Figure 1A2). Besides providing mechanical coherence, both
adhesions are involved in cell and tissue adaptation to
mechanical cues (Charras and Yap 2018; Angulo-Urarte et al.,
2020; Zuidema et al., 2020). The mechanosensitivity of adherens
junctions was shown to rely on force-sensitive conformational
changes of α-catenin and vinculin (Yao et al., 2014; Seddiki et al.,
2018). Desmosomes are sites of local assembly/reorganization of
keratin filaments (Kim et al., 2021), similar to hemidesmosomes.
Desmoplakin, one of the core proteins of desmosomes that binds
keratin filaments (Bornslaeger et al., 1996), was recently shown to
experiences forces in the pN range in stretched epithelial
monolayers, suggesting its load-bearing function (Price et al.,
2018).

Although previous studies examining adherens junctions
(Engl et al., 2014) and desmosomes (Price et al., 2018)

considered the different cytoskeletal networks separately, there
is evidence that the three cytoskeletal elements interdependently
modulate the dynamical properties of cell-cell junctions.
Microtubules promote actin recruitment at adherens junctions
and intercellular transmission of the contractile forces generated
by the actomyosin network (Ko et al., 2019). In migrating
astrocytes, intermediate filaments influence actin-driven
retrograde flow of adherens junctions (De Pascalis et al.,
2018). In migrating epithelial cells, desmosome dynamics was
shown to depend on both intermediate filaments and actin
(Roberts et al., 2011). Intermediate filaments also appear to be
involved in vascular permeability (Bayir and Sendemir 2021) by
helping to organize continuous adherens junctions and the
underlying actin network via plectin crosslinking (Osmanagic-
Myers et al., 2015). In epithelia, plectin mechanically couples
cortical keratin and actin networks and ensures a uniform
distribution of actomyosin-generated forces (Prechova et al.,
2022). Finally, growing evidence points to collaboration
between intermediate filament-desmosome and actin-adherens
junction networks during mechanosensing and force generation
(reviewed in (Zuidema et al., 2020)).

CONTRIBUTIONS OF CYTOSKELETAL
CROSSTALK TO FORCE TRANSMISSION
THROUGH THE CYTOPLASM
Physical interactions between intermediate filaments, actin, and
microtubules influence the mechanical properties of the
cytoskeleton as a whole, and hence force transmission from
the cell surface to the nucleus (Figure 1B). The three
cytoskeletal filaments strongly differ in their bending rigidity,
as quantified by the persistence length, lp. Intermediate filaments
are most flexible, with lp ≈ 0.5–2 μm, microtubules are most rigid,
with lp ≈ 1–10 mm, and actin filaments are intermediate with lp ≈
8 μm (Huber et al., 2015). The filaments also strongly differ in
their rupture strain: actin filaments and microtubules only
support small tensile strains whereas intermediate filaments
support large elongations because their subunits can slide and
unfold (Block et al., 2017). Understanding how these single-
filament properties translate in cell-scale mechanics is
challenging given the molecular and structural complexity of
the cytoskeleton. Cell-free reconstitution experiments are hence
essential to elucidate the individual and collaborative roles of the
different cytoskeletal filaments in cytoskeletal mechanics.

Reconstituted networks of purified actin and intermediate
filaments (vimentin or keratin) strain-stiffen when exposed to
shear or tensile stresses. These filaments are semiflexible, with a
persistence length that is of the same order as the contour length.
Experiments and theoretical modelling demonstrated that strain-
stiffening occurs because the thermally undulating filaments are
straightened out by tensile strains, which reduces the
conformational entropy of the fluctuating polymer segments
between adjacent crosslinks, and hence opposes further
deformation (Gardel et al., 2004; Broedersz and MacKintosh
2014). Depending on the time scale of the imposed mechanical
load, reconstituted vimentin networks can additionally dissipate
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mechanical stress because crosslinks between filaments can
remodel and the filaments themselves lengthen by subunit
unfolding and sliding elongations (Aufderhorst-Roberts and
Koenderink 2019; Forsting et al., 2019). Combining the different
cytoskeletal polymers in composite networks demonstrates
intriguing co-dependent mechanical properties. Actin/vimentin
and actin/microtubule mixtures were shown to exhibit
enhanced stiffness and compressibility compared to the single-
component networks (Esue et al., 2006; Pelletier et al., 2009; Lin
et al., 2011). Furthermore, microtubules were shown to counteract
myosin motor-driven contraction of actin networks through their
ability to bear large compressive loads (Lee et al., 2021a). Physical
interactions also introduce co-dependent polymerization dynamics
of the three cytoskeletal polymers. Branched actin networks reduce
the growth rate of microtubules and trigger their depolymerization
(Colin et al., 2018), while vimentin filaments bind to microtubules
and stabilize them against depolymerization (Schaedel et al., 2021)
and also bind to actin filaments (Esue et al., 2006). In the presence
of crosslinkers and motors, the three filament systems can
additionally co-align and (re-)direct each other’s polymerization
direction (Preciado López et al., 2014; Gan et al., 2016; Leduc and
Etienne-Manneville 2017).

