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Abstract

Motivation: The study of ancient genomes can elucidate the evolutionary past. However, analyses

are complicated by base-modifications in ancient DNA molecules that result in errors in DNA

sequences. These errors are particularly common near the ends of sequences and pose a challenge

for genotype calling.

Results: I describe an iterative method that estimates genotype frequencies and errors along

sequences to allow for accurate genotype calling from ancient sequences. The implementation of

this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations

and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-

coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity

from several low-coverage Neandertals. These estimates show that low heterozygosity, compared

to modern humans, was common among Neandertals.

Availability and implementation: The Cþþ code of snpAD is freely available at http://bioinf.eva.

mpg.de/snpAD/.

Contact: pruefer@eva.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ancient DNA has been used to study the genomes of modern and ar-

chaic humans, mammals and plants, and has led to insights into the

evolutionary past (Sarkissian et al., 2014). Often, the analyses are

based on sparse data. However, in some instances enough DNA mole-

cules are preserved in ancient samples to allow for sequencing to deep

coverage. This was, for instance, the case for several modern human

remains (Slatkin and Racimo, 2016) and for two Neandertals and a

Denisovan, extinct sister groups to present-day humans, for which

genomes of at least 30-fold coverage could be generated (Meyer et al.,

2012; Prüfer et al., 2014, 2017).

The analysis of ancient DNA is complicated by cytosine deamin-

ation, a common type of miscoding lesion accumulating in ancient

DNA with increasing age and temperature (Frederico et al., 1990;

Sawyer et al., 2012). These lesions are more frequent at the ends of

ancient DNA fragments and cause cytosines to be misread as thy-

mines (Briggs et al., 2007). Laboratory methods exist that can remove

this type of damage during library preparation (Briggs et al., 2010).

However, these methods also reduce the number of molecules that are

made accessible to sequencing and are therefore best avoided when

material is scarce and a high coverage genome is the aim.

The calling of diploid genotypes provides a computational means

to reduce the impact of ancient DNA damage and several

approaches have been published that take the characteristics of an-

cient DNA damage into account for calling genotypes (Jónsson

et al., 2013; Lindgreen et al., 2014; Link et al., 2017; Prüfer et al.,

2017; Zhou et al., 2017). These approaches have fixed error rates or

estimate error rates by noting differences in sequences at conserved

sites or by comparing sequences to a closely related genome. The

error rates are then used for quality score recalibration or directly to

estimate genotype frequencies for calling genotypes.

Here, I present a different approach that jointly estimates error

rates and genotype frequencies from high-coverage ancient data.

Using both simulated and real ancient DNA data I demonstrate that

the method is effective in dealing with high error rates in ancient

DNA.

2 Materials and methods

2.1 Implementation
SnpAD implements an iterative method that jointly estimates the fre-

quency of sequencing errors and the frequency of genotypes (Fig. 1).
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The algorithm proceeds by first estimating by maximum likelihood

the frequency of genotypes. These estimates are then used to call

temporary genotypes. By comparing all sequences to these tempor-

ary genotypes, error rates are re-estimated. The three steps are iter-

ated until the likelihood for the first step does not increase

significantly. The resulting error rates and genotype frequencies can

then be used to infer the most likely genotype at each position.

2.1.1 Error model

The error model in snpAD assumes that the bases in the ancient

sequences fall in classes that are known a priori, and that each class

is characterized by a base substitution matrix that records the proba-

bilities for all possible combinations of true and observed bases. In

its current implementation, each base is classified by its position in

the sequenced DNA fragments and optionally according to the type

of sequencing library. By default, the software considers one matrix

for each of the first 15 bases and last 15 bases in sequences and one

matrix for bases in the interior of sequences (see Supplementary Fig.

S1). However, the algorithm is independent of the classification

scheme and further features of the data can be incorporated in the

future.

