

Received 30 May 2015 Accepted 30 June 2015

Edited by G. Smith, Queensland University of Technology, Australia

**Keywords**: crystal structure; organic salt; molecular adduct; hydrogen bonds; succinate; succinic acid; cyclohexylammonium cation

**CCDC reference**: 1409738 **Supporting information**: this article has supporting information at journals.iucr.org/e





# Crystal structure of the bis(cyclohexylammonium) succinate succinic acid salt adduct

Modou Sarr,  $^{a\ast}$  Aminata Diasse-Sarr,  $^{a}$  Libasse Diop,  $^{a}$  Laurent Plasseraud  $^{b}$  and Hélène Cattey  $^{b\ast}$ 

<sup>a</sup>Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senégal, and <sup>b</sup>ICMUB UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France. \*Correspondence e-mail: modousarr41@gmail.com, hcattey@u-bourgogne.fr

The crystal structure of the title salt adduct,  $2C_6H_{14}N^+ \cdot C_4H_4O_4^{2-} \cdot C_4H_6O_4$ , consists of two cyclohexylammonium cations, one succinate dianion and one neutral succinic acid molecule. Succinate dianions and succinic acid molecules are self-assembled head-to-tail through  $O-H \cdot \cdot \cdot O$  hydrogen bonds and adopt a *syn-syn* configuration, leading to a strand-like arrangement along [101]. The cyclohexylammonium cations have a chair conformation and act as multidentate hydrogen-bond donors linking adjacent strands through intermolecular  $N-H \cdot \cdot O$  interactions to both the succinate and the succinic acid components. This results in two-dimensional supramolecular layered structures lying parallel to (010).

#### 1. Chemical context

In the field of crystal engineering, dicarboxylic acids constitute very suitable building blocks which can act as polydirectional synthons and thus present numerous possibilities for molecular assembly through the formation of hydrogen-bonded networks (Ivasenko & Perepichka, 2011). Furthermore, the additional involvement of amines, via the formation of ammonium cations, significantly increases the potential for linkage and the topological diversity (Yuge et al., 2008; Lemmerer, 2011). Some papers dealing with spectroscopic studies on quaternary ammonium hydrogenoxalates have been reported from our laboratory (Gueye & Diop, 1995). In the scope of our current studies on the interactions between quaternary ammonium salts of carboxylic acids and halogenidotin(IV) complexes (Gueve et al., 2014), the reaction involving cyclohexylamine and succinic acid was initiated and led to the isolation of the title organic salt adduct  $2C_6H_{14}N^+ \cdot C_4H_4O_4^{2-} \cdot C_4H_6O_4$ , (I), the structure of which is reported herein.



#### 2. Structural comments

The asymmetric unit of (I) contains two cyclohexylammonium cations, one succinate dianion and one molecule of succinic acid (Fig. 1). By comparison with previous examples

# research communications



Figure 1

A view of the two cyclohexaminum cations, the succinate dianion and the succinic acid adduct species in the asymmetric unit of (I), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

(Büyükgüngör & Odabaşoğlu, 2002; Bruno et al., 2004; Du et al., 2009; Zhang et al., 2011; Froschauer & Weil, 2012), it is interesting to note that the carbon-oxygen bond distances recorded for the succinic acid [C1-O1 = 1.2974 (17), C1-O2]= 1.2356 (17), C4 - O3 = 1.2367 (17), C4 - O4 = 1.2961 (16)and the succinate dianion [C5-O5 = 1.2955 (17), C5-O6 =1.2356(18), C8-O7 = 1.2348(18) and C8-O8 = 1.2894(17)] are very similar. In general, a more pronounced difference in length is expected between the C=O bond and the C-OH bond of succinic acid (in the range of 0.1 Å), while for the succinate dianion the deviation between the C-O bonds is narrowed (in the range of 0.01 Å). Thus, to confirm more accurately the nature of the components of (I), namely the presence of distinct succinic acid and succinate species, electron-density mapping has been performed (Fig. 2). It follows that the location of the acidic protons is clearly established, confirming unambiguously the composition of (I). Moreover, the relative equalizing of the carbon-oxygen bonds can be explained by the contribution of concomitant N-H···O interactions involving all oxygen atoms of succinic acid and the succinate dianion with surrounding cyclohexylammonium cations. The average C-C-C-O torsion angle, calculated on 616 succinic acids, is equal to 171 (12)° with a deviation of the mean equal to  $0.4^{\circ}$ , whereas the average torsion angle calculated on 964 succinate acids is equal to  $167 (12)^{\circ}$  with a deviation of the mean also equal to 0.4°. These results match the torsion angles found in (I) for succinic acid: 154.09 (16),



Figure 2

Electron-density mapping around  $C_4H_6O_4$  and  $C_4H_4O_4{}^{2-}$ , showing the precise location of acidic protons.

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$           | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------------|----------------|-------------------------|--------------|------------------|
| N1 H14 O5 <sup>i</sup>     | 0.01           | 1.00                    | 2 8022 (16)  | 172              |
| $N1 - H1R \dots O2^{ii}$   | 0.91           | 2 10                    | 2.8923 (10)  | 146              |
| $N1 - H1C \cdots O7^{iii}$ | 0.91           | 1.86                    | 2.7279 (15)  | 158              |
| $N2-H2A\cdots O8^{iv}$     | 0.91           | 2.00                    | 2.8746 (16)  | 160              |
| $N2-H2B\cdots O3^{i}$      | 0.91           | 2.17                    | 2.9098 (15)  | 138              |
| $N2-H2C\cdots O6^{v}$      | 0.91           | 1.94                    | 2.7485 (15)  | 148              |
| $O1-H1\cdots O8^{vi}$      | 0.84           | 1.64                    | 2.4734 (13)  | 175              |
| $O4-H4\cdots O5$           | 0.84           | 1.63                    | 2.4636 (13)  | 175              |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x - 1, y - 1, z - 1; (iv) -x + 1, -y + 1, -z + 2; (v) x, y - 1, z; (vi) x - 1, y, z - 1.

156.32 (12), 159.25 (17) and 161.07 (12)° but those found for the succinate anion are rather different: 121.41 (15), 121.78 (17), 151.8 (2) and 152.14 (13)°.

