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Abstract

The spread of crime is a complex, dynamic process that calls for a systems level approach. Here, we build and analyze a
series of dynamical systems models of the spread of crime, imprisonment and recidivism, using only abstract transition
parameters. To find the general patterns among these parameters—patterns that are independent of the underlying
particulars—we compute analytic expressions for the equilibria and for the tipping points between high-crime and low-
crime equilibria in these models. We use these expressions to examine, in particular, the effects of longer prison terms and
of increased incarceration rates on the prevalence of crime, with a follow-up analysis on the effects of a Three-Strike Policy.
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Introduction

The U.S. spends more on criminal justice than any other

nation, investing approximately eighty billion dollars per year on

state and federal prisons that currently hold 2.24 million

Americans [1], [2]. In the last two decades, state spending on

prisons grew at six times the rate of state spending on higher

education [2]. One study [3] found that an average of 6.8 percent

of state general funds in 2007 went to corrections agencies, making

corrections the fifth-largest state budget category (behind health,

elementary and secondary education, higher education and

transportation). Moreover, the rise in incarceration in the United

States over the past three decades has been experienced

disproportionately by minorities, particularly young black men,

and those with low levels of education [3]. Over half of African-

American men with less than a high school degree go to prison at

some time in their lives [4], and African-American males make up

a third of America’s incarcerated population [5]. Many metaphors

have been offered to characterize the resulting system of criminal

punishment, such as the ‘‘era of mass imprisonment’’ [6] [7], the

‘‘New Jim Crow’’ [8], and the ‘‘Cradle-to-Prison Pipeline’’ [5].

In this paper we develop simplified models that capture this

pipeline as a series of flows into and out of states of criminal

activity, incarceration, and recidivism within a population. By

analyzing the resulting system of equations, we derive the low- and

high-crime equilibria to which these flows lead and the threshold

points that ‘‘tip’’ the system toward one of these equilibrium

points. We also demonstrate how policies that manipulate key

parameters in the system – e.g., by affecting the rate at which

people are incarcerated and the rate at which they are released

from prison/jail – ultimately affect the proportion of criminally

active people in the population. The results illuminate the social

conditions under which marginal increases in the rate of

incarceration will augment or diminish the spread of crime. The

models presented in this paper also lay a foundation for future

work that will incorporate empirical estimates to trace the system-

wide implications of changes in criminal activity and incarcera-

tion.

Mathematical Models of Crime and Punishment
We build on a tradition of systems models applied to crime that

began with the seminal work of the Science and Technology Task

Force of the President’s Commission on Law Enforcement and

Administration of Justice [9]. This work demonstrated how

systems models could be used to project the workload and

operating costs of police, courts, and corrections, and analyze the

effects on crime rates and criminal justice costs of changes to the

system initiated by policy (e.g., increasing the size of the police

force) or demographic shifts in the population (e.g., the baby

boom). Following the Commission’s report, operations researchers

qua criminologists developed more sophisticated mathematical

models to capture ‘‘the feedback into society of offenders released

at various stages in the system’’ [10], with a focus on modeling the

recidivism process [11], [12], [13], [14], [15], [16]. For example,

Blumstein [17] and others used such models to identify minimum

cost methods to reduce crime through the strategic increase and

placement of police forces and to advise policy-makers on the

effects of incarceration policies based on estimates of the crimes

averted by incarcerating criminally active offenders.

Over time, the focus of this work turned away from macro-level

models of crime rates and feedback processes to micro-level

analyses of so-called criminal careers and how offending is affected
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by punishment [17]. In the early research on criminal careers,

Blumstein and colleagues [18],[19] analyzed trajectories of

individual participation in crime, beginning at the age of

‘‘initiation’’ and continuing until ‘‘desistance,’’ estimating the

individual-level rate of offending (l) and how it changed over time.

Some scholars argued that incarceration would be maximally

effective at reducing crime when reserved for individuals who

would have relatively higher rates of offending were they not

behind bars – a policy position that became known as ‘‘selective

incapacitation’’ [20]. However, the idea of differentially punishing

people based on their expected future behavior was heavily

criticized on ethical grounds, especially given the error-prone

nature of predicting one’s future involvement in crime. Subse-

quent research revealed that even without an explicit policy aimed

at selective incapacitation, the inmate population has a much

higher estimated rate of offending, whereas in the population of

non-incarcerated offenders the rate of offending is lower and the

distribution is much more heterogeneous [21].

Another line of research focused on sanction policies that reduce

crime through general or specific deterrence [22],[23]. Durlauf

and Nagin [24] recently reviewed this research and concluded

evidence that incarceration deters crime is weak. Aggregate studies

show that increases to prison sentence lengths are associated with

weak to modest declines in crime, while micro-level studies suggest

that experiencing incarceration does not seem to prevent

reoffending. The most substantial deterrent effects, in their

estimation, come from implementing tactics that increase the

perceived risk of apprehension.

Another relevant area of research inspired by systems perspec-

tives on crime assesses the extent to which some crimes spread

through a process of diffusion or contagion. For example,

Blumstein [25] argued that a major reason why youth violent

crime rates rose dramatically during the 1980s was due to a

diffusion process set off by the introduction of crack cocaine in

many American cities. The considerable profit margins that could

be gained from selling crack led many participants in illicit drug

markets to arm themselves for self-protection, setting off an ‘‘arms

race’’ – even among neighborhood residents not connected to the

drug market – and leading to more gun-related violence that

spread in a diffusion-like process to surrounding neighborhoods

[26]. Blumstein [27] also suggested the increasing incarceration

rates for drug offenders contributed to the diffusion of crime by

necessitating the recruitment of more young people into crack

markets and gun-related violence.

A related tradition of work on mathematical models of crime

stems from Becker’s treatment of crime as a rational decision-

making process in which the individual compares the benefits and

costs (punishment) associated with criminal activities against

alternatives to crime [28]. For example, Freedman and colleagues

[29] developed a model explaining how crime becomes concen-

trated in certain neighborhoods, where the expected monetary

return from committing a crime (the probability of not being

arrested times the reward of the crime) exceeds the opportunity

costs for crime. Wang et al [30] generalized this approach – by

allowing opportunity costs to be heterogeneous across potential

criminals and depend on the level of crime in a particular

neighborhood – and derived the equilibrium amount of criminal

activity in a neighborhood.

In another approach to the spatial dynamics of crime, Short and

colleagues [31] developed an agent-based model in which the risk

of a site becoming a target of a burglary is a function of past

burglaries at the site and in neighboring locations; they determine

the parameter values that lead to the emergence of stable hotspots.

Building on this paper, Short and colleagues [32] used reaction-

diffusion partial differential equations to show that hotspots can

emerge, as either supercritical or subcritical bifurcations, when

diffusion enhances the risk of repeated crimes in a local area.

Other papers that have contributed to this line of work include one

[33] that proved the existence and uniqueness of the solutions to

the coupled system of partial differential equations presented by

Short et al [31], and another [34] showing that Short et al’s system

[31] supports global bifurcation of spatially varying solutions (i.e.,

hot spots) from a spatially constant equilibrium. Short et al [35]

bring some empirical data to such victimization studies when they

fit 2000–2005 home burglary data from Long Beach, California to

probability distributions of the time intervals between return trips

of burglars to Long Beach homes.

Yet another approach to modeling crime mathematically has

been taken by scholars applying game theoretic models based on

the classic prisoner’s dilemma paradigm and its variants, in which

players choose to cooperate or defect in their interactions with

each other. Some papers, such as [36] and [37], model defectors as

bringing harm to cooperators and include a role for ‘‘punishers’’

who go out of their way to punish defectors. Research studies [36]

and [37] include informants, who act as defectors but also inform

on other defectors; [36] uses replicator dynamics of game theory,

while [37] relies on behavioral lab experiments to show that

informants play a key role in possibly moving the population to a

crime-free long-run equilibrium. Jiang et al [38] use the related

snowdrift game in which they allow cooperators to levy fines on

defectors. They use behavioral lab experiments to argue that

smaller fines work better when cooperation is more likely. Perc et

al [39] use a two-dimensional, four-parameter inspection game

that includes criminals, noncriminals, and punishing inspectors as

players. Including a cost of detecting crime and a fine for detected

criminals, they set up an evolutionary game dynamic and use

Monte Carlo simulations and agent-based models to describe how

the outcomes change as the underlying parameters cross various

thresholds. They show, for example, that increasing punishment

need not decrease crime. The punishment regimes in all these

papers are peer-to-peer.

Berenji et al [40] use an evolutionary game theoretic model to

study the hypothetical effects of incarceration and prisoner reentry

policy interventions on recidivism. In their simulation exercise,

agents repeatedly decide whether to reform or continue engaging

in criminal activity, and the outcome can be a society with a

majority of ‘‘virtuous, rehabilitated citizens’’ or ‘‘incorrigibles,’’

depending on the value of the parameters driving decision-making.

They find that excessively harsh or lenient punishments are both

less effective at reducing crime than a policy that optimally

dedicates scarce resources to a mix of both punishment and post-

punishment intervention programs, especially to offenders return-

ing from prison for the first time. As did [36], they formulate an

approximate system of ordinary differential equations (ODEs) that

yield similar results, via Monte Carlo simulations.

