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Abstract: To scale down semiconductor devices to a size less than the design rule of 10 nm, lithography
using a carbon polymer hard-mask was applied, e.g., spin-on-carbon (SOC) film. Spin coating of
the SOC film produces a high surface topography induced by pattern density, requiring chemical–
mechanical planarization (CMP) for removing such high surface topography. To achieve a relatively
high polishing rate of the SOC film surface, the CMP principally requires a carbon–carbon (C-C) bond
breakage on the SOC film surface. A new design of CMP slurry evidently accomplished C-C bond
breakage via transformation from a hard surface with strong C-C covalent bonds into a soft surface
with a metal carbon complex (i.e., C=Fe=C bonds) during CMP, resulting in a remarkable increase in the
rate of the SOC film surface transformation with an increase in ferric catalyst concentration. However,
this surface transformation on the SOC film surface resulted in a noticeable increase in the absorption
degree (i.e., hydrophilicity) of the SOC film CMP slurry on the polished SOC film surface during
CMP. The polishing rate of the SOC film surface decreased notably with increasing ferric catalyst
concentration. Therefore, the maximum polishing rate of the SOC film surface (i.e., 272.3 nm/min)
could be achieved with a specific ferric catalyst concentration (0.05 wt%), which was around seven
times higher than the me-chanical-only CMP.

Keywords: chemical–mechanical planarization; spin-on-carbon (SOC); hard-mask; C-C bond breakage;
ferric catalyst

1. Introduction

Recently, in order to achieve faster switching, lower power consumption, and lower
bit-cost, nanoscale semiconductor devices have been rapidly scaled down; for example, a
design rule less than 14 nm for dynamic random access memory (DRAM), memory cells
with more than 128 floors for 3-dimensional (3D) NAND flash memory, and a design
rule less than 5 nm for application processors [1–5]. The fabrication of these nanoscale
devices involves ArF immersion lithography using a 193 nm ArF excimer laser and extreme
ultra-violet lithography (EUVL), and using 13.8 nm laser-produced plasma or synchrotron
radiation [6,7]. Using these lithography systems, photoresist patterns with a high aspect
ratio of photoresist thickness to photoresist pattern size (i.e., >5:1) are required for assuring
a mask role against the dry-etching process [8,9]. However, as photoresist patterns with
a high aspect ratio could easily result in a collapse of photoresist patterns, a hard-mask
between the photoresist and the substrate film being etched has been introduced for the
lithography and etching process, as shown in (i) of Figure 1a. In general, this lithography
and etching process using a hard-mask is followed by (i) hard-mask deposition (or spin-
coating) on the substrate being etched, (ii) chemical–mechanical planarization (CMP) and
cleaning, (iii) SiON layer chemical-vapor deposition (CVD) and photoresist spin coating,
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(iv) photoresist exposure and development, (v) SiON layer etching, (vi) hard-mask etching,
(vii) photoresist strip, (viii) substrate film etching, and SiON strip [10,11]. Thus, the hard-
mask supplies the transfer role of the photoresist patterns via anisotropic dry etchings,
requiring high chemical, heat, and etching resistance.
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Figure 1. (a) Fabrication process flow of the lithography and etching using the SOC film hard-mask
followed by CMP. (b) SOC film surface CMP.

Two kinds of hard-masks were applied, i.e., amorphous carbon layer (ACL) and
spin-on-carbon (SOC) film [12,13]. ACL was deposited by the CVD process at a high
temperature (i.e., >500 ◦C), presenting a high hardness (i.e., ~6.51 GPa), as shown in
Figure S1, demonstrating an excellent anisotropic etching characteristic and a high etching
resistance. However, as the ACL process is conducted by CVD at a high temperature, it
is confronted by a high generation of organic particles, a high film surface roughness, a
difficulty of CMP due to a high hardness, and a high process cost, as shown in Figure S2.
As an alternative, SOC film has been applied as a hard-mask, as it can provide a cheap
process cost, a low film surface roughness, and a high process flexibility to adjust the film
thickness, hydrophilicity, absorbance, and refractive index, because of the spin-coating
process of a polyarylene-ether block copolymer solution at room temperature [14–16].
Nevertheless, as the hardness of an SOC film (i.e., ~0.63 GPa) is remarkably lower than that
of an ACL (i.e., ~6.51 GPa), the SOC film thickness should be relatively thicker than the ACL
thickness to assure chemical, heat, and anisotropic etching resistance. Thus, the coating of
a thick SOC film on a patterned semiconductor chip fabricated on a 12-inch wafer leads
to the dependency of the SOC thickness on the pattern density of the substrate SiO2 film,
resulting in a severely non-uniform SOC film thickness on the patterned semiconductor
chips (patterned substrate SiO2 film), as shown in (i) and (ii) of Figure 1b. Therefore, a
long-wavelength CMP is required for eliminating the dependency of the SOC thickness on
the pattern density of the substrate SiO2 film. Note that a long-wavelength CMP should
simultaneously conduct a surface SOC film topography planarization in both areas of high
and a low pattern density, as shown in (iii) of Figure 1b.