#### 3. Supramolecular features

From a supramolecular point of view, the four components of (I) are involved in the self-assembly. The succinate dianion and succinic acid are linked head-to-tail through short O– $H \cdots O$  hydrogen bonds [2.4636 (13) and 2.4734 (13) Å] (Table 1) leading to infinite strands which extend along [101]. These intermolecular distances are consistent with the mean of 2.52 Å with a sample standard deviation of 0.06 Å observed on a sample of 25 observations from the CSD on a set of structures containing both a succinic acid and a succinate anion. The cyclohexylammonium cations operate as multidentate hydrogen-bond donors through  $N-H \cdots O$  inter-





Crystal packing of (I) viewed along the *a* axis, showing the infinite strands based on succinate–succinic acid hydrogen-bonding interactions and linked through the cyclohexylammoninum cations into sheets. Intermolecular hydrogen bonds are shown as dashed blue lines. H atoms not involved in hydrogen bonding are omitted for clarity. Colour code: C dark grey, H light grey, O red, N blue.

actions linking the succinate–succinic acid strands, giving twodimensional supramolecular layers lying parallel to (010) (Fig. 3).

#### 4. Synthesis and crystallization

The title compound was obtained by reacting cyclohexylamine (5.76 mL) with succinic acid (5.0 g) in a molar ratio of 2:1, in 50 mL of water, at 298 K. The resulting clear solution was allowed to evaporate at 298 K leading after a few days to colourless block-like crystals suitable for an X-ray crystal structure determination.

#### 5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms, on carbon, oxygen and nitrogen atoms were placed at calculated positions using a riding model with C-H = 1.00 (methine) or 0.99 Å (methylene) and with  $U_{iso}(H) = 1.2U_{eq}(C)$ , or O-H = 0.84 Å (hydroxyl), N-H = 0.91 Å (amine) with  $U_{iso}(H) = 1.5U_{eq}(O$ or N).

#### Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

#### References

- Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287–o289.
- Büyükgüngör, O. & Odabaşoğlu, M. (2002). Acta Cryst. C58, o691– o692.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Du, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2009). Acta Cryst. E65, 0607–0608.
- Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555.

| Table  | 2      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                               |                                                      |
|----------------------------------------------------------------------------|------------------------------------------------------|
| Chemical formula                                                           | $2C_6H_{14}N^+ \cdot C_4H_4O_4^{2-} \cdot C_4H_6O_4$ |
| Mr                                                                         | 434.52                                               |
| Crystal system, space group                                                | Triclinic, $P\overline{1}$                           |
| Temperature (K)                                                            | 115                                                  |
| a, b, c (Å)                                                                | 9.5147 (5), 10.4479 (6), 11.4082 (6)                 |
| $\alpha, \beta, \gamma$ (°)                                                | 96.789 (2), 93.287 (2), 90.945 (2)                   |
| $V(Å^3)$                                                                   | 1123.96 (11)                                         |
| Z                                                                          | 2                                                    |
| Radiation type                                                             | Mo $K\alpha_1$                                       |
| $\mu \text{ (mm}^{-1})$                                                    | 0.10                                                 |
| Crystal size (mm)                                                          | $0.5 \times 0.3 \times 0.25$                         |
| Data collection                                                            |                                                      |
| Diffractometer                                                             | Nonius Kappa APEXII                                  |
| Absorption correction                                                      | Multi-scan (SADABS; Bruker, 2014)                    |
| $T_{\min}, T_{\max}$                                                       | 0.710, 0.746                                         |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 30513, 5190, 4273                                    |
| R <sub>int</sub>                                                           | 0.030                                                |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.652                                                |
| Refinement                                                                 |                                                      |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.043, 0.115, 1.03                                   |
| No. of reflections                                                         | 5190                                                 |
| No. of parameters                                                          | 275                                                  |
| H-atom treatment                                                           | H-atom parameters constrained                        |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.38, -0.52                                          |

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXS2014* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *OLEX2* (Dolomanov et al., 2009) and *Mercury* (Macrae et al., 2008).

Gueye, O. & Diop, L. (1995). Afr. J. Sci. Tech. Ser. B, 7, 81-86.

- Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49-m50.
- Ivasenko, O. & Perepichka, D. F. (2011). Chem. Soc. Rev. 40, 191–206.
- Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Yuge, T., Sakai, T., Kai, N., Hisaki, I., Miyata, M. & Tohnai, N. (2008). Chem. Eur. J. 14, 2984–2993.

Zhang, M., Wang, C. & Fan, Z. (2011). Acta Cryst. E67, o2504.

# supporting information

Acta Cryst. (2015). E71, 899-901 [doi:10.1107/S2056989015012621]

# Crystal structure of the bis(cyclohexylammonium) succinate succinic acid salt adduct

# Modou Sarr, Aminata Diasse-Sarr, Libasse Diop, Laurent Plasseraud and Hélène Cattey

## **Computing details**

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS2014* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