In this paper we take a population-based approach, similar to

some of the systems models and game theoretic models surveyed

above, but rooted in models that have been developed mainly to

model the spread of disease. Population-based studies of the spread

of disease have led to major breakthroughs in our understanding of

disease spread. Disease models have been successfully used to

forecast the onset and spread of worldwide influenza epidemics

and to design vaccination programs for childhood diseases like

measles and rubella. Sir Richard Ross’s 1911 malaria model

introduced the key concept of a threshold for epidemic spread and

used it to show that malaria could be controlled without killing

every mosquito in the infected area [41], [42], [43]. We will

compute and analyze similar thresholds, considering the spread of
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crime and the dynamics of incarceration. In the interest of offering

a relatively parsimonious treatment of the population dynamics of

crime and punishment, the models presented below assume

homogeneous populations, do not take stock of differences by age,

frequency of offending, crime type, or actions taken at different

stages of the criminal justice system (e.g., arrest, conviction,

sentencing, parole). We have also not yet included empirical data.

We intend to address each of these limitations in future work. At

present, we seek to gain as much mathematical information as we

can from the basic foundational models presented in this paper.

Overview of Models and Analytic Strategy
In this paper we present a progression of increasingly complex

models that capture population flows into and out of states that

differentiate segments of the population based on participation in

crime and incarceration. We first explain the general framework

for all of these models and then describe how the models are

differentiated based on their increasing complexity.

The fundamental components of our models are presented in

Figure 1, which illustrates the flows between five states of criminal

activity: (1) X , those who are not criminally active at a given time;

(2) C1, those who are criminally active but have never been

incarcerated; (3) I , those who are incarcerated at a given time; (4)

R, those who were once incarcerated but are not criminally active;

and (5) C2, those who were once incarcerated and are again

criminally active. (Note that we define repeat offenders based on

the number of times they have been incarcerated. This is different

from the previous approach of [11] which used arrests as the basis

for defining repeat offenders.)

In these models we take on a very high-level perspective of

criminal dynamics. This perspective, unlike earlier models, allows

us to investigate simultaneously the systematic effects of contagion,

desistance, incarceration rates of first-time and repeat-offenders,

prison term length, and criminal rehabilitation/redemption on

long-run crime and incarceration outcomes. Unlike earlier models,

such as [10], [11], [12], these models do not differentiate between

actions taken at different stages of the criminal justice system, such

as arrest, conviction, sentencing, and community supervision

(although we intend to develop more complex models that account

for these stages in future work). We also do not differentiate

between offenders based on the frequency of their activity (i.e.,

individual crime occurrences).

With these caveats in mind, we can use models such as the one

depicted in Figure 1 to parameterize the following types of

population flows.

a1 The rate at which individuals move from state X (not

criminally active) to C1 (criminally-active but not incar

cerated). This can be thought of as the rate of onset, or

initial participation in crime. In subsequent models we

decompose a1 into two separate paths (see Figure 2, for

example). The first, a11, represents the flow into criminal

activity that depends on having contact with other

criminally active people. It is analogous to the ‘‘effective

contact rate’’ in infectious disease models, an indicator of

the extent to which having more contact with criminally-

active people increases one’s risk of participating in crime,

and it relates to many criminological theories premised on

the idea that patterns of social interactions influence

decisions to participate in crime. For example, social

learning theory views social interactions as platforms for

learning information relevant to crime; labeling theory

emphasizes the importance of interactions for forging

criminal identities; and subcultural theories focus on how

youth can be drawn into criminal activity through peer

interactions in the context of groups or neighborhoods with

strong social norms emphasizing toughness and violence as

a means of resolving conflict [44]. The second pathway,

a10, represents transitions into criminal activity that are not

dependent on having contact with criminally-active people,

but are instead driven by individual differences in the

propensity toward crime [45], [46].

b1 The rate at which individuals move from state C 1

X (not criminally

active). This parameter represents a desistance process that

is not related to the experience of incarceration. Thus, it

could represent the effect of general deterrence but not

specific deterrence (at least not the specific experience of

incarceration) or rehabilitation (at least not from treatment

received during or after incarceration). For example, it

could be related to social interventions that aim to reform

young criminals who have not yet been incarcerated. It

could also be influenced by many other factors, including

aging out of crime.

c1 The rate at which individuals move from state C1

I (incarcerated).

This parameter represents the rate at which criminally-

active individuals are incarcerated. In a sense, it combines

processes related to the police, courts, and correctional

systems.

r The rate at which individuals move from state I (incarcer

ated) to R (formerly incarcerated but not criminally-active).

This parameter is the rate at which individuals are released

from prison/jail, and 1=r represents the average length of a

prison/jail term. We note that some individuals may

resume criminal activity very soon after being released

from prison or jail, but the model assumes that everyone

returning from prison/jail is initially (even if only for a

matter of minutes, hours, or days) not active in crime.

Figure 1. Flow Diagram for the Main Model.
doi:10.1371/journal.pone.0088923.g001

Figure 2. Flow Diagram for Models 1 and 2.
doi:10.1371/journal.pone.0088923.g002
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a2 The rate at which individuals move from state R (formerly

incarcerated but not criminally-active) to C2 (formerly

incarcerated and criminally-active). This parameter cap

tures recidivism. It is the rate at which people resume

criminal activity after their release from prison or jail. In

later models, we decompose a2 into a20 and a21 as we did

for a1.

c2 The rate at which individuals move from state C2 (formerly

incarcerated and criminally-active) to I (incarcerated). This

parameter captures the second component of the recidi

vism process – the rate at which former offenders who are

criminally-active are incarcerated. Thus, a2
:c2 represents

the rate at which formerly incarcerated individuals are

returned to prison/jail.

b2 The rate at which individuals move from state C2 (formerly

incarcerated and criminally-active) to R (formerly incar

cerated but not criminally-active). This parameter repre

sents the desistance from crime among those who have

been incarcerated. Thus, unlike b1, b2 can be influenced

by specific deterrence and rehabilitation.

E The rate at which individuals move from state R (formerly

incarcerated but not criminally-active) to X (not criminally

active). Like b2, E represents a desistance process among

formerly incarcerated individuals. The key difference

between b2 and E lies in the states to which they lead. E
leads back to X , which means that it captures pathways

among people who are, for all intents and purposes, treated

as ‘‘non-criminals.’’ In some cases, this could result from

having one’s felony record formally expunged. It can also

capture what Blumstein and Nakamura [47] call ‘‘redemp

tion’’ in reference to ‘‘the process of ‘going straight’ and

being released from bearing the mark of crime.’’

The models we present in this paper represent increasingly

complex depictions of these processes along the two dimensions

depicted in Table 1. One way to differentiate the complexity of the

models is by how many different compartments or ‘dimensions’

they represent. In the simplest models (1 and 2), we include only

three compartments: not criminally active (X ), criminally-active

(C), and incarcerated (I ). The five-dimensional models (3 and 4)

capture the process of prisoner reentry (or returning from jail) by

introducing the distinction between states C1 and C2 (based on

whether one has been incarcerated before) and introducing state R
to represent the state one is in immediately after release from

prison/jail. The nine-dimensional models (5 and 6) introduce

temporal distinctions between different spells of incarceration in

order to analyze the effects of a three-strikes policy. These models

differentiate between I1, I2, and I3 (the first, second, and third or

higher spell of incarceration), and between R1 (returning from a

first spell of incarceration) and R2 (returning from a second spell of

incarceration).

Another aspect of the complexity of these models is the way

that they account for the transition to criminal activity. In the

odd numbered models, the only way someone can become

criminally-active is to interact with another person who is already

criminally-active. This restriction is necessary in order to illustrate

the dynamics of a system that would lead to a ‘‘crime-free’’

equilibrium. Put differently, if new criminals could only emerge by

interacting with existing criminals, then diminishing the number of

criminally-active people (either through incarceration or desis-

tance) could lead to the full eradication of crime. Although not a

realistic possibility, understanding the conditions that lead to such

crime-free equilibria is a necessary step in deriving our analytic

expressions for the low-crime/high-crime threshold and high-

crime prevalence in the more general models.

For each of these models we compute an explicit expression for

the tipping point or threshold between the crime-free (or low-

crime) equilibrium and the high-crime endemic equilibrium,

analogous to the basic reproduction number R0 in epidemiology

and demography. For many of them we also compute an explicit

expression for the prevalence of criminal activity at the high-crime

equilibrium. We use these expressions, especially for our main five-

dimensional model, to demonstrate how policies that manipulate

key parameters in the system – e.g., by affecting the rate at which

people are incarcerated and the rate at which they are released

from prison/jail – ultimately affect the proportion of criminally

active people in the population. The results illuminate the social

conditions under which marginal increases in the rate of

incarceration will augment or diminish the spread of crime.

At this point, readers more interested in the bottom line than the

mathematical analyses and model building may wish to skip to the Results and

Discussion Section, which discusses policy implications that emerge from our

mathematical analyses.

Models and Analyses

Model 1: Simplified 3-dimensional Model
The model diagramed in Figure 1 is a five-dimensional

dynamical system – a challenging system to analyze. To gain

some intuition for the underlying dynamics of this system, we

construct and analyze the simplest possible three-dimensional

system that retains the key features of the 5D system but whose

reduction to two dimensions can be studied analytically and

geometrically as a planar system. This three-dimensional model,

Model 1, has only the three basic compartments: the non-

criminally-active X , the criminally active C, and the incarcerated

population I . If one ignores the dotted a10 arrow, Figure 2 presents

this model’s compartmental diagram. The parameters are

summarized below, followed by the associated system of ordinary

differential equations.

Parameters for Models 1 and 2.

a11 Contagion parameter of criminal behavior.

b Rate at which criminals discontinue criminal habits

(desistance).

c Rate at which criminals are incarcerated.