Generally, an SOC film is composed of a polyarylene-ether block copolymer [17–19].
Because of the strong covalent carbon–carbon (C-C) bonds (sp2 or sp3) in a polyarylene-
ether block copolymer, the polishing rate of an SOC film during CMP is relatively low,
i.e., ~27.7 nm/min, as shown in Figure 2. Thus, such a low SOC film-polishing rate cannot
perform a complete planarization of the surface topography of the SOC film. As a solution,
a novel concept to break the strong covalent C-C bonds on the SOC film surface should be
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introduced, as the event of breaking the strong covalent C-C bonds on the SOC film surface
during CMP can remarkably enhance the polishing rate of the SOC film surface. Because
of the strong covalent C-C bonds on the SOC film surface and the reluctant nature of the
chemical reaction between the polymer film surface and the CMP slurry chemicals, the
mechanical-dominant CMP via rubbing between the CMP slurry abrasives and the SOC
film surface was conducted, resulting in a relatively low polishing rate. For the first time, in
our study, a catalyst for breaking the strong covalent C-C bonds on the SOC film surface
during CMP was designed, by adding a ferric catalyst and an abrasive stabilizer to the CMP
slurry. It is important to remember that the SOC film CMP should be conducted by both the
mechanical-dominant CMP (i.e., rubbing between abrasives and the SOC film surface) and
the chemical dominant CMP (i.e., a chemical reaction between the CMP slurry and the SOC
film surface). First, among several ferric catalysts, iron(III) sulfate hydrate (Fe2(SO4)3H2O))
was selected, as it was demonstrated to be free of CMP slurry sedimentation and possessed
the highest polishing rate at the inherent chemical pH of a ferric catalyst. Second, the
dependency of the SOC film surface polishing rate on the ferric catalyst (iron(III) sulfate
hydrate)) concentration was estimated to confirm the effect of the ferric catalyst on enhancing
the SOC film polishing rate. Third, the dependency of the chemical bonding composition on
the ferric catalyst concentration was observed by X-ray photoelectron spectroscopy (XPS) to
delineate the presence of broken covalent C-C bonds on the SOC film surface during CMP.
Fourth, the dependency of the CMP slurry adsorption degree (i.e., hydrophilicity) on the
ferric catalyst concentration was investigated to find the chemical reaction degree between
the CMP slurry and the SOC film surface during CMP, determining the absorption degree
of the CMP slurry abrasives and the SOC film debris on the SOC film surface after CMP.
Fifth, the dependency of the electrostatic force between the CMP slurry abrasive and the
SOC film surface on the ferric catalyst concentration during CMP was tested to find the
mechanical-dominant CMP property depending on the ferric catalyst concentration. Finally,
based on both the chemical- and mechanical-dominant CMP characteristics of the SOC film
surface depending on the ferric catalyst concentration in the CMP slurry, the mechanism by
which the addition of ferric catalyst in the SOC film CMP slurry causes the strong covalent
C-C bonds on the SOC film surface to break during CMP was proposed by the transition
from carbon–carbon bonds to carbon–ferric iron(III)-carbon bonds on the SOC film surface
during CMP.
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2. Materials and Methods
2.1. Materials

A 300 nm-thick spin-on-carbon (SOC) film, composed of a polyarylene-ether block
copolymer, was coated on a silicon substrate via spin-coating and annealing. The hardness
of the SOC film was 0.63 Gpa, as shown in Figure S1. In this experiment, the 81.1 nm
zirconia abrasives were synthesized with 40 nm zirconia dispersed in deionized (DI) water
with polycarboxylic-acid type dispersant. The slurry was composed of zirconia abrasives
using 0.05 wt%, 0~0.20 wt% of a ferric catalyst ([Fe2(SO4)3H2O]; Sigma Aldrich, St. Louis,
MA, USA), 0.10 wt% of an abrasive stabilizer (i.e., picolinic acid; C6H5NO2; Sigma Aldrich,
St. Louis, MA, USA), and DI water. Notably, the pH of the slurry containing only colloidal
zirconia abrasive was 3.42, and the pH of the slurry composed of zirconia abrasives, the
ferric catalyst, and the abrasive stabilizer decreased from 3.31 to 2.30 with the increase in
the Fe2(SO4)3 concentration from 0.025 wt% to 0.20 wt%. Therefore, the pH of the slurry
was titrated at 2.3 with HNO3 to exclude the effect of pH.

2.2. CMP Conditions

SOC film with a vertical structure of Si substrate/500 nm-thick SiO2 film/300 nm thick
SOC film was cut into a 4 cm × 4 cm square. The CMP process of the SOC film surface was
conducted using a CMP polisher (POLI-300, G&P Tech. Inc., Busan, Korea) implanted with
a concentric-circle-grooved CMP pad (IC 1000, Dupont Co., Inc., Wilmington, DE, USA).
Before polishing, the polishing pad was conditioned with a diamond disc and DIW for
30 min, and then two dummy wafers were polished prior to the main polishing of the SOC
film surface. Pad conditioning was conducted in situ after each polishing for the various
slurries. The applied head pressure was 6 psi, the rotation speed of the carrier holding the
SOC film samples was 70 rpm, and the rotation speed of the table attached to the CMP pad
was 70 rpm. The flow rate of the CMP slurry was fixed at 100 mL/min, and the polishing
time was set to 30 s. After 30 s of CMP, all SOC film samples were buffed with DI water for
30 s to eliminate the remaining abrasives on the SOC film surface.