### Bis(cyclohexylammonium) succinate succinic acid

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Crystal data                                         |                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| $\begin{array}{lll} M_r = 434.52 \\ \text{Triclinic, } PI \\ a = 9.5147 (5) Å \\ b = 10.4479 (6) Å \\ c = 11.4082 (6) Å \\ a = 96.789 (2)^{\circ} \\ \beta = 93.287 (2)^{\circ} \\ \gamma = 90.945 (2)^{\circ} \\ V = 1123.96 (11) Å^3 \\ \end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2C_6H_{14}N^+ \cdot C_4H_4O_4^{2-} \cdot C_4H_6O_4$ | Z = 2                                                              |
| Triclinic, P1<br>$a = 9.5147$ (5) Å $D_x = 1.284 \text{ Mg m}^{-3}$ $a = 9.5147$ (5) ÅMo $Ka_1$ radiation, $\lambda = 0.71073$ Å $b = 10.4479$ (6) ÅCell parameters from 9937 reflections $c = 11.4082$ (6) Å $\theta = 2.5-27.6^{\circ}$ $a = 96.789$ (2)° $\mu = 0.10 \text{ mm}^{-1}$ $\beta = 33.287$ (2)° $T = 115 \text{ K}$ $\gamma = 90.945$ (2)°Prism, colourless $V = 1123.96$ (11) Å3 $0.5 \times 0.3 \times 0.25 \text{ mm}$ Data collectionNonius Kappa APEXII<br>diffractometerRadiation source: X-ray tube, Siemens KFF Mo<br>2K-180 $30513 \text{ measured reflections}$ Graphite monochromator<br>$\varphi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan<br>(SADABS; Bruker, 2014) $k = -13 \rightarrow 13$<br>$l = -14 \rightarrow 14$ RefinementRefinementRefinement on $F^2$<br>Least-squares matrix: full<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sites $Refi^{2} > 2\sigma(F^{2}) = 0.043$<br>$where P = (F_o^2 + 2F_c^2)/3where P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $M_r = 434.52$                                       | F(000) = 472                                                       |
| $a = 9.5147 (5) Å$ Mo $Ka_1$ radiation, $\lambda = 0.71073 Å$ $b = 10.4479 (6) Å$ Cell parameters from 9937 reflections $c = 11.4082 (6) Å$ $\theta = 2.5-27.6^{\circ}$ $a = 96.789 (2)^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ $\beta = 93.287 (2)^{\circ}$ $T = 115 \text{ K}$ $\gamma = 90.945 (2)^{\circ}$ Prism, colourless $V = 1123.96 (11) Å^3$ $0.5 \times 0.3 \times 0.25 \text{ mm}$ Data collectionNonius Kappa APEXIIdiffractometer $30513$ measured reflectionsRadiation source: X-ray tube, Siemens KFF Mo $2473$ reflections with $I > 2\sigma(I)$ $2K-180$ $R_{imax} = 0.30$ Graphite monochromator $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $\phi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = -13 \rightarrow 13$ $(SADABS; Bruker, 2014)$ $l = -14 \rightarrow 14$ $T_{min} = 0.710, T_{max} = 0.746$ Hydrogen site location: inferred fromRefinement $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$ $S = 1.03$ where $P = (F_o^2 + 2F_o^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Triclinic, P1                                        | $D_{\rm x} = 1.284 {\rm ~Mg} {\rm ~m}^{-3}$                        |
| $\begin{array}{lll} b = 10.4479 \ (6) \ \mathring{A} & \ Cell \ parameters \ from \ 9937 \ reflections \\ c = 11.4082 \ (6) \ \mathring{A} & \ \theta = 2.5-27.6^{\circ} \\ \mu = 0.10 \ mm^{-1} \\ \beta = 93.287 \ (2)^{\circ} & \mu = 0.10 \ mm^{-1} \\ \gamma = 90.945 \ (2)^{\circ} & \ Prism, \ colourless \\ V = 1123.96 \ (11) \ \mathring{A}^3 & \ 0.5 \times 0.3 \times 0.25 \ mm \end{array}$ $\begin{array}{lll} Data \ collection \\ Nonius \ Kappa \ APEXII \\ diffractometer \\ Radiation \ source: \ X-ray \ tube, \ Siemens \ KFF \ Mo \\ 2K-180 & \ R_{int} = 0.030 \\ Graphite \ monochromator \\ \varphi \ and \ \omega \ scans \\ h = -12 \rightarrow 12 \\ Absorption \ correction: \ multi-scan \\ (SADABS; \ Bruker, \ 2014) \\ T_{min} = 0.710, \ T_{max} = 0.746 \\ \hline Refinement \\ Refinement \ Refinement \ on \ F^2 \\ Least-squares \ matrix: \ full \\ R[F^2 > 2\sigma(F^2)] = 0.043 \\ wR(F^2) = 0.115 & \ W = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P] \\ S = 1.03 & \ where \ P = (F_o^2 + 2F_c^2)/3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a = 9.5147 (5)  Å                                    | Mo $K\alpha_1$ radiation, $\lambda = 0.71073$ Å                    |
| $c = 11.4082$ (6) Å $\theta = 2.5-27.6^{\circ}$ $a = 96.789$ (2)° $\mu = 0.10 \text{ mm}^{-1}$ $\beta = 93.287$ (2)° $T = 115 \text{ K}$ $\gamma = 90.945$ (2)°Prism, colourless $V = 1123.96$ (11) ų $0.5 \times 0.3 \times 0.25 \text{ mm}$ Data collectionNonius Kappa APEXIIdiffractometer $30513$ measured reflectionsRadiation source: X-ray tube, Siemens KFF Mo $4273$ reflections with $I > 2\sigma(I)$ $2K-180$ $R_{int} = 0.030$ Graphite monochromator $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $\phi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = -13 \rightarrow 13$ $(SADABS; Bruker, 2014)$ $l = -14 \rightarrow 14$ $T_{min} = 0.710, T_{max} = 0.746$ Hydrogen site location: inferred fromRefinementRefinement $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained $wR(F^2) = 0.115$ $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b = 10.4479 (6) Å                                    | Cell parameters from 9937 reflections                              |
| $\begin{array}{ll} \alpha = 96.789 \ (2)^{\circ} & \mu = 0.10 \ \mathrm{mm}^{-1} \\ \beta = 93.287 \ (2)^{\circ} & T = 115 \ \mathrm{K} \\ \gamma = 90.945 \ (2)^{\circ} & Prism, \ \mathrm{colourless} \\ V = 1123.96 \ (11) \ \mathrm{\AA}^3 & 0.5 \times 0.3 \times 0.25 \ \mathrm{mm} \end{array}$ $\begin{array}{ll} Data \ collection & & & \\ & & & & & \\ Data \ collection & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $ | c = 11.4082 (6) Å                                    | $\theta = 2.5 - 27.6^{\circ}$                                      |
| $\begin{array}{ll} \beta = 93.287 \ (2)^{\circ} & T = 115 \ \mathrm{K} \\ \gamma = 90.945 \ (2)^{\circ} & \mathrm{Prism, \ colourless} \\ V = 1123.96 \ (11) \ \mathrm{\AA}^3 & 0.5 \times 0.3 \times 0.25 \ \mathrm{mm} \end{array}$ $\begin{array}{ll} Data \ collection & & & \\ Nonius \ \mathrm{Kappa} \ \mathrm{APEXII} & 30513 \ \mathrm{measured \ reflections} \\ \mathrm{diffractometer} & 5190 \ \mathrm{independent \ reflections} \\ \mathrm{Radiation \ source:} \ \mathrm{X-ray \ tube, \ Siemens \ \mathrm{KFF} \ \mathrm{Mo}} & 4273 \ \mathrm{reflections \ with} \ I > 2\sigma(I) \\ R_{\mathrm{int}} = 0.030 \\ \mathcal{G}_{\mathrm{raphite \ monochromator}} & \mathcal{H}_{\mathrm{max}} = 27.6^{\circ}, \ \mathcal{H}_{\mathrm{min}} = 2.8^{\circ} \\ \mu = -12 \rightarrow 12 \\ \mathrm{Absorption \ correction: \ multi-scan} & k = -13 \rightarrow 13 \\ (SADABS; \ \mathrm{Bruker, \ 2014}) & I = -14 \rightarrow 14 \\ T_{\mathrm{min}} = 0.710, \ T_{\mathrm{max}} = 0.746 \\ \hline Refinement \\ \mathrm{Refinement} \\ \mathrm{Refinement} \\ \mathrm{Refinement \ on \ } F^2 \\ \mathrm{Least-squares \ matrix: \ full} \\ R[F^2 > 2\sigma(F^2)] = 0.043 \\ wR(F^2) = 0.115 \\ S = 1.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha = 96.789 \ (2)^{\circ}$                      | $\mu = 0.10 \text{ mm}^{-1}$                                       |
| $\gamma = 90.945 (2)^{\circ}$ Prism, colourless $V = 1123.96 (11) Å^3$ $0.5 \times 0.3 \times 0.25 \text{ mm}$ Data collection $0.5 \times 0.3 \times 0.25 \text{ mm}$ Nonius Kappa APEXII $30513 \text{ measured reflections}$ diffractometer $5190 \text{ independent reflections}$ Radiation source: X-ray tube, Siemens KFF Mo $4273 \text{ reflections with } I > 2\sigma(I)$ $2K-180$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $\varphi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = -13 \rightarrow 13$ $(SADABS; Bruker, 2014)$ $l = -14 \rightarrow 14$ $T_{min} = 0.710, T_{max} = 0.746$ Hydrogen site location: inferred fromRefinement $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\beta = 93.287 \ (2)^{\circ}$                       | T = 115  K                                                         |
| $V = 1123.96 (11) Å^3$ $0.5 \times 0.3 \times 0.25 \text{ mm}$ Data collection30513 measured reflectionsNonius Kappa APEXII<br>diffractometer30513 measured reflectionsRadiation source: X-ray tube, Siemens KFF Mo<br>2K-180 $30513$ measured reflectionsGraphite monochromator<br>$\varphi$ and $\omega$ scans $4273$ reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$ Absorption correction: multi-scan<br>$(SADABS; Bruker, 2014)$<br>$T_{min} = 0.710, T_{max} = 0.746$ $k = -13 \rightarrow 13$<br>$l = -14 \rightarrow 14$ Refinement<br>RefinementHydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\gamma = 90.945 \ (2)^{\circ}$                      | Prism, colourless                                                  |