I note that this model does not differentiate between sequencing

error and ancient DNA damage, and that the probabilities given by

the base quality scores are not taken into account. This choice is

motivated by the fact that most ancient DNA fragments yield, due

to their short length, overlapping mate pair sequences that can be

merged after sequencing. The merged sequences show rarely

low quality bases, indicated by a low quality score, thus rendering

quality scores often largely uninformative (see Supplementary Figs

S2–S3; Prüfer et al., 2017).

From here on, I will refer to the probability of observing base b

when the true base is B as PðbjBÞ. This probability is dependent on

the strandedness of the sequence in which b resides and the position

in this sequence. However, for ease of notation these details are

omitted.

2.1.2 Estimating the frequency of genotypes

SnpAD estimates the frequency of all 10 possible diploid genotypes,

denoted PðAAÞ;PðACÞ; . . . ;PðTTÞ, from the data. This step assumes

that the probabilities for errors are known and that sites are

independent.

Genotype frequencies differ substantially: the overwhelming ma-

jority of sites are generally homozygous for one of the four bases

and few sites are heterozygous. I make use of this difference by esti-

mating the frequency of homozygous genotypes from the base com-

position of the data.

To estimate base composition, snpAD estimates at each position

the base that likely gave rise to the observed bases given the error

model. With b1; . . . ;bn bases in n sequences covering a site, the scorePn
i¼1 PðbijBÞ is calculated for each base B 2 fA;C;G;Tg. The base

composition of the data, P(A), P(C), P(G), P(T), is given by the fre-

quencies of the highest scoring bases at all sites. With the frequency

of heterozygous sites Phet ¼ PðACÞ þ PðAGÞ þ PðATÞ þ PðCGÞþ
PðCTÞ þ PðGTÞ, the frequency of homozygous genotypes can be

estimated using the equation

PðBBÞ � ð1� PhetÞPðBÞ: (1)

The frequency of heterozygous genotypes in the data are esti-

mated by maximum likelihood following approaches described pre-

viously (Nielsen et al., 2011). Using the same notation as before, the

software calculates the probability for observing n bases b ¼ b1; . . . ;

bn when the true genotype is B1B2 as

PðbjB1B2Þ ¼
Yn

i¼1

PðbijB1Þ þ PðbijB2Þ
2

: (2)

Assuming independence between sites, and considering all pos-

sible genotypes GT ¼ fAA, AC, AG, AT, CC, CG, CT, GG, GT,

TTg, the likelihood function is

LðhjDÞ ¼ PðDjhÞ ¼
Y

b2D

X

g2GT

PðbjgÞPðgÞ;

where D denotes the set of all sites and h denotes the error rates and

the genotype frequencies. The likelihood is maximized using the

BOBYQA algorithm (Powell, 2009) as implemented in the library

nlopt (Johnson, 2014) with the six heterozygous genotypes as free

parameters and homozygous genotypes calculated as detailed in

equation (1).

2.1.3 Reference bias

Both experimental and computational procedures may introduce a

bias in the observed data due to the short length of ancient DNA

fragments. Methods that select DNA fragments by hybridization to

a DNA probe may preferentially capture DNA molecules that are

identical to the probe sequence. On the other hand, since only a lim-

ited number of mismatching bases are allowed in sequence align-

ment, and ancient DNA sequences contain a larger proportion of

mismatches due to miscoding lesions, aligning sequences may be

biased towards matching the reference sequence (Prüfer et al.,

2010). Note that modern human contamination in archaic human

genomes also contributes to an overrepresentation of reference

alleles.

SnpAD offers an option to take reference bias into account when

estimating genotype probabilities and when producing genotype

calls. For this, a new parameter r (with 0:5 � r � 1) is introduced

to represent the frequency at which sequences are sampled from the

reference allele as opposed to the alternative alleles at heterozygous

sites. For genotypes with a reference base B1 and an alternative B2

equation (2) changes to

Fig. 1. Schematic overview of the method implemented in snpAD
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PðbjB1B2Þ ¼
Yn

i¼1

rPðbijB1Þ þ ð1� rÞPðbijB2Þ;

and r is treated as an additional free parameter during the optimiza-

tion step.