E Rate at which incarcerated individuals are released and

assimilate back into society.

d Rate at which incarcerated are released and return to

criminal life.

Table 1. Classification of Our Models.

Flow into Criminal Activity 3 Population States 5 Population States 9 Population States

Only Contagion Model 1 Model 3 Model 5

Contagion, Individual Propensity Model 2 Model 4 Model 6

doi:10.1371/journal.pone.0088923.t001
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_XX~bC{a11
XC

(N{I)
zEI ð1aÞ

_CC~{bCza11
XC

(N{I)
{cCzdI ð1bÞ

_II~cC{I(dzE) ð1cÞ

XzCzI~N ð1dÞ

Equation (1a) represents the dynamics of the law-abiding

population X . The first term bC represents the flow from C back

into X , in which criminals discontinue criminal habits, whether

through social interventions or fear of incarceration. The second

term {a11
XC

(N{I)
captures the flow into the criminal population

C due to interactions with criminals. The EI term captures the

dynamic in which former criminals released from incarceration

are able to assimilate back into society.

Non-criminally active citizens in equation (1a) become crimi-

nally active only through interactions with active criminals, an

assumption that leads to the possibility of a crime-free equilibrium.

For Model 1’s crime-free equilibrium we derive threshold

conditions among the model parameters. We also compute an

explicit formula for the ‘‘endemic’’ high-crime equilibrium. Model

2 will include the possibility that law-abiding citizens can turn to

crime without the ‘‘contagion effect’’ of interactions with active

criminals – an assumption that precludes a crime-free equilibrium.

Without a crime-free equilibrium, that is, without zero as a

reference point, Model 2 is more difficult to analyze; but we use

Model 1 to derive conditions that separate convergence to a low-

crime equilibrium from convergence to a high-crime equilibrium

in Model 2.

Equation (1b) represents the changes within the criminal

population C, either via reform (first term), new recruits from X
(second term), incarceration (third term), or recidivism after

incarceration (fourth term). Equation (1c) captures the changes

within the incarcerated population: flow into I from C (first term)

and flow out to C or X (last terms) after release.

Since the sum of the right hand sides of these three equations

adds to zero, X (t)zC(t)zI(t) is constant over time and equal to

the size of the total population N, as indicated in Equation (1d).

Consequently, we can treat the above system as a system of two

differential equations in two unknowns. We choose to replace X in

Equation (1b) by N{C{I and work with a system (2) of two

equations involving only the variables C and I .

_CC~{bCza11
(N{C{I)C

(N{I)
{cCzdI ð2aÞ

_II~cC{I(dzE) ð2bÞ

We will analyze the equilibria of this two-dimensional system in

three different ways: 1) by studying its two-dimensional geometric

phase portrait to separate convergence to high-crime equilibrium

from convergence to low-crime equilibrium, 2) by explicitly

computing its endemic (‘‘high-crime’’) equilibrium, and 3) by

using a Lyapunov function to find the tipping point that

distinguishes convergence to high-crime equilibrium from conver-

gence to low-crime equilibrium. The first path is only possible for

this two-dimensional case, but it helps us carry out paths 2) and 3)

for the higher dimensional cases.

Phase Plane Analysis of System (2). In this section, we

solve the reduced two-dimensional dynamical system (2) geomet-

rically, as illustrated in Figures 3, 4 and 5. We begin with the

dC=dt~0 and dI=dt~0 isoclines where the vector field defined

by this system (2) is horizontal and vertical, respectively, in the

C{I plane. The arrows of the dynamics in the regions between

these isoclines indicate the flow toward an equilibrium. Note from

(2b) that the _II~0 isocline in a line through the origin with slope

c=(dz"), while from (2a) the _CC~0 isocline is a concave-up

quadratic curve with zeros in the CI plane at

C~0 and C~N:
a11{(bzc)

a11
:

There are three cases to consider for the relative arrangement of

the _CC~0 and _II~0 isoclines, which we label as
dC

dt
~0 and

dI

dt
~0

in the following figures.

Case 1: a11{(bzc)w0. Both intercepts of the curve _CC~0 lie

on the non-negative C-axis, and the isoclines intersect each other

twice as in Figure 3. As indicated by the vector field in Figure 3,

the origin 0 is an unstable steady-state, and all orbits go to the

endemic equilibrium E.

Case 2: a11{(bzc)v0 and
(bzc){a11

d
v

c

dz"
. The second

zero of _CC~0 is negative and the slope of _CC~0 at the origin is less

than the slope of _II~0 at the origin. It follows that the quadratic

curve crosses the _II~0 line from below and therefore crosses it

again in the positive quadrant. As indicated by the vector field in

Figure 4, the origin 0 is an unstable steady-state, while the endemic

equilibrium E is globally stable.

Case 3: a11{(bzc)v0 and
(bzc){a11

d
w

c

dz"
. In this case,

the second zero of _CC~0 is negative and the slope of _CC~0 at the

origin is greater than than the slope of _II~0 at the origin. It follows

that the curve lies above the _II~0 in the positive quadrant. The

crime-free equilibrium 0 is the only steady-state in the nonnegative

quadrant and, as we see with the vector field drawn in Figure 5, 0
is globally stable in that quadrant.

In summary, when the second C-intercept of the
dC

dt
~0

isocline is negative, i.e., (bzc){a11w0, and the slope of the
dC

dt
~0 isocline is steeper than the slope of the

dI

dt
~0 line at the

origin, as in Figure 5,

(bzc){a11

d
w

c

dz"
, ð3Þ

then, the system converges to the crime-free equilibrium.

Otherwise, the system tends to a high-crime endemic equilibrium.

Expression (3) can also be written as

The Underlying Dynamics of the Spread of Crime
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a11vbzc
"

"zd

� �
, ð4Þ

or equivalently

a11

bzc
"

"zd

� �v1: ð5Þ

Remark: Strictly speaking, the dichotomy of phase portraits

and the underlying behaviors do not depend on the precise

functional forms in system (2), as long as the curves intersect as

Figure 3. Case 1 in the study of System (2).
doi:10.1371/journal.pone.0088923.g003

Figure 4. Case 2 in the study of System (2).
doi:10.1371/journal.pone.0088923.g004

The Underlying Dynamics of the Spread of Crime

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e88923



they do in Figures 3, 4 and 5. Of course, the analytic expressions

we present do rely on the specific functional forms.

Threshold Condition for System (2). Inequality (5) is the

threshold that distinguishes the case in which all solutions

converge to the crime-free equilibrium from the case in which

all solutions converge to a high-crime equilibrium. The numerator

in threshold inequality (5) is the input rate into the criminal class.

The denominator is the rate out of the criminal class, with the

incarceration rate c multiplied by a non-recidivism factor:

"

dz"

� �
. The impact of the incarceration rate c relative to the

rehabilitation rate b is attenuated by the fact that some of those

incarcerated will return to crime. To reach a crime-free

equilibrium, a community needs the contagion rate of criminal

behavior a11 to be small relative to the success rate of social

interventions for criminal desistance b and the incarceration of

criminals c.

Following terminology of the basic reproduction number in

demography and epidemiology, we denote this ratio as R0. In

epidemiology, R0 can be interpreted as the number of new

infections attributed to a single infected in the course of his or her

infection (in a population of susceptibles). Similarly, in our model,

R0 can be interpreted as the number of people a criminally active

person can seduce to criminal activity during the period of his or

her active criminal behavior.

Endemic Equilibrium in System (2). We compute the

fractions of the criminally active and the non-criminally active

people ‘‘on the street’’ at the endemic equilibrium for system (2)

Since _II~0 at the equilibrium, I~
c

dz"
:C by (2b).

Since _CC~0 and C=0, by (2a),

0~a11
N{I{C

N{I

� �
{(bzc)z"

c

dz"

� �

~a11
N{I{C

N{I

� �
{b{c

d

dz"

� �
:

Therefore,

X

N{I
~

N{I{C

N{I
~

bzc
d

dz"

� �

a11
:

1

R0
ð6Þ

and

C

N{I
~1{

1

R0
~

a11{ bzc
d

dz"

� �� �

a11
~1{

bzc
d

dz"

� �

a11
:ð7Þ

the equilibrium prevalence (6) of noncriminals is simply the ratio of

the rate of leaving a life of crime (desistance rate b plus the weighted

enforcement rate) and the rate of entering a life of crime (the

effective contact rate a11).

Equations (6) and (7) are analogous to those in the simple SIS

model of disease spread, where the endemic prevalence of disease

is 1{
1

R0

� �
.

Figure 5. Case 3 in the study of System (2).
doi:10.1371/journal.pone.0088923.g005

Figure 6. Levels sets of V.
doi:10.1371/journal.pone.0088923.g006
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In other words, our analytic expression (5) for the tipping point

R0 that separates convergence to a crime-free equilibrium from

convergence to a high-crime endemic equilibrium can also be used

to calculate the proportion of non-imprisoned individuals who are

law-abiding citizens
1

R0

� �
and the proportion who are criminals

1{
1

R0

� �
.

Stability of the Crime-Free Equilibrium of System (2) Via

Lyapunov Functions. In the previous subsection, we used a

planar phase portrait of system (10) to derive the threshold for the

crime-free equilibrium to be globally asymptotically stable. We

cannot use this geometric approach for the Full 5D Model of

Figure 1. In this subsection, we use the geometric intuition

developed in the analysis of Figure 2 in the ‘‘Phase Plane Analysis

of System (2)’’ Subsection to construct an analytic derivation of the

R0 expression that will work in the Full 5D Model.