| Data collectionNonius Kappa APEXII<br>diffractometer30513 measured reflections<br>5190 independent reflectionsRadiation source: X-ray tube, Siemens KFF Mo<br>2K-1804273 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$<br>$\Theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$<br>$h = -12 \rightarrow 12$<br>Absorption correction: multi-scan<br>$(SADABS; Bruker, 2014)$<br>$T_{min} = 0.710, T_{max} = 0.746h = -12 \rightarrow 12k = -13 \rightarrow 13l = -14 \rightarrow 14RefinementRefinement on F^2Least-squares matrix: fullR(F^2) = 0.115Hydrogen site location: inferred fromneighbouring sitesH-atom parameters constrainedw = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]where P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V = 1123.96 (11) Å^3$                               | $0.5 \times 0.3 \times 0.25 \text{ mm}$                            |
| Nonius Kappa APEXII<br>diffractometer30513 measured reflectionsRadiation source: X-ray tube, Siemens KFF Mo<br>2K-18030513 measured reflectionsGraphite monochromator $4273$ reflections with $I > 2\sigma(I)$ $\varphi$ and $\omega$ scans $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ Absorption correction: multi-scan<br>(SADABS; Bruker, 2014) $h = -12 \rightarrow 12$ $Refinement$ $k = -13 \rightarrow 13$ Refinement on $F^2$ Hydrogen site location: inferred from<br>neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained<br>$wR(F^2) = 0.115$ $S = 1.03$ $where P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data collection                                      |                                                                    |
| diffractometer5190 independent reflectionsRadiation source: X-ray tube, Siemens KFF Mo<br>2K-180 $4273$ reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$ Graphite monochromator $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$<br>$h = -12 \rightarrow 12$<br>Absorption correction: multi-scan<br>$(SADABS; Bruker, 2014)$<br>$T_{min} = 0.710, T_{max} = 0.746$ $h = -12 \rightarrow 12$<br>$k = -13 \rightarrow 13$<br>$l = -14 \rightarrow 14$ RefinementRefinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.043$<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nonius Kappa APEXII                                  | 30513 measured reflections                                         |
| Radiation source: X-ray tube, Siemens KFF Mo<br>2K-1804273 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$<br>$\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$<br>$h = -12 \rightarrow 12$<br>Absorption correction: multi-scan<br>$(SADABS; Bruker, 2014)$<br>$T_{min} = 0.710, T_{max} = 0.746$ 4273 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$<br>$H = -12 \rightarrow 12$<br>$k = -13 \rightarrow 13$<br>$I = -14 \rightarrow 14$ Refinement<br>Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.043$<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | diffractometer                                       | 5190 independent reflections                                       |
| 2K-180 $R_{int} = 0.030$ Graphite monochromator $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $\varphi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = -13 \rightarrow 13$ $(SADABS; Bruker, 2014)$ $l = -14 \rightarrow 14$ $T_{min} = 0.710, T_{max} = 0.746$ $l = -14 \rightarrow 14$ RefinementRefinement on $F^2$ Least-squares matrix: fullHydrogen site location: inferred from<br>neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained<br>$w R(F^2) = 0.115$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radiation source: X-ray tube, Siemens KFF Mo         | 4273 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $\varphi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = -13 \rightarrow 13$ $(SADABS; Bruker, 2014)$ $l = -14 \rightarrow 14$ $T_{min} = 0.710, T_{max} = 0.746$ $l = -14 \rightarrow 14$ RefinementRefinementRefinement on $F^2$ Hydrogen site location: inferred from<br>neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained<br>$wR(F^2) = 0.115$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2K-180                                               | $R_{\rm int} = 0.030$                                              |
| $\varphi$ and $\omega$ scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan<br>(SADABS; Bruker, 2014)<br>$T_{min} = 0.710, T_{max} = 0.746$ $k = -13 \rightarrow 13$ Refinement $l = -14 \rightarrow 14$ Refinement on $F^2$<br>Least-squares matrix: full<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$<br>$wR(F^2) = 0.115$ H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Graphite monochromator                               | $\theta_{\rm max} = 27.6^{\circ},  \theta_{\rm min} = 2.8^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2014)<br>$T_{min} = 0.710$ , $T_{max} = 0.746$ $k = -13 \rightarrow 13$<br>$l = -14 \rightarrow 14$ RefinementHydrogen site location: inferred from<br>neighbouring sitesRef. $F^2 > 2\sigma(F^2)$ ] = 0.043<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sitesS = 1.03Were $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\varphi$ and $\omega$ scans                         | $h = -12 \rightarrow 12$                                           |
| (SADABS; Bruker, 2014)<br>$T_{min} = 0.710, T_{max} = 0.746$ $l = -14 \rightarrow 14$ RefinementRefinementRefinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.043$<br>$wR(F^2) = 0.115$ Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Absorption correction: multi-scan                    | $k = -13 \rightarrow 13$                                           |
| $T_{\min} = 0.710, T_{\max} = 0.746$ RefinementRefinement on $F^2$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ $S = 1.03$ Heatom parameters constrained $were P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (SADABS; Bruker, 2014)                               | $l = -14 \rightarrow 14$                                           |
| RefinementRefinement on $F^2$ Hydrogen site location: inferred from<br>neighbouring sitesLeast-squares matrix: fullneighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained<br>$wR(F^2) = 0.115$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $T_{\min} = 0.710, \ T_{\max} = 0.746$               |                                                                    |
| Refinement on $F^2$ Hydrogen site location: inferred from<br>neighbouring sitesLeast-squares matrix: fullneighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refinement                                           |                                                                    |
| Least-squares matrix: fullneighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained $wR(F^2) = 0.115$ $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refinement on $F^2$                                  | Hydrogen site location: inferred from                              |
| $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained $wR(F^2) = 0.115$ $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$ $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Least-squares matrix: full                           | neighbouring sites                                                 |
| $wR(F^2) = 0.115$<br>S = 1.03<br>$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $R[F^2 > 2\sigma(F^2)] = 0.043$                      | H-atom parameters constrained                                      |
| $S = 1.03$ where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $wR(F^2) = 0.115$                                    | $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.724P]$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S = 1.03                                             | where $P = (F_o^2 + 2F_c^2)/3$                                     |
| 5190 reflections $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5190 reflections                                     | $(\Delta/\sigma)_{\rm max} < 0.001$                                |
| 275 parameters $\Delta \rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 275 parameters                                       | $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$          |
| 0 restraints $\Delta \rho_{\min} = -0.52 \text{ e} \text{ Å}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 restraints                                         | $\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$         |