2.1.4 Genotype calling

With the frequencies of genotypes as priors, the posterior probabil-

ity for each genotype G at a site b can be calculated as

PðGjbÞ ¼ PðbjGÞPðGÞP
g2GT PðbjgÞPðgÞ : (3)

The most likely genotype is reported at each site, together with a

genotype quality calculated as the Phred-scaled (Ewing and Green,

1998) log-likelihood difference between best and second best

genotype.

2.1.5 Estimating the error model

SnpAD uses a temporary genotype call to re-estimate the error

model. For this purpose, at each site the posterior probabilities for

all genotypes are determined using Eq. (3).

If a site is homozygous and the genotype is known with absolute

certainty, then the presence of an error could be determined by com-

paring the bases in each sequence to the genotype. However, geno-

types are estimated using these bases so that the two are not

independent. Here, I aim for an approximate solution that works

despite the presence of heterozygous sites, the uncertainty in geno-

type calls, and the dependence of the genotype call on the underlying

bases.

Sequences at heterozygous sites sample from both alleles. If each

of the two alleles were to be considered the true base with equal

probability, then half of the sequences would be counted as potential

errors at heterozygous sites. To avoid this issue, bases that match at

least one of the two alleles are not considered an error by snpAD.

To solve the second issue, the uncertainty of genotype calls, snpAD

counts errors proportionally to the posterior probabilities of all pos-

sible genotypes. The third issue, the dependence of a genotype call

on the underlying bases, could be solved by a strategy in which each

single base, in turn, is left out of the genotype call and then consid-

ered for error estimation. However, this approach would be compu-

tationally expensive. Instead, I determine using simulations which

coverage is sufficiently high so that this dependence does not lead to

significant bias.

2.2 Simulated data
Simulated datasets with sequence coverage between 3 and 30-fold

were generated to evaluate the performance of snpAD. Each dataset

consists of 10 million independently generated sites with a fixed se-

quence coverage per site. A site was chosen to be heterozygous with

probability 8� 10�4 (2� 10�4 for transitions, CT and GA, and

1� 10�4 for transversions). Genotypes CC, GG had a frequency of

0.1998 and AA, TT of 0.2998.

Bases were randomly drawn with a probability of 0.5 from each

of the two alleles of the genotype. Simulations that include reference

bias first chose one allele as the reference. Bases were then drawn

from this allele with probability r¼0.55.

Each base was substituted according to pre-defined error proba-

bilities. These probabilities were derived from comparing the un-

treated Vindija 33.19 Neandertal data to the genotypes of the

closely related Altai Neandertal. Separate substitution matrices were

calculated for each of the first 15 and last 15 bases of sequences and

one matrix for the remaining bases in the interior of sequences. Each

simulated base was assigned one of the resulting 31 substitution

matrices at random and was modified with the probabilities given

by this matrix.

2.3 Ancient DNA data
I used several published datasets to test the performance of snpAD

(Supplementary Table S1). Following previous approaches (Prüfer

et al., 2017), the analysis of all datasets was restricted to regions

within a 35 bp mapability track and sequences with MQ < 25 and

bases with Q<30 were removed. Some datasets consisted of libra-

ries with different treatment that affect error rates. These types of

libraries were considered separately for error estimation. Identical to

the simulated data, 31 substitution matrices for the first 15 bases,

the last 15 bases and central bases were estimated for each type of

library.

2.3.1 Neandertal data for chromosome 21

I used published sequence data from chromosome 21 of the 30-fold

coverage Vindija 33.19 genome (Prüfer et al., 2017). Around 1/4 of

this data was enzyme treated to remove ancient DNA damage, while

the remaining data were not treated. For error estimation, treated

and untreated data were regarded separately. In addition to the full

dataset, the chromosome 21 data was subsampled to an average

coverage of 3–25 using the samtools option ‘-s’ (Li et al., 2009).