As Figure 5 suggests, in the situation where the crime-free

equilibrium is globally asymptotically stable, the vector field of

system (2) points mostly in the direction of the origin. To prove this

analytically, we will construct a linear real-valued ‘‘Lyapunov

function’’ V (C,I)~CzA:I , where A is a positive constant so that

solutions of (2) move to lower and lower level sets of V (level sets

of V pictured in Figure 6) — that is, so that V decreases along

solutions (C(t),I(t)) of system (2) and therefore solutions are

‘‘forced’’ to the origin.

We seek Aw0 such that the derivative of V along solutions

_VV:
d

dt
V (C(t), I(t))~

LV

LC

dC

dt
z

LV

LI

dI

dt
~ _CCzA: _II ð8Þ

is negative. We will show that such an Aw0 exists if and only if the

conditions of Figure 5 hold, i.e., inequalities (3), (4), or (5).

_VV~ _CCzA _II

~a11
C(N{I{C)

(N{I)
{bC{cCzdIzAcC{AdI{AEI

~C {b{czAc zI d{Ad{AE

For _VV to always be negative, the two expressions in the large

parentheses in the line above must be negative. However,

a11
(N{I{C)

(N{I)
{b{czAc

� �
v a11{b{czAcð Þ,

which is less than zero if and only if

Av(bzc){a11)

c
:

On the other hand, (d{Ad{AE)v0 if and only if
d

(dzE)
vA.

Therefore, we can construct a Lyapunov function with the desired

properties as long as there exists A such that

d

(dzE)
vAv

(bzc){a11)

c
:

But the condition for finding such a positive constant A is simply

that:

d

(dzE)
v

(bzc){a11)

c
,

which is the same as our threshold condition (3) above.

We will use this Lyapunov function method to find the threshold

for our later five- and nine-dimensional models.

Model 2: Beyond Contagion, a More Complex
3-Dimensional Model

The first simplification that we relax is our assumption that

people turn to crime only through interactions with the criminally

active. We add the possibility that some non-criminals slip into

crime without the influence of the criminally active, by adding

{a10X to the _XX equation (1a) and za10X to the _CC equation (1b)

in System (1).

_XX~bC{a11
XC

(N{I)
{a10XzEI

_CC~{bCza11
XC

(N{I)
za10X{cCzdI

_II~cC{I(dzE)

XzCzI~N

ð9Þ

The reduced system (2) now becomes:

_CC~{bCza11
(N{C{I)C

(N{I)
{cCzdIza10(N{C{I) ð10aÞ

_II~cC{I(dzE) ð10bÞ

There is no longer a crime-free equilibrium, since some

proportion of law-abiding citizens will turn to crime on their

own. However, we now show that the previous crime-free

equilibrium bifurcates to a low-crime equilibrium, and the

previous endemic equilibrium bifurcates to a high-crime equilib-

rium. We will study system (10) by modifying the phase plane

analyses that we used in Figures 3, 4, and 5 in our study of system

(2).

In the phase diagrams in Figures 7, 8, and 9, the new _CC~0

isocline is still a concave-up quadratic curve, but the value of _CC at

the origin C~I~0 is now a10
:Nw0, so that the curve _CC~0

crosses the I -axis below the origin. Figures 7, 8, and 9 show the

analogues to Figures 3, 4, and 5 with the new _CC~0 curve below

the old one. We see now that the origin 0 is no longer a steady

state, but is replaced in Figures 7 and 8 by a steady state X in the

negative quadrant. In these two cases, the new (and only positive)

steady state E’ bifurcates from the old endemic steady state E with

higher values of C and I , and is globally asymptotically stable. In

Figure 9, the crime-free steady state 0 bifurcates to a low-crime

steady state, which is globally asymptotically stable.

The threshold condition for the stability of the crime-free

equilibrium for Model 1 still holds for the low-crime equilibrium in

the bifurcated system. In other words, Figure 9 holds if and only if
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(bzc){a

d
w

c

dz"
:

Otherwise, the high-crime equilibrium is the globally stable

steady state. Therefore, when some people have a propensity to

commit crimes independent of contagion effects, crime will always

persist, but there are still two distinctive long-run equilibrium

levels of crime. And adding the propensity effect does not change

the tipping point that separates convergence to a high-crime

equilibrium from convergence to a low-crime equilibrium.

We present a more calculus-based analysis of this system (10) in

Section S1 of File S1.

Model 3: Simplified Five-Dimensional Model
Building on what we learned in the planar system analysis of the

3D models (2) and (10), we begin to move to the Full 5D Model

depicted in Figure 1, adding complexities that relate to policy

concerns. The first such addition is that of repeat offenders –

Figure 7. Case 1 for System (10).
doi:10.1371/journal.pone.0088923.g007

Figure 8. Case 2 for System (10).
doi:10.1371/journal.pone.0088923.g008

The Underlying Dynamics of the Spread of Crime

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e88923



recidivists. We distinguish those who return to crime after

incarceration (C2) from criminally active persons not yet

apprehended (C1). We add two new compartments: C2 and a

transient post-prison compartment R (‘‘recently released’’), from

which former prisoners can either achieve social mobility and

assimilate back into society (rehabilitation) at rate E or slip back

into crime into the new compartment C2 at rates a20 and a21.

Those in C2 can be reincarcerated (return to I ) at rate c2 or reform

and return to R at rate b2. Parameter a20 is the propensity for a

former criminal to recidivate, independent of influence from

others. It can be viewed as the likelihood that time in prison will

encourage a return to a life of crime, consistent with the notion of

prisons as ‘‘schools of crime.’’ Parameter a21 captures the influence

of the currently criminally active on the return to criminal activity

of the recently released. This flow is given by the following system

of equations: (Here and throughout this paper write _XX for the time

derivative
dX

dt
.)

_XX~b1C1{a11
X (C1zC2)

(N{I)
{a10XzER ð11aÞ

_CC1~{bC1za11
X (C1zC2)

(N{I)
za10X{c1C1 ð11bÞ

_II~c1C1zc2C2{rI ð11cÞ

_RR~rIzb2C2{a21
R(C1zC2)

(N{I)
{a20R{ER ð11dÞ

_CC2~a21
R(C2zC1)

(N{I)
za20R{c2C2{b2C2 ð11eÞ

XzC1zC2zIzR~N ð11fÞ

Throughout this paper, we refer to system (11) as the ‘‘Full 5D

Model.’’ In equation (11a), law-abiding citizens can become

criminals either via contact with a criminal or a criminal milieu

(‘‘contagion effect’’) at rate a11 or through a propensity a10 to

commit crimes independent of contagion effects. The contagion

dynamic is captured by a11
X (C1zC2)

(N{I)
; the non-contagion

dynamic by a10X in equations (11a) and (11b). Once citizens

turn to crime and become first-time offenders C1, they can reform

(move back from C1 to X ) due to non-punitive social interventions

(‘‘desistance’’) at rate b1, or become incarcerated (move from C1 to

I ) at rate c1 (‘‘incapacitation’’). The incarcerated population I is

released from prison (move from I to R) at rate r, yielding the

recently released population R which is targeted by re-entry/

rehabilitation programs. Some in the R population undergo

successful rehabilitation at rate E (‘‘redemption’’), assimilating back

into society as law-abiding citizens X . However, others in the R
population become repeat-criminals and enter C2 (‘‘recidivism’’).

This dynamic may occur via interactions with criminals on the

street, captured by the a21
R(C2zC1)

(N{I)
term, or by a propensity to

recidivate after prison, captured by the a20R term in equations

(11d) and (11e). (The a20 dynamic is related to the role that prisons

play as ‘‘schools of crime.’’) Recidivists C2 will either be

incarcerated (return to I ) by the c2C2 term or reform (return to

R) by the desistance term b2C2 in (11e). The last equation (11f) is

simply a reminder that total population size is conserved, so that

we can eliminate one of the equations in our analysis.

In our first analysis of ‘‘Full 5D Model’’ (11), we assume: 1) that

all first time offenders turn to crime because of the influences of

current criminal activity, so that a10~0, and 2) that no contagion

effect is needed to return to crime after a prison term, so that

a21~0. We use this a21~0 assumption only to simplify the

calculation of the endemic equilibrium; we will remove it when we

calculate the expression for the threshold R0. We use the

Figure 9. Case 3 for System (10).
doi:10.1371/journal.pone.0088923.g009
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contagion-only assumption a10~0 exactly for the reasons we did

in working with the 3D Models 1 and 2: we need the existence of a

crime-free equilibrium because the Lyapunov function approach

works most easily when one wants to derive conditions for all

orbits to go to the origin. The compartmental diagram for this

simplified version of system (11) is that of Figure 1 with a1~a11

and a2~a20.