#### Special details

**Experimental.** SADABS (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0455 before and 0.0417 after correction. The ratio of minimum to maximum transmission is 0.9524. The  $\lambda/2$  correction factor is 0.0015. **Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| C1   | 0.04814 (14) | 0.86382 (12) | 0.43156 (12) | 0.0110 (3)                  |  |
| C2   | 0.17149 (14) | 0.86205 (13) | 0.52171 (12) | 0.0121 (3)                  |  |
| H2D  | 0.1609       | 0.7851       | 0.5637       | 0.015*                      |  |
| H2E  | 0.1672       | 0.9390       | 0.5809       | 0.015*                      |  |
| C3   | 0.31605 (14) | 0.86030 (13) | 0.47093 (12) | 0.0123 (3)                  |  |
| H3A  | 0.3271       | 0.7759       | 0.4233       | 0.015*                      |  |
| H3B  | 0.3203       | 0.9277       | 0.4170       | 0.015*                      |  |
| C4   | 0.43892 (14) | 0.88243 (12) | 0.56279 (11) | 0.0105 (3)                  |  |
| C5   | 0.64831 (14) | 1.09068 (14) | 0.85914 (12) | 0.0136 (3)                  |  |
| C6   | 0.76641 (15) | 1.09519 (14) | 0.95460 (12) | 0.0158 (3)                  |  |
| H6A  | 0.7804       | 1.1849       | 0.9931       | 0.019*                      |  |
| H6B  | 0.8548       | 1.0686       | 0.9180       | 0.019*                      |  |
| C7   | 0.73497 (15) | 1.00706 (14) | 1.04801 (12) | 0.0166 (3)                  |  |
| H7A  | 0.6473       | 1.0346       | 1.0854       | 0.020*                      |  |
| H7B  | 0.7193       | 0.9177       | 1.0092       | 0.020*                      |  |
| C8   | 0.85386 (15) | 1.00936 (14) | 1.14279 (12) | 0.0147 (3)                  |  |
| C9   | 0.19496 (14) | 0.31479 (13) | 0.29397 (12) | 0.0137 (3)                  |  |
| H9   | 0.2923       | 0.3391       | 0.3279       | 0.016*                      |  |
| C10  | 0.18667 (19) | 0.33296 (15) | 0.16317 (13) | 0.0240 (3)                  |  |
| H10A | 0.0932       | 0.3024       | 0.1270       | 0.029*                      |  |
| H10B | 0.2592       | 0.2806       | 0.1225       | 0.029*                      |  |
| C11  | 0.2096 (2)   | 0.47517 (16) | 0.14622 (15) | 0.0293 (4)                  |  |
| H11A | 0.3081       | 0.5016       | 0.1719       | 0.035*                      |  |
| H11B | 0.1955       | 0.4849       | 0.0611       | 0.035*                      |  |
| C12  | 0.11074 (19) | 0.56320 (15) | 0.21517 (15) | 0.0263 (4)                  |  |
| H12A | 0.0131       | 0.5463       | 0.1814       | 0.032*                      |  |
| H12B | 0.1362       | 0.6541       | 0.2081       | 0.036 (5)*                  |  |
| C13  | 0.1185 (2)   | 0.54188 (15) | 0.34496 (15) | 0.0272 (4)                  |  |
| H13A | 0.0479       | 0.5956       | 0.3868       | 0.033*                      |  |
| H13B | 0.2129       | 0.5694       | 0.3811       | 0.039 (6)*                  |  |
| C14  | 0.09117 (17) | 0.40034 (14) | 0.36036 (14) | 0.0205 (3)                  |  |
| H14A | 0.1003       | 0.3893       | 0.4454       | 0.025*                      |  |
| H14B | -0.0060      | 0.3745       | 0.3302       | 0.025*                      |  |
| C15  | 0.31417 (15) | 0.36301 (13) | 0.71133 (12) | 0.0143 (3)                  |  |
| H15  | 0.2123       | 0.3698       | 0.6867       | 0.017*                      |  |
| C16  | 0.40040 (18) | 0.43583 (14) | 0.63179 (14) | 0.0208 (3)                  |  |
| H16A | 0.3808       | 0.3989       | 0.5483       | 0.025*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H16B | 0 5020        | 0 4267       | 0.6523       | 0.025*              |
|------|---------------|--------------|--------------|---------------------|
| C17  | 0.3636(2)     | 0.57889 (15) | 0.64653 (15) | 0.025<br>0.0275 (4) |
| H17A | 0.4231        | 0.6258       | 0.5966       | 0.033*              |
| H17B | 0.2640        | 0.5880       | 0.6191       | 0.033*              |
| C18  | 0.38570 (19)  | 0.53880 (15) | 0.77466 (15) | 0.0264 (4)          |
| H18A | 0.3541        | 0.7291       | 0 7817       | 0.032*              |
| H18R | 0.4873        | 0.6399       | 0.7990       | 0.032*              |
| C19  | 0 30447 (19)  | 0.56390 (15) | 0.85661 (14) | 0.022               |
| H19A | 0.2023        | 0.5748       | 0.8406       | 0.029*              |
| H19R | 0.3290        | 0 5998       | 0.9397       | 0.029*              |
| C20  | 0.33692 (17)  | 0 41964 (14) | 0.84057 (13) | 0.0196(3)           |
| H20A | 0.4358        | 0.4075       | 0.8682       | 0.024*              |
| H20B | 0.2751        | 0 3734       | 0.8893       | 0.024*              |