Chromosome 21 has also been captured from sequencing libra-

ries of a Neandertal sample from the El Sidrón Cave (Sid1253) and

another Neandertal sample from the Vindija Cave (Vindija 33.15)

(Kuhlwilm et al., 2016). Note that Vindija 33.19 and 33.15 carry al-

most identical heterozygous sites on chromosome 21, suggesting

that these two samples originate from the same Neandertal individ-

ual (Prüfer et al., 2017).

2.3.2 Low-coverage Neandertals and modern humans

I used the recently published low-coverage genome sequences (1.0-

fold to 2.7-fold coverage) for the late Neandertals Goyet, Spy,

Vindija 87, Le Cotte and Mezmaiskaya 2 that are less than 50

000 years old (Hajdinjak et al., 2018). For comparison with these

low-coverage Neandertals, the genome-wide data of an untreated

Vindija 33.19 library was subsampled to 0.9, 1.0, 1.2, 1.5 and 2.0-

fold coverage and processed identically to other low-coverage

samples.

In addition, I used 1-fold and 2-fold coverage subsamples from

the 22-fold coverage genome of Loschbour, and the full data of

Motala 12 (2.4-fold), both around 8000 year old modern human

individuals from Europe (Lazaridis et al., 2014).

3 Results

3.1 Assessing accuracy using simulated data
I first tested snpAD using simulated datasets of 10 million sites,

each, ranging from 3 to 30-fold coverage. Parellelizing over 30

processor cores, individual simulations took between 23 and 83 min

to process and under 6GiB of memory (see Supplementary Figs S4

and S5).

Since the simulated genotype frequencies and the profile of simu-

lated errors are known, the accuracy of inferred parameters can be

estimated with respect to coverage. The simulations showed that a

coverage of at least 4-fold is required to estimate genotype frequen-

cies accurately (<10% deviation; Fig. 2). Parameter estimates for
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the simulation with 3-fold coverage deviated by 30–160% from

simulated genotype probabilities (Supplementary Tables S2 and S3).

Lower coverage simulations contain a smaller number of

observed bases. To exclude the possibility that a lack of informative

sites explains the large deviations for the 3-fold coverage simulation,

I repeated the analysis with 100 million sites at 3-fold coverage. As

before, estimates deviated substantially from the simulated genotype

probabilities (20–130%), indicating that lack of power is not the

main reason for the deviation.

Estimates of genotype frequencies were close to simulated

parameters when the true error rates were given (<8% difference;

Supplementary Table S5), indicating that error rates could not be

estimated accurately at 3-fold coverage. Figure 2 shows that the esti-

mated frequencies of errors are, on average, within 10% of the

simulated frequencies for datasets with at least 6-fold coverage.

Simulations with less than 6-fold coverage show larger deviation

from the true parameters, especially for errors that occur at lower

frequencies (Fig. 2).

Note that these results are based on simulations with a fixed

coverage. More realistic simulated coverages that follow a Poisson

distribution (Lander and Waterman, 1988) yield more accurate

genotype frequency estimates at lower coverage (Supplementary

Table S6).

3.2 Subsamples of a high-coverage Neandertal genome
The Vindija 33.19 Neandertal was previously sequenced to 30-fold

genomic coverage. The published genotypes were produced with an

earlier version of snpAD, that required error rates to be specified.

This error was estimated by comparing the Vindija 33.19 sequences

to the closely related Altai Neandertal genome (Prüfer et al., 2014).

Genotype calls based on this approach were shown to outperform

calls by GATK (Prüfer et al., 2017; see Supplementary Section 3 for

a comparison of GATK with and without ancient DNA quality score

recalibration (Jónsson et al., 2013) to the latest snpAD version).