The Endemic Equilibrium. We first calculate the endemic

equilibrium for system (11) with a10~a21~0. In this case, at

equilibrium, the four equations (11b) to (11e) yield:

0~a11
:X :

C1zC2

N{I
{b1

:C1{c1
:C1

0~c1
:C1zc2

:C2{r:I

0~r:I{a20
:Rzb2

:C2{":R

0~{c2
:C2za20

:R{b2
:C2

Rewrite these equations as:

X

N{I
~

(b1zc1)

a11

C1

(C1zC2)
ð12aÞ

r:I~c1
:C1zc2

:C2 ð12bÞ

r:Izb2
:C2~(a20z"):R ð12cÞ

a20
:R~(c2zb2):C2 ð12dÞ

Combine the last three equations as:

C1~
"

c1

:R, C2~
a20

c2zb2

:R ð13Þ

Plug these into (12a) to obtain:

X

N{I
~

(b1zc1)

a11

1

1z
a20c1

(c2zb2)"

: ð14Þ

In the next Subsection, we will see that the basic reproduction

ratio for this system is

R0~
a11

b1zc1

1z
a20c1

(c2zb2)"

� �
: ð15Þ

So, once again, at the endemic equilibrium:

X

N{I
~

1

R0
: ð16Þ

We will interpret expression (14) in the next subsection after we

compute its R0 and we will see what it implies for various

interventions in Section entitled ‘‘Analysis of Policy-Related

Changes in the 5D Model.’’

Threshold for the Stability of the Crime-Free Equilibrium

in Model 3. As we did for the simple 3-dimensional system (1),

we use a Lyapunov Function approach to derive the threshold for

the global asymptotic stability of the crime-free equilibrium of the

simplified system (11). We will even re-include a contagion term

for the recidivism transition from R to C2. In other words we will

work with our Full 5D Model (11) with a10~0, a restriction we will

remove below. Since a10~0, the crime-free equilibrium is still, of

course,

X~N, C1~I~R~C2~0: ð17Þ

We carry out the details of the Lyapunov function approach In

the following subsection. For those who wish to avoid the

mathematical details of that computation, we present the bottom

line here: the threshold condition for the (global) stability of the

crime-free equilibrium is

a11

b1zc1

z
c1a11(a20za21)

(c2zb2)(c1zb1)"
v1 ð18Þ

or, equivalently,

a11

b1zc1

� �
1z

c1

(c2zb2)

(a20za21)

E

� �
v1: ð19Þ

The two (equivalent) expressions on the left sides of (18) and (19)

can be thought of as basic reproduction ratios for the spread of crime.

R0~
a11

b1zc1

z

a11
c1

c1zb1

� �
(a20za21)

(c2zb2)"
: ð20Þ

In the first term in expression (20), the numerator is the rate of

movement from X to C1 and the denominator is the sum of the

two rates for leaving C1, desistance b1 and incarceration c1. In the

second term in (20), the numerator tracks the rates of movement

from X to C1 (a11), the movement from C1 to prison I of those

that didn’t desist back to X (c1=(c1zb1)), and the movement from

prison to C2 (a20za21). The denominator includes the three

different ways to move out of C2: via desistance b2, re-

incarceration c2, and redemption ". So the first term in R0 is

the input/output ratio of movement from X to C1, the second

term is the input/output ratio for movement from X to C2. In the

Section ‘‘Analysis of Policy-Related Changes in the 5D Model,’’

we will examine expression (20) more carefully to see what it says

about the various intervention possibilities.

Note that the bis enter only in the sums (bizci) and that a20

and a21 appear only as the sum (a20za21) even though that a20

and a21 enter differently into system (11).

Remark: Of course, if we set a21~0 in (20), we retrieve the

results of Subsection ‘‘Endemic Equilibrium’’ for System (10), and

in particular that
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X

N{I
~

1

R0
: ð21Þ

However, simulations show, that (21) with R0 given by (20), does

not hold for the expanded system (11) with a21w0, as it does for

system (10).

Derivation of the Threshold for the Stability of the Crime-

free Equilibrium for the 5D Model. Here we carry out the

Lyapunov function approach to derive conditions for the crime-

free equilibrium (17) to be an asymptotically stable equilibrium for

system (11), working with the last four equations of system (11)

with a10~0, namely, (11b), (11c), (11d), and (11e), with

X~N{(C1zC2zIzR) in equation (11b). Once again we look

for a Lyapunov function of the form

V~C1zA1IzA2RzA3C2:

We seek constants A1,A2,A3, all positive, such that the derivative
_VV of V along solutions of (11) is negative. In this case, all solutions

tend to the origin.

_VV~ _CC1zA1
_IIzA2

_RRzA3
_CC2

~a11X
C1zC2

N{I
{b1C1{c1C1

zA1c1C1zA1c2C2{A1rI

zA2rI{A2a20R{A2a21R
C1zC2

N{I
{A2ERzA2b2C2

{A3c2C2zA3a20RzA3a21R
C1zC2

N{I
{A3b2C2

~C1 a11
X

N{I

� �
{(b1zc)zA1c

� �

ð22Þ

zC2 a11
X

N{I

� �
z(A1{A3)c2z(A2{A3)b2

� �
ð23Þ

zI ½(A2{A1)r� ð24Þ

zR A3a20{A2(a20z")z(A3{A2)
C1zC2

N{I

� �
a21

� �
: ð25Þ

We seek positive values of A1,A2,A3 so that the coefficients in

the square brackets in (22), (23), (24), and (25) are negative.

For (22), this means:

a11
X

N{I

� �
{(b1zc)zA1c ƒ a11{(b1zc)zA1c ƒ 0,

requiring

A1ƒ
(b1zc1){a11

c1

, ð26Þ

and in particular, that

a11v(b1zc1), ð27Þ

We have seen this condition in even the simplest models.

For (24), to be negative:

A2vA1 ð28Þ

For (23) to be negative:

a11
X

N{I

� �
z(A1{A3)c2z(A2{A3)b2

ƒa11z(A1{A3)c2z(A2{A3)b2

va11z(A1{A3)(c2zb2)v0,

ð29Þ

using (28). Write (29) as:

A1z
a11

c2zb2

vA3: ð30Þ

For (25) to be negative:

A3a20{A2(a20zE)z(A3{A2)
C1zC2

NI

� �
a21

vA3a20{A2(a20zE)z(A3{A2)a21

~A3(a20za21){A2(a20za21zE)v0,

which we write as:

A3vA2
a20za21z"

a20za21

� �
ð31Þ

Combining (28), (30), and (31):

A1z
a11

c2zb2

vA3vA2
a20za21z"

a20za21

� �
vA1

a20za21z"

a20za21

� �
,

or

a11

c2zb2

vA1
: "

a20za21
ð32Þ

or

a11(a20za21)

(c2zb2)
vA1 ð33Þ

Combining (26) and (33), we write our condition as:

a11(a20za21)

"(c2zb2)
vA1v

(b1zc1){a11

c1

: ð34Þ

There exists an A1w0 to satisfy (34) (and the appropriate

positive A2,A3), if and only if:
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a11(a20za21)

(c2zb2)
v

(b1zc1){a11

c1

: ð35Þ

So, (35) is our threshold condition for the (global) stability of the

crime-free equilibrium! Rewrite (35) as:

a11

b1zc1

z
c1a11(a20za21)

(c2zb2)(c1zb1)"
v1 ð36Þ

or, equivalently,

a11

b1zc1

� �
1z

c1

(c2zb2)

(a20za21)

"

� �
v1 ð37Þ

Model 4: Beyond Contagion, More Complex
5-Dimensional Model

We now include the possibility that citizens can turn to crime on

their own, without the influence of crime around them, as in

Section entitled ‘‘Model 2: Beyond Contagion, a More Complex

3-Dimensional Model’’ for the simpler 3-D model. The result is

the Full 5D Model (11). The equilibria are the solutions of the

following system:

0~a10Xza11
:X :

C1zC2

N{I
{b1

:C1{c1
:C1 ð38aÞ

0~c1
:C1zc2

:C2{r:I ð38bÞ

0~r:I{a20
:Rzb2

:C2{ :R ð38cÞ

0~{c2
:C2za20

:R{b2
:C2 ð38dÞ

Rewrite these equations as:

a10Xza11
X

N{I
~(b1zc1)

C1

(C1zC2)
ð39aÞ

r:I~c1
:C1zc2

:C2 ð39bÞ

r:Izb2
:C2~(a20z"):R ð39cÞ

a20
:R~(c2zb2):C2 ð39dÞ

As we did in (13), we solve the last three equations as:

C1~
"

c1

:R, C2~
a20

c2zb2

:R, I~
1

r
"z

a20c2

c2zb2

� �
:R ð40Þ

We can now apply the generalizations of the arguments for

Model 2. The analogue of the geometric argument of Subsection

entitled ‘‘Model 2: Beyond Contagion, a More Complex 3-

Dimensional Model’’ takes note of the fact that the solutions of

System (39) in the 4-D (C1,C2,I ,R)-space occur at the intersection

of the line given by (40) and the quadratic 3-D surface

(‘‘manifold’’) given by (39a). That surface moves down, relative

to the R-axis, as a10 increases from 0, while the line (40) remains

unchanged, analogous to the changes in going from Figures 3, 4,

and 5 to Figures 7, 8, and 9. If the line crosses the surface only at

the origin in the non-negative orthant, then the new crossing with

a10w0 occurs in the strictly positive orthant (as in Figure 9) and

the crime-free equilibrium bifurcates to a low-crime equilibrium.

Otherwise, the lowering of the surface given by (39a) leads to the

line and surface crossing ‘‘below’’ the origin in the negative

orthant, so that the only non-negative equilibrium bifurcates ‘‘up’’

from the endemic equilibrium of the a10~0 case.

We discuss these results further in Section S2 of File S1.

Analysis of Policy-Related Changes in the 5D Model
Changing the Enforcement/Incarceration Parameter.

Expressions (19) and (20) tell us that in order to push a society

towards a crime-free equilibrium, we need the contagion/

transmission factors, given by the a’s (in the numerators) small

and the retreat from crime rates given by the b’s and E large (in the

denominators), as well as the enforcement factors given by the c’s.