| N1   | 0.16561 (12)  | 0.17671 (11) | 0.30888 (10) | 0.0136(2)           |
| HIA  | 0.2281        | 0.1259       | 0.2689       | 0.020*              |
| HIB  | 0.1743        | 0.1663       | 0.3870       | 0.020*              |
| H1C  | 0.0765        | 0.1539       | 0.2798       | 0.020*              |
| N2   | 0.35079 (12)  | 0.22343 (11) | 0.69782 (10) | 0.0130 (2)          |
| H2A  | 0.2985        | 0.1808       | 0.7459       | 0.020*              |
| H2B  | 0.3322        | 0.1890       | 0.6213       | 0.020*              |
| H2C  | 0.4439        | 0.2157       | 0.7181       | 0.020*              |
| 01   | 0.07729 (10)  | 0.90365 (10) | 0.33203 (8)  | 0.0147 (2)          |
| H1   | 0.0031        | 0.9042       | 0.2885       | 0.022*              |
| O2   | -0.07178 (10) | 0.83211 (10) | 0.45502 (9)  | 0.0148 (2)          |
| 03   | 0.55754 (10)  | 0.84347 (9)  | 0.54021 (8)  | 0.0145 (2)          |
| O4   | 0.41065 (10)  | 0.94748 (10) | 0.66222 (8)  | 0.0139 (2)          |
| H4   | 0.4842        | 0.9578       | 0.7069       | 0.021*              |
| 05   | 0.61844 (10)  | 0.97769 (10) | 0.80258 (9)  | 0.0159 (2)          |
| O6   | 0.58720 (12)  | 1.19027 (11) | 0.84010 (10) | 0.0241 (3)          |
| 07   | 0.93003 (13)  | 1.10688 (11) | 1.16655 (11) | 0.0292 (3)          |
| O8   | 0.86738 (10)  | 0.90635 (10) | 1.19411 (9)  | 0.0159 (2)          |
|      |               |              |              |                     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$   |
|-----|-------------|------------|------------|-------------|-------------|------------|
| C1  | 0.0143 (6)  | 0.0071 (6) | 0.0113 (6) | 0.0018 (5)  | -0.0007 (5) | 0.0001 (5) |
| C2  | 0.0118 (6)  | 0.0142 (6) | 0.0105 (6) | 0.0015 (5)  | -0.0020(5)  | 0.0029 (5) |
| C3  | 0.0121 (6)  | 0.0137 (6) | 0.0105 (6) | -0.0015 (5) | -0.0017 (5) | -0.0002(5) |
| C4  | 0.0130 (6)  | 0.0074 (6) | 0.0113 (6) | -0.0017 (5) | -0.0006 (5) | 0.0031 (5) |
| C5  | 0.0138 (6)  | 0.0176 (7) | 0.0093 (6) | 0.0000 (5)  | -0.0018 (5) | 0.0017 (5) |
| C6  | 0.0165 (7)  | 0.0185 (7) | 0.0119 (6) | -0.0021 (5) | -0.0059 (5) | 0.0031 (5) |
| C7  | 0.0166 (7)  | 0.0190 (7) | 0.0138 (7) | -0.0046 (5) | -0.0072 (5) | 0.0048 (6) |
| C8  | 0.0153 (7)  | 0.0176 (7) | 0.0111 (6) | -0.0014 (5) | -0.0031 (5) | 0.0032 (5) |
| C9  | 0.0147 (6)  | 0.0109 (6) | 0.0149 (7) | -0.0021 (5) | 0.0003 (5)  | 0.0001 (5) |
| C10 | 0.0407 (9)  | 0.0163 (7) | 0.0154 (7) | 0.0000(7)   | 0.0091 (7)  | 0.0005 (6) |
| C11 | 0.0479 (11) | 0.0200 (8) | 0.0221 (8) | -0.0010 (7) | 0.0161 (8)  | 0.0054 (6) |
| C12 | 0.0346 (9)  | 0.0148 (7) | 0.0316 (9) | 0.0006 (6)  | 0.0066 (7)  | 0.0092 (6) |
| C13 | 0.0420 (10) | 0.0125 (7) | 0.0282 (9) | 0.0022 (7)  | 0.0164 (7)  | 0.0003 (6) |
|     |             |            |            |             |             |            |

| C14 | 0.0277 (8)  | 0.0149 (7) | 0.0202 (7) | 0.0020 (6)  | 0.0111 (6)  | 0.0032 (6)  |
|-----|-------------|------------|------------|-------------|-------------|-------------|
| C15 | 0.0166 (7)  | 0.0105 (6) | 0.0160 (7) | 0.0019 (5)  | 0.0013 (5)  | 0.0020 (5)  |
| C16 | 0.0311 (8)  | 0.0145 (7) | 0.0183 (7) | 0.0034 (6)  | 0.0094 (6)  | 0.0039 (6)  |
| C17 | 0.0462 (10) | 0.0143 (7) | 0.0253 (8) | 0.0067 (7)  | 0.0153 (7)  | 0.0089 (6)  |
| C18 | 0.0382 (9)  | 0.0114 (7) | 0.0307 (9) | -0.0004 (6) | 0.0132 (7)  | 0.0016 (6)  |
| C19 | 0.0376 (9)  | 0.0140 (7) | 0.0222 (8) | 0.0007 (6)  | 0.0119 (7)  | -0.0007 (6) |
| C20 | 0.0316 (8)  | 0.0128 (7) | 0.0150 (7) | -0.0003 (6) | 0.0061 (6)  | 0.0017 (5)  |
| N1  | 0.0130 (5)  | 0.0120 (6) | 0.0153 (6) | -0.0004 (4) | -0.0031 (4) | 0.0018 (4)  |
| N2  | 0.0138 (6)  | 0.0105 (5) | 0.0142 (6) | -0.0004 (4) | -0.0020 (4) | 0.0004 (4)  |
| 01  | 0.0121 (5)  | 0.0206 (5) | 0.0120 (5) | -0.0005 (4) | -0.0039 (4) | 0.0060 (4)  |
| O2  | 0.0121 (5)  | 0.0173 (5) | 0.0153 (5) | -0.0013 (4) | -0.0007 (4) | 0.0039 (4)  |
| O3  | 0.0123 (5)  | 0.0159 (5) | 0.0146 (5) | 0.0019 (4)  | -0.0007 (4) | -0.0001 (4) |
| O4  | 0.0119 (5)  | 0.0177 (5) | 0.0108 (5) | 0.0013 (4)  | -0.0039 (4) | -0.0014 (4) |
| O5  | 0.0162 (5)  | 0.0163 (5) | 0.0138 (5) | 0.0011 (4)  | -0.0053 (4) | -0.0008 (4) |
| O6  | 0.0271 (6)  | 0.0190 (5) | 0.0241 (6) | 0.0059 (4)  | -0.0117 (5) | -0.0001 (4) |
| O7  | 0.0322 (6)  | 0.0232 (6) | 0.0313 (6) | -0.0134 (5) | -0.0216 (5) | 0.0127 (5)  |
| 08  | 0.0155 (5)  | 0.0179 (5) | 0.0147 (5) | -0.0013 (4) | -0.0046 (4) | 0.0064 (4)  |
|     |             |            |            |             |             |             |