To test the accuracy of parameter estimates, I ran snpAD on the

data for chromosome 21 of Vindija 33.19 (89 min wall clock run-

time on 50 cores and �12GiB maximum memory usage). Since the

true frequencies of error are not known, I used the differences of

Vindija 33.19 sequences on chromosome 21 to the previously

published Vindija 33.19 genotype calls as a baseline for comparison.

The estimated error rates match this baseline well (Supplementary

Fig. S6). The genotype frequencies show a difference of less than 1%

from previous estimates (Supplementary Table S10).

Simulations indicated that snpAD performs well for high-

coverage data, but that parameter estimates fit less well for coverage

lower than 6-fold. To test whether these results also hold for a true

ancient DNA dataset, I subsampled the chromosome 21 Vindija

data to average coverages of 1 to 25-fold. SnpAD estimates on these

subsampled data show that genotype frequencies and error rates are

close (deviate by less than 10% on average) to the estimates with the

full data (Fig. 3; Supplementary Table S11) as long as the average

coverage is �15. Datasets with at least 2-fold coverage differed on

average by at most 20% from the true genotype frequencies, and at

most 30% from true error rates.

The estimated parameters can be used to determine the most

likely genotypes along chromosome 21 for each subsampled dataset.

To test how coverage affects the accuracy of the most likely call,

these genotypes were compared to the genotypes gained from the

full 30-fold coverage Vindija data (Supplementary Figs S7 and S8;

Supplementary Table S13). Less than 0.75% of calls at 1-fold

coverage or higher were discordant, whereas datasets with at least

12.5-fold coverage showed less than 0.01%. Applying a cutoff on

genotype quality scores (GQ30 or GQ50) further reduced the pro-

portion of discordant calls (Supplementary Tables S14 and S15;

Supplementary Figs S9 and S10).

3.3 Reference bias
Capture and alignment procedures can introduce a bias in ancient

sequence data that leads to an overrepresentation of sequences that

support the capture bait or the reference genome used for alignment

(reference bias). SnpAD supports the estimation of a parameter that

captures this bias by testing for unequal representation of sequences

supporting the reference and non-reference alleles at heterozygous

sites.

Simulated data with a reference bias of 5 and 0% (r¼0.550 and

r¼0.500) show that a minimum coverage of 15-fold is required

to estimate reference bias (Supplementary Table S8). Simulations

with this minimum coverage yield estimates of 0.549–0.558 for a

Fig. 2. Accuracy of parameter estimation for simulated datasets. Left: Deviation from simulated genotype probabilities for the six heterozygous genotypes. Each

simulation is indicated by a vertical blue dotted line and the estimates are shown as blue points. Estimates for 3-fold coverage deviated by more than 0.5 and are

not visible at the depicted range. Right: Average deviation from simulated error probabilities
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simulated r¼0.550 and 0.500–0.508 for r¼0.500. That higher

coverage is required to estimate reference bias is further corrobo-

rated by the subsampled Vindija 33.19 data, which fails to converge

for simulations with �10-fold coverage and yields reference

bias estimates from 7.8 to 4.7% for higher coverage datasets

(Supplementary Table S12).

Next, I ran snpAD for the chromosome 21 capture data of

Vindija 33.15 and El Sidrón. Unfortunately, El Sidrón was too low

coverage and parameter estimates did not converge. The higher-

coverage Vindija 33.15 data, on the other hand, yielded an esti-

mated 10% reference bias alongside similar genotype frequencies as

Vindija 33.19 (Supplementary Table S16). A stronger reference bias

for Vindija 33.15 than Vindija 33.19 could be explained by capture

bias. This capture bias would favor sequences matching the capture

bait, which, in the case of Vindija 33.15, was based on the human

reference sequence.