Of special interest is the fact that one enforcement parameter c1

appears in the numerator of (19) and (20) — suggesting that the

over-incarceration of first-time offenders can be counter-produc-

tive. However, it is balanced by a c2-term in the denominator in

formulation (19), suggesting that there should be more attention

paid to apprehending repeat offenders (c2) than first time offenders

(c1). The c1 in the numerator in (19) is multiplied by

a20za21

"
: ð41Þ

We can work with expression (19) to gain insights on various

interventions. For example, we can compute how R0 changes as

the incarceration parameter c1 increases:

LR0

Lc1

~
a11

(b1zc1)2

b1(a20za21)

"(b2zc2)
{1

� �
ð42Þ

When (41) is small, in particular, when

(a20za21)v
b2zc2

b1

� �
" ð43Þ

so that recidivism (a20za21) is small relative to rehabilitation and

redemption, then increasing c1 does decrease long-run crime

prevalence. However, if recidivism becomes larger relative to

successful rehabilitation so that (41) increases, then once (43) is

violated, increasing enforcement on first-time offenders c1 leads to

higher crime prevalence. If people who are released from prison are likely

to return to crime and unlikely to assimilate successfully back into society, then

increasing the incarceration rate for first time offenders will have negative long

run consequences.

Alternatively, in formulation (20) the c1 is divided by a (c1zb1)
term. In the latter case, the c1=(b1zc1) factor is small provided b1
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is larger than c1, emphasizing the importance of social interven-

tions.

We do see from expression (20) that increasing enforcement c2

on recidivists unambiguously leads to lower crime prevalence.

Effect of Prison Term Length. It is especially interesting to

note that the crime-free threshold R0 and the equilibrium

‘‘prevalences’’, that is, the fraction of the non-incarcerated

population that is either is criminally-active
C1zC2zR

N{I
or not

criminally-active
X

N{I
, of the last two subsections are indepen-

dent of the rate of prison release r and therefore of the length of

prison term D~1=r. However, as equations (12b) and (12c)

indicate, the equilibrium values of the individual variables

X ,C1,C2,I ,R do depend on r. Figure 10 provides an example of

this dependence for a somewhat arbitrary choice of the parameters

(a11~2, a20~:2, a10~a21~0, b1~b2~ ~:5, c1~c2~:3). In

Figure 10, we see that as the term length 1=r increases (r decreases

from 10 to .1), the equilibrium I increases, while the other

variables decrease. We now show that this is true in general.

Equation (16) tells us that X and I move in opposite directions

as r increases. Equation (13) tells us that C1,C2,R move in the

same direction as r increases, and that we can write C1zC2zR as

a positive multiple m of R. Write (16) as

(N{I){(C1zC2zR)~
1

R0
(N{I) or

N{I{mR~
1

R0
(N{I):

Rewrite this as

1{
1

R0

� �
N~ 1{

1

R0

� �
IzmR:

Since R0w1 and both coefficients on the right side are positive

constants as r increases, it follows that I and R move in opposite

directions as r increases. Combining this with (12b) implies that as

r increases, X , C1, C2, R increase and I decreases, as illustrated in

Figure 10.

We conclude that increasing the prison term length has no effect

on the long-term fractions of the population that is criminally-

active and on the crime-free threshold, but it does lead in the long

run to a larger prison population, fewer criminally active, and

fewer non-criminally active individuals.

Also, as Figure 10 suggests, there are diminishing returns to

longer prison lengths. With the average cost of a prisoner at over

$35,000 a year, one can use Figure 10 to take into consideration

the societal costs and benefits of longer prison terms and choose

accordingly.

Effect of Long-term sentences for the 5D Model:

Eliminating Parole. It is interesting to consider how slowing

the rate of release (tightening the spigot) affects the crime rate, i.e.,

what happens as r gets small (and prison term length get large). In

this vein, we examine the limiting case in which no one is ever

released from prison. Since there is no release from prison, there is

no parole R and no repeat crime C2. Model (45) simply becomes:

_XX~b1C1{a11
XC1

(XzC1)
ð44aÞ

_CC1~{bC1za11
XC1

(CzC1)
{c1C1 ð44bÞ

_II~c1C1, ð44cÞ

a 3D system that we threat as a 2D system in X and C1. The

crime-free threshold for this system is simply R0~
a11

b1zc1

. In

Figures 11 and 12 we draw the two phase diagrams for this system,

depending on whether R0w1 (Figure 11) or R0v1 (Figure 12), in

words, whether the ‘‘reproduction’’ of criminals is above or below

the ‘‘replacement’’value. As shown in Figure 11, when R0w1, all

orbits tend to the N~I (everyone in prison) equilibrium at the

origin (X~C1~0). It’s not that crime has been eradicated, but

that the entire non-incarcerated population has been eliminated.

On the other hand, if R0v1, the system moves toward a crime-

free equilibrium as the segment of the population in C1

(criminally-active but not incarcerated) is diminished either

because they become incarcerated (move to I ) or desist from

crime (move to X ). However, there are multiple crime-free

equilibria when R0v1, with different fractions of people in I

(incarcerated) and X (not incarcerated but also not criminally

active), depending on the initial level of criminal activity in the

population. In this no-parole environment, even if R0v1, i.e., the

lures into crime are smaller than the lures to reform, some people

will get trapped into the prison system.

Figure 13 shows the dramatic changes in the long run crime-free

and prison populations as R0 crosses the threshold R0~1. In the

simulations behind this Figure, we vary only a11, holding the other

parameters at fixed values, including r~0. R0 is a linear multiple

of a11 with a11~0:8 corresponding to R0~1. When a11 is w0:8,

R0w1 and the entire (120-member) population is incarcerated.

When R0v1 and decreases even further, everyone in the

community is either not criminally active or incarcerated, with

the equilibrium number of incarcerated decreasing as R0

decreases. When r is small but positive, the corresponding graphs

are similar to those of Figure 13.

There is Lyapunov function for system (44): V~XzC1. In this

case, _VVƒ0 independent of the value of the tipping point R0; X

and C1 decrease over time and the prison population grows. If

R0w1, the prison population eventually includes everyone. If

R0v1, the criminally active who did not desist will be

incarcerated forever.

The situation is even more dramatic if we eliminate parole in

system (39) in which some turn to crime independent of the level of

criminal activity around them. In this case, we include a10X terms

in equations (44a) and (44b). The same Lyapunov function

V~XzC1 works for this case as it did in the contagion-only

model just above. In this case, however, the only equilibrium for

the modified system (44) is X~C1~0, I~N, and all orbits of the

modified (44) tend to it, no matter whether R0w1 or R0ƒ1.

Everyone is eventually incarcerated.

Effects of Desistance Parameters. It is worth considering

the effects of the parameters b1 and b2, reflecting the rates at

which first-time criminals and recidivists discontinue criminal

activity, respectively. One easily computes that partial deriviatives:
LR0

Lb1

and
LR0

Lb2

are both negative, and therefore social interventions

targeting the desistance of active criminals unambiguously

decreases crime.
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For most choices of reasonable parameters, our simulations

have found that D
LR0

Lb1

D§D
LR0

Lb2

D. (For example, this inequality holds

when (b1zc1)ƒ(b2zc2).) In those cases, social interventions

targeting the desistance of criminals who have not yet been

incarcerated plays a larger role in driving communities towards a

low crime equilibrium than those targeting the desistance of

recidivists. In some sense, this is consistent with Frederick

Douglas’s assertion that ‘‘It is easier to build strong children than

to repair broken men.’’

Model 5: Modeling a Three-Strike Policy with Leakage
As an application of the abstract approach of this paper, we

examine a concrete policy intervention for discouraging repeat

crime, namely the ‘‘three strike policy,’’ wherein a criminal

convicted a third time faces a mandatory life sentence. We

examined a simplified version of this in the previous subsection,

namely mandatory life sentences for any offense. To treat the

three-strike policy, we need to expand our model to distinguish

first time, second time and third time arrested offenders.

As we did in the previous section, we begin by allowing some

leakage from the mandatory life sentence (rw0), before we

examine the stricter regime (r equal or nearly equal zero). In fact, a

life sentence after a third strike is often not a ‘‘true’’ life sentence

(without any chance of release). In the real world, rw0 among the

lifers. Figure 14 presents the flow diagram for this system. Section

S3 in File S1 provides a summary list of the variables and

parameters used in model (45). Since we now have possibly

different prison term lengths for first-, second-, and third-time

incarcerations, we use r1, r2, and r3 to represent these three rates

of incarceration.