Geometric parameters (Å, °)

| 1.5174 (18) | C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2974 (17) | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.521 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2356 (17) | C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.530 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.5224 (19) | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5204 (18) | C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.518 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2367 (17) | C15—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.524 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2961 (16) | C15—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4972 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.5155 (18) | C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.2955 (17) | C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.2356 (18) | C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.533 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9900      | C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.527 (2)   | C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.522 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9900      | C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | C18—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5172 (18) | C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.523 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2348 (18) | C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.2894 (17) | C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0000      | C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.535 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.524 (2)   | C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.517 (2)   | C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.4961 (17) | N1—H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | N1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9900      | N1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | $\begin{array}{c} 1.5174 \ (18) \\ 1.2974 \ (17) \\ 1.2356 \ (17) \\ 0.9900 \\ 0.9900 \\ 1.5224 \ (19) \\ 0.9900 \\ 0.9900 \\ 1.5204 \ (18) \\ 1.2367 \ (17) \\ 1.2961 \ (16) \\ 1.5155 \ (18) \\ 1.2955 \ (17) \\ 1.2356 \ (18) \\ 0.9900 \\ 0.9900 \\ 1.527 \ (2) \\ 0.9900 \\ 0.9900 \\ 1.5172 \ (18) \\ 1.2348 \ (18) \\ 1.2348 \ (18) \\ 1.2894 \ (17) \\ 1.0000 \\ 1.524 \ (2) \\ 1.517 \ (2) \\ 1.4961 \ (17) \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 0.$ | 1.5174 (18) $C12-H12B$ $1.2974 (17)$ $C12-C13$ $1.2356 (17)$ $C13-H13A$ $0.9900$ $C13-H13B$ $0.9900$ $C13-C14$ $1.5224 (19)$ $C14-H14A$ $0.9900$ $C15-H15$ $1.5224 (19)$ $C14-H14B$ $0.9900$ $C15-H15$ $1.5204 (18)$ $C15-C16$ $1.2367 (17)$ $C15-C20$ $1.2961 (16)$ $C15-N2$ $1.5155 (18)$ $C16-H16A$ $1.2955 (17)$ $C16-H16B$ $1.2356 (18)$ $C16-C17$ $0.9900$ $C17-H17B$ $1.527 (2)$ $C17-C18$ $0.9900$ $C18-H18B$ $1.5172 (18)$ $C18-C19$ $1.2348 (18)$ $C19-H19A$ $1.2894 (17)$ $C19-H19B$ $1.0000$ $C19-C20$ $1.524 (2)$ $C20-H20A$ $1.517 (2)$ $C20-H20B$ $1.4961 (17)$ $N1-H1A$ $0.9900$ $N1-H1B$ $0.9900$ $N1-H1B$ |

| C10—C11    | 1.534 (2)   | N2—H2A        | 0.9100      |
|------------|-------------|---------------|-------------|
| C11—H11A   | 0.9900      | N2—H2B        | 0.9100      |
| C11—H11B   | 0.9900      | N2—H2C        | 0.9100      |
| C11—C12    | 1.514 (2)   | O1—H1         | 0.8400      |
| C12—H12A   | 0.9900      | O4—H4         | 0.8400      |
|            |             |               |             |
| O1—C1—C2   | 115.61 (11) | C12—C13—H13B  | 109.3       |
| O2—C1—C2   | 120.85 (12) | C12—C13—C14   | 111.59 (13) |
| O2—C1—O1   | 123.51 (12) | H13A—C13—H13B | 108.0       |
| C1—C2—H2D  | 108.5       | C14—C13—H13A  | 109.3       |
| C1—C2—H2E  | 108.5       | C14—C13—H13B  | 109.3       |
| C1—C2—C3   | 115.06 (11) | C9—C14—C13    | 110.61 (12) |
| H2D—C2—H2E | 107.5       | C9—C14—H14A   | 109.5       |
| C3—C2—H2D  | 108.5       | C9—C14—H14B   | 109.5       |
| C3—C2—H2E  | 108.5       | C13—C14—H14A  | 109.5       |
| С2—С3—НЗА  | 108.6       | C13—C14—H14B  | 109.5       |
| С2—С3—Н3В  | 108.6       | H14A—C14—H14B | 108.1       |
| НЗА—СЗ—НЗВ | 107.6       | C16—C15—H15   | 108.4       |
| C4—C3—C2   | 114.67 (11) | C16—C15—C20   | 111.50 (12) |
| С4—С3—НЗА  | 108.6       | C20—C15—H15   | 108.4       |
| C4—C3—H3B  | 108.6       | N2—C15—H15    | 108.4       |
| O3—C4—C3   | 120.91 (12) | N2-C15-C16    | 110.23 (11) |
| O3—C4—O4   | 123.68 (12) | N2-C15-C20    | 109.86 (11) |
| O4—C4—C3   | 115.37 (11) | C15—C16—H16A  | 109.6       |
| O5—C5—C6   | 115.35 (12) | C15—C16—H16B  | 109.6       |
| O6—C5—C6   | 120.21 (13) | C15—C16—C17   | 110.12 (12) |
| O6—C5—O5   | 124.44 (12) | H16A—C16—H16B | 108.2       |
| С5—С6—Н6А  | 109.2       | C17—C16—H16A  | 109.6       |
| С5—С6—Н6В  | 109.2       | C17—C16—H16B  | 109.6       |
| C5—C6—C7   | 111.84 (12) | С16—С17—Н17А  | 109.3       |
| H6A—C6—H6B | 107.9       | C16—C17—H17B  | 109.3       |
| С7—С6—Н6А  | 109.2       | H17A—C17—H17B | 107.9       |
| С7—С6—Н6В  | 109.2       | C18—C17—C16   | 111.69 (13) |
| С6—С7—Н7А  | 109.2       | C18—C17—H17A  | 109.3       |
| С6—С7—Н7В  | 109.2       | C18—C17—H17B  | 109.3       |
| H7A—C7—H7B | 107.9       | C17—C18—H18A  | 109.4       |
| C8—C7—C6   | 112.13 (12) | C17—C18—H18B  | 109.4       |
| С8—С7—Н7А  | 109.2       | C17—C18—C19   | 111.36 (14) |
| С8—С7—Н7В  | 109.2       | H18A—C18—H18B | 108.0       |
| O7—C8—C7   | 119.57 (13) | C19—C18—H18A  | 109.4       |
| O7—C8—O8   | 124.26 (13) | C19—C18—H18B  | 109.4       |
| O8—C8—C7   | 116.16 (12) | C18—C19—H19A  | 109.2       |
| С10—С9—Н9  | 108.7       | C18—C19—H19B  | 109.2       |
| С14—С9—Н9  | 108.7       | C18—C19—C20   | 112.09 (13) |
| C14—C9—C10 | 110.73 (12) | H19A—C19—H19B | 107.9       |
| N1—C9—H9   | 108.7       | C20—C19—H19A  | 109.2       |
| N1—C9—C10  | 110.22 (11) | C20—C19—H19B  | 109.2       |
| N1—C9—C14  | 109.86 (11) | C15—C20—C19   | 111.06 (12) |
|            |             |               |             |