To test whether genotype calling would benefit from incorporat-

ing reference bias, I called genotypes for Vindija 33.15 capture data

with and without reference bias and compared these calls to those

gained from Vindija 33.19 data (Supplementary Table S17). Note

that Vindija 33.15 and 33.19 likely originate from the same individ-

ual so that genotype calls are expected to match. Vindija 33.15 calls

with reference bias show a higher fraction of matching homozygous

alternative genotypes (26157/41 match/do not match with bias,

compared to 26117/81 without; Fisher’s exact test P¼0.0004) and

matching heterozygous genotypes (3793/116 versus 3785/124;

P¼0.6464). However, the calls including reference bias also encom-

pass more than 300 additional heterozygous calls that are not shared

with Vindija 33.19. These results suggest that taking reference bias

into account for genotype calling leads for Vindija 33.15 data to a

larger fraction of false calls while gaining few additional sites that

may be called correctly.

3.4 Low-coverage genomes
Results based on subsamples of the Vindija 33.19 data on chromo-

some 21 suggested that the power to estimate genotype frequencies

and parameters of the error model are low for low-coverage

samples. However, this analysis is limited by the small number of

sites on chromosome 21. Furthermore, low-coverage shotgun data is

expected to follow approximately a Poisson distribution (Lander

and Waterman, 1988), so that even for low-coverage samples some

fraction of sites exist that are covered much more often than the

average. For a genome at an average 1-fold coverage, for instance,

around 2% of sites are expected to be covered by at least 4 sequen-

ces (Supplementary Figs S11).

To test whether lower-coverage genomes can yield at least ap-

proximate estimates of heterozygosity, I subsampled a single library

of Vindija 33.19 to between 0.9 and 2.0-fold coverage. This range

of coverage is similar to the range observed in five recently published

low-coverage Neandertal genomes ranging from 1.0 to 2.7-fold

(Hajdinjak et al., 2018). SnpAD was then run on all sites on the

autosomes covered by at least four sequences and the estimates for

genotype frequencies were compared to the genome-wide average

for the high-coverage Vindija 33.19 Neandertal (Fig. 4). All low-

coverage samples yielded overestimates of transition heterozygotes,

although the difference to the high-coverage estimates grow

smaller with increasing coverage. Transversion heterozygotes were

in better agreement with expectation (maximum difference 17%;

Supplementary Table S18).

To infer approximate estimates of heterozygosity, I ran snpAD

on five low-coverage Neandertals and three low-coverage datasets

of modern humans. Estimates of genotype frequencies indicate that

all Neandertals are less heterozygous compared to the modern

human data (Supplementary Table S19). Estimates for the

Neandertals are generally close to estimates from Vindija 33.19, ex-

cept for estimates for Spy, which are substantially higher (by 36–

92%; Fig. 4). Among all tested Neandertals, the Spy individual is

the sample with the lowest coverage and highest modern human

contamination (1.7%), offering at least a partial explanation for the

higher estimates.

3.5 Comparison with ATLAS
ATLAS, a software package for ancient DNA analyses, has been

used to estimate heterozygosity from low-coverage genome data

(Kousathanas et al., 2017). Like other software (Lindgreen et al.,

2014; Zhou et al., 2017), ATLAS uses a model of ancient DNA

damage that expects rising rates of C to T exchanges towards the

50-end and G to A exchanges at the 30 end. Unfortunately, this model

Fig. 3. Parameter estimates for subsampled Vindija 33.19 data compared to full data. Left: Estimated genotype frequencies (points) compared to full data (shown

as horizontal lines). Right: Average deviation from error rates in the full dataset. Estimates for 1-fold coverage fall outside of the plotted ranges
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does not reflect the patterns of ancient DNA damage in sequencing

libraries prepared with a more efficient single-stranded protocol

(Gansauge and Meyer, 2013; Meyer et al., 2012) (Supplementary

Figs S12 and S13). The latter protocol has been employed for the

production of all Neandertal shotgun data used here for the evalu-

ation of snpAD, so that snpAD and ATLAS cannot be compared on

these datasets.

To make a comparison possible, I used the data of Motala12, an

�8000 year old European hunter-gatherer (Lazaridis et al., 2014)

that was sequenced to 2.4-fold coverage and matches ATLAS’

expected patterns of ancient DNA damage. ATLAS’ error estimates

were based on conserved sites and heterozygosity estimates were

determined using the estimateTheta function (see Supplementary

Section S4 for details).