_XX~{a11X
C1zC2zC3

N{SI

� �
zb1C1zE1R1zE2R2 ð45aÞ

_CC1~za11X
C1zC2zC3

N{SI

� �
{b1C1{c1C1 ð45bÞ

_II1~c1C1{r1I1 ð45cÞ

_RR1~r1I1{a20R1{a21R1
C1zC2zC3

N{SI

� �
{E1R1zb2C2 ð45dÞ

_CC2~{c2C2za20R1za21R1
C1zC2zC3

N{SI

� �
{b2C2 ð45eÞ

_II2~c2C2{r2I2 ð45fÞ

Figure 10. Effect of Prison Term Length.
doi:10.1371/journal.pone.0088923.g010
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_RR2~r2I2{a30R2{a31R2
C1zC2zC3

N{SI

� �
{E2R2

zb3C3zr3I3

ð45gÞ
_CC3~{c3C3za30R2za31R2

C1zC2zC3

N{SI
{b3C3 ð45hÞ

Figure 11. Phase Portrait of System (44) for R0.1.
doi:10.1371/journal.pone.0088923.g011

Figure 12. Phase Portrait of System (44) for R0,1.
doi:10.1371/journal.pone.0088923.g012
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_II3~c3C3{r3I3 ð45iÞ

where

SI:I1zI2zI3 and

Xz(C1zC2zC3)z(I1zI2zI3)z(R1zR2)~N:

Stability of the Crime-Free Equilibrium for Model

(45). The crime-free equilibrium has

Figure 13. Final X and I as R0 changes.
doi:10.1371/journal.pone.0088923.g013

Figure 14. Flow Diagram for System (45).
doi:10.1371/journal.pone.0088923.g014
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X~N, C1~C2~C3~I1~I2~I3~R1~R2~0:

We use the same Lyapunov function approach to find its

stability conditions, using the last eight equations. The Lyapunov

function derivation of the threshold is carried out in Section S4 of

File S1, where we compute that the threshold for global stability of

the crime-free equilibrium is:

a11z
a11c2

b3zc3

� �
a30za31

"2

� �� �
c2z

"1(b2zc2)

a20za21

� �{1

ƒ

(b1zc1){a11

c1
or

a11z
a11c2

b3zc3

� �
a30za31

"2

� �� �
ƒ

(b1zc1){a11

c1

� �
c2z

"1(b2zc2)

a20za21

� � ð46Þ

With a bit of algebraic manipulation, rewrite (75) in each of the

following three ways:

a11

b1zc1

� �
1z 1z

(a30za31)c2

"2(b3zc3)

� ��

c1(a20za21)

c2(a20za21)z"1(b2zc2)½ �

� ��
ƒ1:

ð47Þ

a11

b1zc1

� �
1z

(a20za21)c1

(a20za21)c2z"1(b2zc2)
z

�

(a20za21)c1(a30za31)c2

"2(b3zc3)½(a20za21)c2z"2(b2zc2)�

�
v1

ð48Þ

a11

b1zc1

z
a11

c1
b1zc1

� �
(a20za21)

(a20za21)c2z"1(b2zc2)

z
a11

c1
b1zc1

� �
(a20za21)

c2
b2zc2

� �
(a30za31)

(a20za21)
c2

b2zc2

� �
z"1

h i
½"2(b3zc3)�

ƒ1:

ð49Þ

Expression (49) for the 9D system (45) has strong similarities to

the corresponding R0 expressions (19) and (20) for the 5D system

(11) (with a10~0). The three numerators in (49) are the input

paths from X to C1, C2 and C3 respectively. The three

denominators in (49) are a bit more subtle, but they strongly

relate to paths out of C1, C2, and C3 respectively. Note once again

that the as appear only in pairs as the ‘‘onset’’ expressions for the

Cis. Each bi appears only with the corresponding ci as the

combined social program/enforcement parameter (bizci) for the

removal of active criminals from the population.

Endemic Equilibrium for System (45). As we did for the

simpler three dimensional Model 1, we will compute the endemic

equilibrium for system (45), with the simplifying assumption that

there is no contagion factor for repeat criminals. We will show that

this equilibrium has the form 1=R0 for the R0 on the left hand side

of (48). So we return to system (45), but with a21~a31~0.

First, set the left hand sides of each equation in (45) equal to 0.

Combine the new (45i), the new (45g), and (45h) and (45f) to

compute that

C3~
a30c2

"2(b3zc3)
C2: ð50Þ

Combine (45c), (45d), and (45e) to compute:

C1~
a20c2z"1(b2zc2)

a20c1

C2: ð51Þ

Finally, write (45b) as:

X

N{
P

I
~

(b1zc1)C1

a11(C1zC2zC3)
, ð52Þ

Substitute for C1 and C3 into this equation from (50) and (51).

After a bit of algebra and cancellation of the C2s, one finds:

N{
P

I

X
~

a11

b1zc1

� � a20c2z"1(b2zc2)

a20c1

z1z
a30c2

"2(b3zc3)

a20c2z"1(b2zc2)

a20c1

~
a11

b1zc1

� �
1z

a20c1

a20c2z"1(b2zc2)
z

�

c1a20c2a30

"2(b3zc3)½a20c2z"2(b2zc2)�

�
ð53Þ

Comparing this to the R0 formula (48) with a21~a31~0, we find

again that indeed

X

N{
P

I
~

1

R0
: ð54Þ

Effect of Prison Term Length in Model (45). Once again,

as we see in (53), the equilibrium fraction of the population that is

not criminally-active

X

N{
P

I
~

C1zC2zC3zR1zR2zR3

N{
P

I
ð55Þ

and the crime-free threshold R0 as in (49) of the last two

subsections are independent of the rate of prison release r and

therefore of the length of prison term D~1=r. However, as

equations (45g) and (45i) set equal to zero indicate, the equilibrium

values of the individual variables X ,C1,C2,C3,I ,1,I2,I3,R1,R2,R3

do depend on values of the ris. In fact, an analysis vey similar to

that in the Section on ‘‘Effect of Prison Term Limits’’ still holds.

Just as in Figure 10, as the term lengths increase (ri decreases), the

equilibrium I3 increases, while all the other variables decrease,

including X and the Cis. Increasing the prison term length has no

effect on the long-term prevalences and the crime-free threshold,

but it does lead to more people in prison, fewer criminals and

fewer crime-free individuals in the long run.
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Model 6: 9-Dimensional System With a Three Strike Policy
To model the Three-Strikes-And-You’re-Out Model — man-

datory life sentences after a third conviction, we set r3~0 in

system (45). Figure 15 presents the corresponding flow diagram.

Just as we saw for the 5D Model and illustrated in Figure 11, when

R0w1, all orbits tend to the everyone-in-prison equilibrium at the

origin (X~C1~0). On the other hand, if R0v1, the outcome

depends somewhat on the initial conditions. There are no

criminals in the long run (C1~C2~C3~0), those who became

criminals for a while either reform via bi and end up in X , or they

are arrested the third time and spend the rest of their lives in

prison. Proofs can be found in Section S5 of File S1.

Results and Discussion

The spread of crime is a complex problem requiring systems-

level thinking. Effective intervention requires more than optimally

allocated police forces. In this section, we summarize our models,

compare the expressions we computed for the tipping points and

endemic equilibria, and summarize the policy implications we

derived from those expressions.

Summary of Model Analyses
We have worked with a number of parameters which can

influence crime outcomes, including onset of crime, incarceration,

recidivism, desistance, and redemption.

N the rate at which individuals turn to crime the first time, either

by themselves (a10; propensity to crime) or through interactions

with the crime and the criminally active around them (a11;

contagion effect of crime),

N the rate at which the criminal-justice system imprisons those

with and without criminal records (c2 and c1 respectively;

incarceration),

N the (recidivism) rate at which previously incarcerated criminals

return to crime, either by themselves (a20; propensity to

recidivate) or through interactions with the crime and the

criminally active around them (a21; contagion effect of crime

on former criminals).

N the success rate of non-punitive measures in reforming

criminals with and without criminal records (b2 and b1

respectively; desistance),

N the rate at which those with criminal records not only desist

from crime but also achieve ‘‘redemption,’’ meaning that their

criminal record is, for all intents and purposes, no longer

consequential ( ; rehabilitation/redemption),

As stated in the Introduction, the purpose of working with

abstract, data-free models as a precursor to empirically-informed

work is to understand the relationships among these parameters in

the spread of crime.

The focal model of this paper is Model 4, the Full 5D Model

given by system (11), which includes recidivism and prison term

length. To develop intuition for this model, we also worked with a

bare bones 3D Model (Model 1, system (1)). To test the water for

more complex models and interventions, such as the three-strike

policy, we analyzed a 9D model (Model 5, system (45)), which kept

closer track of the level of recidivism. For all these models, under

the condition a10~0 (all crime initiated through contagion), we

computed an analytic expression for the tipping point between the

crime-free equilibrium and the high crime (endemic) equilibrium

in terms of the model’s parameters. We now summarize the main

results from our analysis.

N Our computation showed that there is exists a unique high-
crime equilibrium in each model.

N The necessary and sufficient conditions for global conver-
gence to the crime-free equilibrium in the 3D, 5D, and

9D models, respectively, are:

R0~
a11

bzc
"

"zd

� �ƒ1,

R0~
a11

b1zc1

� �
1z

c1

(b2zc2)

(a20za21)

"1

� �
ƒ1,

R0~
a11

b1zc1

� �
1z 1z

c2

(b3zc3)

(a30za31)

"2

� ��

c1
:(a20za21)

½(b2zc2):"1zc2
:(a20za21)�

� ��
ƒ1:

One can begin to see patterns emerge in these expressions as

we increase the model’s complexity.

N To further the motivation for the above three expressions for

tipping points, we write them as input-output ratios:

R0~
a11

bzc
"

"zd

� �ƒ1, ð56Þ

R0~
a11

b1zc1

z

a11
c1

c1zb1

� �
(a20za21)

(c2zb2)"
ƒ1, ð57Þ

R0~
a11

b1zc1

z

a11
c1

b1zc1

� �
(a20za21)

(a20za21)c2z"1(b2zc2)
ð58Þ

z

a11
c1

b1zc1

� �
(a20za21)

c2

b2zc2

� �
(a30za31)

(a20za21)
c2

b2zc2

� �
z"1

� �
½"2(b3zc3)�

ƒ1:

We see that the two numerators in (57) describe movement from

X to C1 and C2 respectively, while the two denominators give the

ways of moving out of C1 and C2 respectively. The first term in

(57) is the input-output ratio for C1, the second term is the input-

output ratio for C2. The R0 in (56) is truly a ‘‘reproduction

number’’: the number of non-criminally active that a criminally

active person can seduce into crime while he or she is not

incarcerated.