These physical effects identified in simplified reconstituted
systems likely contribute to mechanical co-dependencies observed
in cells, such as toughening by stress dissipation in the vimentin
network (Hu et al., 2019), protection against compressive forces by
the vimentin network (Mendez et al., 2014), and vimentin-
dependent modulation of actin-myosin contractility (De Pascalis
et al., 2018). Raman imaging recently showed that actomyosin forces
are transmitted to the intermediate filament cytoskeleton: cells on
rigid substrates, where myosin contractility is high (Gupta et al.,
2019), contained more unfolded vimentin than on soft substrates,
where tension is low (Fleissner et al., 2020). In epithelial monolayers
a similar mechanical interplay between the actin and intermediate
filament networks was found (Latorre et al., 2018), where cell
stretching dilutes the actin cortex and hence decreases tension,
while keratin filaments that bear tension re-stiffen the cells. There
is evidence that microtubules also contribute to the overall
mechanical balance; epithelial folding was for instance shown to
emerge from the balance between myosin contractile forces and
microtubule-generated pushing forces (Takeda et al., 2018). It would
be interesting to evaluate more systematically how mechanical co-
dependencies among the three cytoskeletal filament families respond
to modified substrate stiffness.

TABLE 1 | Selected examples of known cytoskeletal crosstalk interactions relevant for environmental mechanosensing that involve intermediate filaments. Interactions are
sorted by subcellular localization, noting the structural and crosslinker proteins known to be involved in the crosstalk, as well as the major cellular function.

Localization Relevant
Cytoskeletal
Filaments

Interacting Proteins Cellular Function References

Ventral membrane (Focal
adhesions; epithelial cells)

Keratin Zyxin Focal adhesions control keratin formation,
turnover and transport

(Windoffer et al., 2006; Leube et al., 2015)
Paxillin

Actin Talin
Ventral membrane (Focal
adhesions; mesenchymal
cells)

Vimentin Plectin Vimentin restricts focal adhesion size and
regulates integrin trafficking; focal adhesions
control vimentin organization

(Bhattacharya et al., 2009; Kim et al., 2010;
Gregor et al., 2014; Kim et al., 2016; Terriac
et al., 2017; Vohnoutka et al., 2019)

Integrins β1, β3
Vinculin

Actin FAK
Hic-5
Filamin A

Lamellipodia (Fibroblasts) Vimentin RAC1 Vimentin detachment from membrane sites is
essential for lamellipodia formation

Helfand et al. (2011)
Actin

Membrane:
(hemidesmosomes; epithelial
cells)

Keratin Integrin α6β4 Hemidesmosomes control keratin
organization, likely important for tissue
resilience

(Colburn and Jones 2018; Moch and
Leube 2021)Actin

Microtubules
Membrane: (Cell-Cell
junctions + leading edge;
astrocytes)

Vimentin Paxillin Vimentin promotes collective directed
migration by regulating actomyosin traction
force generation

De Pascalis et al. (2018)
Plectin

Actin N-Cadherin
E-Catenin

Cortex Vimentin Plectin Vimentin interaction maintains cortex tension,
required for cell division of confined cells

(Duarte et al., 2019; Serres et al., 2020)
Actin

Cytoplasm (mesenchymal
cells)

Vimentin Plectin Plectins crosslink the cytoskeletal networks
for cell integrity; vimentin regulates actin stress
fibers

(Svitkina et al., 1996; Jiu et al., 2017)
Actin
Microtubules

Cytoplasm (mesenchymal
cells)

Vimentin Plectin Actin arcs drive perinuclear vimentin
accumulation; vimentin restrains width of the
actin-filled lamellum