ATLAS estimated a heterozygosity of 1:24� 10�3 whereas

snpAD gave an estimate of 0:73� 10�3 (Supplementary Tables S20

and S19). While the true heterozygosity of the individual is not

known, the heterozygosity of the 22-fold coverage genome of

Loschbour, also an �8000 year old hunter-gatherer from Europe,

may serve as a proxy to put these numbers in perspective.

Heterozygosity of Loschbour was estimated to be 0:66� 10�3 using

GATK (Lazaridis et al., 2014; McKenna et al., 2010) while an ear-

lier version of snpAD yielded 0:62� 10�3 (Prüfer et al., 2017). I

note that snpAD heterozygosity estimates of 1- and 2-fold subsam-

ples (0.58 and 0:59� 10�3, respectively) of the 22-fold Loschbour

sample fall close to these estimates. Present-day non-Africans have

been found to fall in the range of 0:5� 0:7� 10�3 (Mallick et al.,

2016).

4 Discussion/Conclusion

Calling genotypes from ancient DNA data is challenging due to the

high errors rates in such data. Here, I showed that genotypes can be

called by jointly estimating all necessary parameters from the data.

Subsampling lower coverage subsets from a high coverage

Neandertal genome indicated that the estimated parameters are rea-

sonably accurate (<10% deviation) with at least 15-fold coverage.

However, lower coverage data can still yield approximate estimates

of heterozygosity.

The error model in snpAD differs from those implemented in

other software for ancient DNA analyses. This model follows a min-

imalist approach, in that it only assumes that classes of bases exist

that are characterized by the same error rates. The current imple-

mentation offers the option to classify observed bases by sequence

position and type of library. However, the approach is extendable to

incorporate other features that are informative of error rates. The

simplistic design allows me to combine sequencing error and ancient

DNA damage and to jointly estimate error rates and genotype fre-

quencies. Furthermore, data with other types of error patterns than

those observed in ancient DNA could be processed with snpAD

without the need for adjustments to the model or subsequent estima-

tion steps.

A perhaps underappreciated issue for ancient DNA analysis is

reference bias (e.g. Prüfer et al., 2010). Here I estimate this bias

based on the overrepresentation of reference alleles at heterozygous

positions. Using capture data from a Neandertal individual that has

been shotgun sequenced to high-coverage, I was able to show that

incorporating a uniform capture bias does not improve genotype

calls. A shift of alleles at heterozygous sites also constitute part of

the information used by estimators of modern human contamination

in archaic individuals (Philip L.F. Johnson’s maximum likelihood es-

timator described in Prüfer et al., 2014; Racimo et al., 2016). The

reference bias estimate thus provides an approximate upper limit for

modern human contamination. Future work may aim to incorporate

contamination estimates into the calling of genotypes to reconstruct

sequences in the presence of contamination, similar in spirit to

approaches to reconstruct mitochondrial genomes from contami-

nated sequence data (Renaud et al., 2015).

To gain insight into the effective population sizes of late

Neandertals, I used snpAD to estimate heterozygosity for five re-

cently published low-coverage genomes (Hajdinjak et al., 2018).

While I caution that these estimates are approximate at best, it is

intriguing that several late Neandertals yielded heterozygosity esti-

mates that lie below those estimated from the high-coverage Vindija

and Altai Neandertals. These results raise the possibility of particu-

larly low heterozygosity in some of the late Neandertals, that could

reflect a small number of individuals towards the end of the

Neandertal’s reign in Europe.

Fig. 4. Genotype frequencies for autosomal sites with at least 4-fold coverage. Left: Vindija 33.19 full data and data from a single subsampled library. Violin plots

show the distribution over Vindija 33.19 chromosomes. Right: Low-coverage Neandertals. Horizontal lines show genome-wide Vindija 33.19 estimate
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