N When we relax the assumption that people turn to crime only

through contagion (so that a10w0, as in Models 2 and 4), a

crime-free society is no longer possible. However, the same
tipping point inequalities determine whether a
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society converges to a low crime or high crime
equilibrium.

N Despite the fact that they enter the systems in different ways,

the parameters ai1 and ai0 that model the transition into

criminal activity, either with or without the influence of other

criminals, respectively, always appear together as a sum,

capturing the dynamic known as ‘‘onset.’’

N Similarly, the parameter bi that represents inducements for the

desistance of criminal activities only appears in the above ex-

pressions as a summand with the corresponding incarceration

parameter ci, possibly representing the role of general
deterrence in moving away from criminal activity.

N Relationship between R0 and endemic prevalences: In

Models 1, 3, and 5, when the above R0s are w1, the crime-

free equilibrium is unstable and all orbits converge to a unique

‘‘endemic’’ equilibrium. At this high-crime equilibrium, the

fraction of the non-incarcerated population that is not

criminally-active
X

N{I
is given by

1

R0
and the fraction that

is criminally-active is given by

P
C

N{
P

I
~1{

1

R0
: ð59Þ

Summary of Policy Implications
It follows from (59), parameter changes that increase R0 also

increase the fraction of the population that is criminally-active.

Therefore, we worked with expressions (56), (57), and (58) to

evaluate the relative effectiveness of various intervention strategies.

N We can use our analyses to determine the necessary level of

incarceration to reduce long-run crime under Model 1’s

assumptions, writing (56) as

"zd

"

� �
(a11{b)ƒc: ð60Þ

Under Model 1’s assumptions, if social programs are even

slightly more effective than the transmission rate of criminal

behavior — that is, if b is larger than a11 — no incarceration is

necessary for crime to continually decrease to a low

equilibrium. If a11wb, however, inequality (60) gives the

minimal amount of incarceration needed to reduce crime to a

low equilibrium.

N To consider the effect of increasing incarceration on first-time

criminally-active offenders, we differentiate R0 with respect to

ci to take advantage of the expressions we have for R0. For

example, focusing on (57), we compute

LR0

Lc1

~
a11

(b1zc1)2

b1(a20za21)

(b2zc2)
{1

� �
ð61Þ

When recidivism (a20za21) is small relative to rehabilitation

and redemption, then increasing c1 does decrease long-run

crime prevalence. However, if recidivism is more likely than

successful rehabilitation, increasing incarceration on first-time

offenders c1 leads to higher crime prevalence (and decreas-
ing incarceration leads to lower crime prevalence).

Intuitively, if the ‘‘failure’’ rate among people coming out of

prison is too high, then incarcerating so many people is

counterproductive. There are social and economic benefits to

successfully helping returning prisoners reintegrate.

N On the other hand, the corresponding
LR0

Lc2

is always negative

for Model 3. Increasing enforcement/incarceration against

recidivists does reduce the prevalence of crime.

N Similarly (and obviously),
LR0

Lb1

and
LR0

Lb2

are always negati-

ve.Increasing desistance also reduces the prevalence of crime.

N In the above expressions for R0, the ci is always divided by a

(cizbi) term. This ratio
ci

cizbi

is more sensitive to increases in

desistance incentives bi than to increases in incarceration ci. In

other words, in driving a community to a low-crime
equilibrium, successfully increasing the rate of
desistance (through social interventions, for exam-

Figure 15. Flow Diagram for Three-Strike Policy.
doi:10.1371/journal.pone.0088923.g015
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ple) is systematically more effective than increasing
the rate of incarceration.

N We also see that a11 is the only parameter that appears as a

multiplier for the entire expression of R0, emphasizing that the
long-run equilibrium level of crime and incarcera-
tion is extremely sensitive to changes in the likeli-
hood that an individual turns to crime in the first
place, especially onset that is influenced by social
interactions with other criminally active people. This

is not unlike the medical saying that ‘‘prevention is the best

cure.’’ Accordingly, finding ways to decrease a11 should be a

major priority. For example, if children who have poor access

to education are far more likely to turn to crime than their

counterparts, then improving educational access will system-

atically decrease long-run crime and incarceration levels,

which has both social and economic benefits.

N The ris and ris, which are key indicators of sentencing length,

do not appear in the expressions for either the tipping point or

the prevalence of crime. At least in these simple models with

long-term foci (such as tipping points and endemic equilibria),

the reduction and endemic prevalence levels of crime
are independent of the length of sentence.

N But while increasing the prison term length has no effect on the

long-term prevalences and the crime-free threshold, it does

lead to more prisoners, fewer criminals, and inter-
estingly fewer law-abiding citizens in the long run,

assuming a fixed population N .

N There is also a decreasing returns effect for prison
term lengths, that is, increasing prison term lengths have

smaller and smaller overall effects on the amount of crime, as

Figure 10 suggests. In particular, longer sentences can
lead to greater increases in the prison population
than decreases in the criminal population.

N If r3~0 (mandatory life sentences for the third conviction),

there are no criminals in the long run (C1~C2~C3~0). If

R0w1, and everyone eventually spends their lives in prison. If

R0v1, those who became criminals for a while either reform

via bi and end up in X , or they are arrested the third time and

spend the rest of their lives in prison. If, independent of a

contagion effect, people have even the smallest propensity

towards criminal behavior (a11w0), then everyone eventually

spends life in prison independent of the size of R0.

Conclusions

In this paper we have presented a series of increasingly complex

mathematical models of the spread of crime in a population and

studied the relationships among the models’ parameters. Although

these abstract models do not generate empirical findings, they lay a

foundation for future empirical work on the macro-level dynamics

of crime and punishment, thus rejuvenating a rich but somewhat

dormant tradition of systems models of crime. The main

contributions of our current work are threefold. First, we showed

that each of the systems we analyzed had both a low and high-

crime equilibrium, and we demonstrated how to derive analyti-

cally the threshold R0 that defines the tipping point between the

low- and high-crime equilibria. We also demonstrate how the

threshold can be viewed as the sum of input-output ratios

comparing the movement of people into the crime (via initial onset

and recidivism) to the movement of people out of crime (via

incarceration, desistance, and redemption). These threshold

expressions also reveal that the relative size of the criminally-

active population is more sensitive to changes in the rate of

desistance away from crime than it is to incarceration, suggesting

that policy efforts aimed at encouraging desistance (e.g., prisoner

reentry programs and social programs targeting young criminals

and juvenile delinquents) may be a more efficient way to reduce

crime compared to increasing incarceration rates. The threshold

expressions also indicate that policies and interventions that reduce

the likelihood of being lured into crime in the first place are of the

utmost importance in reducing the long-run levels of crime.

Another contribution of our work is to specify the conditions

under which increasing the punitiveness of criminal sanctions –

albeit in a way that does not distinguish between higher levels of

arrest, conviction, or sentencing to incarceration – will lower the

crime rate. Differentiating R0 with respect to c1 (the rate at which

people are incarcerated for the first time) revealed that increasing

the incarceration rate of first-time offenders will only diminish the

crime rate if the forces propelling people into crime, a1i (onset) and

a2i (recidivism), are small relative to the forces driving people away

from crime, b1 and b2 (desistance) and (rehabilitation/

redemption). In a world where the recidivism rate outpaces the

rehabilitation rate among formerly incarcerated people, increasing

the rate at which first-time offenders are incarcerated becomes

counterproductive, driving the system toward a higher crime rate.

However, increasing the rate of incarceration among recidivists

will reduce the long-run level of crime in the system.

A third contribution of the models presented in this paper is that

they shed light on the system-level consequences of increasing the

length of prison terms. The long-run effect of increasing the length

of prison terms are to increase the fraction of the population that is

incarcerated, but it has no effect on changing the fraction of

criminally-active people in the population. Moreover, as we

showed in Figure 9, there are diminishing returns to increasing the

length of prison sentences.

Abstract models like those presented in this paper, if accepted as

reasonable approximations, can be used to calculate hard-to-

estimate parameters, such as the contagion effects, as has been

done for models of the spread of disease [48]. In other words, if

there is agreement on the long-term crime level in an area, and on

the values of many of the underlying parameters (such as the

incarceration probability), the models’ equations can be used to

estimate other parameters. Because our conclusions follow from

careful mathematical analyses, controversial or incorrect model

conclusions lead to challenges to the models’ assumptions — a

valuable exercise in itself.

We recognize the limitations of these models in their current

form, largely due to the simplifying assumptions, including spatial

homogeneity, fixed transition probabilities between populations,

and a fixed population. The ultimate benefit of the modeling

approach begun in this paper lies in future work, in which we

intend to relax the models’ restricting assumptions, account for

population heterogeneity (e.g., by age, race, and socioeconomic

status), allow for variation by type of crime, and incorporate more

stages of the criminal justice system into the models.

Supporting Information

File S1 Supporting information and figures. In File S1,

we carry out in some detail the calculus and algebra calculations

needed to compute endemic equilibria, compute formulas for

tipping points, and analyze extensions of simpler models presented

in the body of this paper.

(PDF)
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