| C9-C10-H10A     | 109.4        | C15—C20—H20A    | 109.4        |
|-----------------|--------------|-----------------|--------------|
| C9-C10-H10B     | 109.4        | C15—C20—H20B    | 109.4        |
| C9—C10—C11      | 111.02 (13)  | C19—C20—H20A    | 109.4        |
| H10A-C10-H10B   | 108.0        | C19—C20—H20B    | 109.4        |
| C11—C10—H10A    | 109.4        | H20A—C20—H20B   | 108.0        |
| C11—C10—H10B    | 109.4        | C9—N1—H1A       | 109.5        |
| C10-C11-H11A    | 109.1        | C9—N1—H1B       | 109.5        |
| C10-C11-H11B    | 109.1        | C9—N1—H1C       | 109.5        |
| H11A—C11—H11B   | 107.8        | H1A—N1—H1B      | 109.5        |
| C12—C11—C10     | 112.56 (13)  | H1A—N1—H1C      | 109.5        |
| C12—C11—H11A    | 109.1        | H1B—N1—H1C      | 109.5        |
| C12—C11—H11B    | 109.1        | C15—N2—H2A      | 109.5        |
| C11—C12—H12A    | 109.5        | C15—N2—H2B      | 109.5        |
| C11—C12—H12B    | 109.5        | C15—N2—H2C      | 109.5        |
| C11—C12—C13     | 110.91 (14)  | H2A—N2—H2B      | 109.5        |
| H12A—C12—H12B   | 108.0        | H2A—N2—H2C      | 109.5        |
| C13—C12—H12A    | 109.5        | H2B—N2—H2C      | 109.5        |
| C13—C12—H12B    | 109.5        | C1—O1—H1        | 109.5        |
| C12—C13—H13A    | 109.3        | C4—O4—H4        | 109.5        |
|                 |              |                 |              |
| C1—C2—C3—C4     | 169.67 (11)  | C16—C15—C20—C19 | 55.77 (17)   |
| C2—C3—C4—O3     | 156.32 (12)  | C16—C17—C18—C19 | -54.8 (2)    |
| C2—C3—C4—O4     | -25.91 (16)  | C17—C18—C19—C20 | 53.0 (2)     |
| C5—C6—C7—C8     | 179.04 (12)  | C18—C19—C20—C15 | -53.40 (19)  |
| C6—C7—C8—O7     | 28.2 (2)     | C20-C15-C16-C17 | -57.25 (17)  |
| C6—C7—C8—O8     | -152.14 (13) | N1-C9-C10-C11   | 177.34 (13)  |
| C9—C10—C11—C12  | -54.0 (2)    | N1—C9—C14—C13   | -179.35 (13) |
| C10-C9-C14-C13  | -57.37 (17)  | N2-C15-C16-C17  | -179.55 (13) |
| C10-C11-C12-C13 | 53.3 (2)     | N2-C15-C20-C19  | 178.28 (12)  |
| C11—C12—C13—C14 | -54.75 (19)  | O1—C1—C2—C3     | -20.75 (17)  |
| C12—C13—C14—C9  | 57.21 (19)   | O2—C1—C2—C3     | 161.07 (12)  |
| C14—C9—C10—C11  | 55.57 (18)   | O5—C5—C6—C7     | -58.22 (17)  |
| C15—C16—C17—C18 | 56.77 (19)   | O6—C5—C6—C7     | 121.41 (15)  |

## *Hydrogen-bond geometry (Å, °)*

| D—H···A                            | <i>D</i> —Н | H···A | $D \cdots A$ | D—H…A |
|------------------------------------|-------------|-------|--------------|-------|
| N1—H1A····O5 <sup>i</sup>          | 0.91        | 1.99  | 2.8923 (16)  | 173   |
| N1—H1 <i>B</i> ···O2 <sup>ii</sup> | 0.91        | 2.10  | 2.8969 (16)  | 146   |
| N1—H1C····O7 <sup>iii</sup>        | 0.91        | 1.86  | 2.7279 (15)  | 158   |
| N2—H2 $A$ ···O8 <sup>iv</sup>      | 0.91        | 2.00  | 2.8746 (16)  | 160   |
| N2—H2 $B$ ···O3 <sup>i</sup>       | 0.91        | 2.17  | 2.9098 (15)  | 138   |
| N2—H2 $C$ ···O6 <sup>v</sup>       | 0.91        | 1.94  | 2.7485 (15)  | 148   |
| O1—H1···O8 <sup>vi</sup>           | 0.84        | 1.64  | 2.4734 (13)  | 175   |
| O4—H4…O5                           | 0.84        | 1.63  | 2.4636 (13)  | 175   |
|                                    |             |       |              |       |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y-1, z-1; (iv) -x+1, -y+1, -z+2; (v) x, y-1, z; (vi) x-1, y, z-1.