(Jiu et al., 2015; Lowery et al., 2015)
Actin

Cytoplasm Actin Plectin Matrix rigidity sensing and cell mechanical
properties

(Guo et al., 2013; Bonakdar et al., 2015;
Laly et al., 2021)Keratin14

Lamin A/C Paxillin
Nucleus Vimentin LINC complex formed

by sun and nesprin
proteins

Nucleo-cytoskeletal force transmission
maintains nuclear position under strain and
during migration

(Folker et al., 2011; Lombardi et al., 2011;
Marks and Petrie 2022)Actin

Microtubules
Lamin A/C
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CONTRIBUTIONS OF CYTOSKELETAL
CROSSTALK TO MECHANOSENSITIVITY
AT THE NUCLEUS
The nucleus plays a key role in mechanotransduction and
mechanosensing (reviewed in (Kirby and Lammerding 2018;
Janota et al., 2020)). Nuclear chromatin and the cytoskeleton are
physically linked through the LINC (Linker of Nucleoskeleton and
Cytoskeleton) complex (Bouzid et al., 2019), which is associated with
chromatin and nuclear lamins, members of the intermediate
filament family (Figure 1C). Actin filaments are anchored to the
nucleus via nesprin-1 and nesprin-2, intermediate filaments via
nesprin-3, andmicrotubules via nesprin-4 (Zhen et al., 2002;Warren
et al., 2005; Wilhelmsen et al., 2005; Roux et al., 2009). Considering
the role of intermediate filaments in mechanical stabilization of the
nucleus, as shown for vimentin (Patteson et al., 2019) and keratin
(Almeida et al., 2015), we propose that future work should focus
further on resolving the interactions between the three cytoskeletal
components at the nuclear envelope in response to changes in
substrate rigidity, for instance by superresolution microscopy and
molecular tension sensors (Arsenovic et al., 2016; Leduc and
Etienne-Manneville 2017).

The physical links between the nuclear lamins and the
cytoskeleton provide continuous feedback between the
mechanical properties of the nucleus of the cell and its
environment (Buxboim et al., 2014; Lomakin et al., 2020;
Venturini et al., 2020). Soft substrates promote phosphorylation
and turnover of lamin A/C, resulting in softer and less spread nuclei
(Buxboim et al., 2014). Pushing forces on the nuclear envelope
exerted by microtubules are balanced by the laminA network for the
maintenance of a round nuclear shape (Ramdas and Shivashankar
2015; Tariq et al., 2017). In differentiating Hematopoietic Stem and
Progenitor (HSPC) cells, local nuclear invaginations associated with
centrosomes andmicrotubule bundles depend on the laminB density
and the activity of dynein (Biedzinski et al., 2020). Such local
interactions at the nucleus possibly depend on environmental
cues. In MEFs plated on micropatterned substrates with
independent control over the overall cell shape and the focal
adhesion size, the cell-ECM contact size was shown to have more
impact than cell shape on overall cell polarization, in a LaminA
dependent manner (Lee et al., 2021b). These results strengthen the
notion that cytoskeletal crosstalk affects mechanoresponsiveness all
the way from the cell surface to the nucleus.

DISCUSSION

In this mini-review, we gathered recent evidence demonstrating
the contribution of cytoskeletal crosstalk in transferring

mechanical signals from contact points at the plasma
membrane to the nucleus. Intermediate filaments play a
central role in this crosstalk, by interacting with the actin and
microtubule cytoskeleton, cell-cell and cell-matrix adhesions, and
nuclear complexes. We propose to shift focus in cytoskeletal and
mechanobiological research towards a more holistic view of the
cytoskeleton as a composite structure, examining the responses of
all three structural families to mechanical cues. The central role of
intermediate filaments in mechanosensitivity may render cell/
tissue-specific mechanosensitivity. Moreover, during
development, aging or pathology, the composition of the
intermediate filament cytoskeleton undergoes major changes
(Redmond and Coulombe 2021; Sjöqvist et al., 2021). This
raises the hypothesis that there may be an “intermediate
filament code” that confers cell type-specific mechanosensitive
functions.

Elucidating the mechanisms by which intermediate filaments
contribute to mechanosensing and mechanotransduction is far
from trivial given the molecular complexity of the cytoskeletal
proteome together with its cell/tissue specificity. Connecting the
manifold molecular-scale interactions to the emergent mechano-
biological functions at the cellular level is also challenging. To
delineate the functions of different intermediate filament proteins
across scales, we believe that it is vital to combine studies in cell
culture models and model organisms, where cells can be studied
in their native context, with studies of “clean” reconstituted
systems, where cytoskeletal crosstalk can be studied under
controlled conditions to facilitate combinations with predictive
models.
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