2.3. Characterization

The polishing rate of the SOC film was estimated by measuring the film thickness
before and after the CMP using ellipsometry (V-VASE, J.A. Woollam Co., Inc., Lincoln, NE,
USA). The secondary size and zeta potential of the zirconia abrasives in the CMP slurry and
SOC film after CMP were analyzed using a particle analyzer (ELSZ2+, Otsuka Electronics
Co., Inc., Osaka, Japan). The nano-scale (i.e., 81.1 nm in diameter) zirconia abrasives were
observed using high-resolution transmission electron microscopy (HR-TEM, JEM-2010,
JEOL Co., Inc., Tokyo, Japan) with an accelerating voltage of 200 kV. The surface roughness
(average root mean square (RMS) roughness) of SOC film after polishing was estimated
by atomic force microscopy (AFM, Park system, Suwon, Korea) with a 5 µm × 5 µm scan
area. The contact angles were measured using a contact angle meter (GBX Instrument,
DIGIDROP, Dublin, Ireland) by dropping 0.01 mL of DI water from the slurry on the SOC
film surface after CMP. The chemical composition of the SOC film surface after CMP was
characterized using XPS (X-ray photoelectron spectroscopy; K-Alpha+, Thermo Fisher
Scientific Co., Inc., Waltham, MA, USA) at 12 keV and 6 mA with A1Kα (1486.6 eV).

3. Results and Discussion

The CMP process is a dynamic cycling process involving a chemical reaction and a
mechanical rubbing. To understand this dynamic cycling process, the mechanical properties
(i.e., zeta-potential of ZrO2 abrasive, SOC film surface, and secondary ZrO2 abrasive
size) determining the electrostatic force between the abrasives and the SOC film surface,
the chemical properties (i.e., the chemical composition transformation of the SOC film
surface), and the chemical–mechanical properties (i.e., the SOC film polishing rate) were
characterized in detail.
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3.1. Dependency of SOC Film Polishing Rate on Ferric Catalyst (Fe2(SO4)3H2O) Concentration

To enhance the polishing rate of the SOC film, a breakage of the C-C covalent bonds on
the SOC film surface during CMP is introduced by adding a ferric catalyst (i.e., Fe2(SO4)3))
and an ZrO2 abrasive stabilizer (i.e., picolinic acid: C6H5NO2) to the CMP slurry. The
SOC film CMP slurry was composed of 0.05 wt% ZrO2 abrasives of 81.1 nm diameter, and
HNO3, Fe2(SO4)3H2O and C6H5NO2 at pH 2.3, as shown in the background TEM image
of Figure 2. Among several ferric catalysts (i.e., (NH4)5[Fe(C6H4O7)2], (NH4)3[Fe(C2O4)3]
H2O, Fe2(SO4)3H2O, C11H18N2O84Fe, Fe(NO3)39H2O, and K4Fe(CN)6), the highest pol-
ishing rate of the SOC film was achieved with Fe2(SO4)3H2O, as shown in Table S1. The
dependency of the SOC film-polishing rate on the ferric catalyst (i.e., Fe2(SO4)3H2O)) con-
centration was estimated, as shown in Figure 2. As a reference, the CMP slurry, without
adding a ferric catalyst and an abrasive stabilizer, resulted in an SOC film-polishing rate of
27.7 nm/min. The polishing of the SOC film increased rapidly, from 27.7 to 202.3 nm/min,
when the Fe2(SO4)3H2O concentration was enhanced from 0 to 0.05 wt%, as shown in
Figure 2. Then, it decreased from 202.3 to 37.2 nm/min when the Fe2(SO4)3H2O concentra-
tion increased from 0.05 to 0.20 wt%. Hence, the polishing rate of the SOC film peaked at
the Fe2(SO4)3H2O concentration of 0.05 wt%, i.e., Region 1 and 2. Otherwise, the secondary
ZrO2 abrasive size was independent of the Fe2(SO4)3 concentration, i.e., ~150 nm. This
result indicates that the addition of a 0.05 wt% ferric catalyst and abrasive stabilizer in the
SOC film CMP slurry could enhance the polishing rate of the SOC film surface around
seven times during CMP, presenting evidence of an enhancement of the chemical-dominant
CMP characteristic in Region 1 via the C-C bond breakage of the SOC film surface, which
will be discussed later. In addition, the polishing rate of the SOC film surface was further
reduced with ferric catalyst concentration (i.e., >0.05 wt%), exhibiting a reduction in the
mechanical-dominant CMP characteristic via enhancing the attractive electrostatic force
between the ZrO2 abrasives and the SOC film surface in Region 2.

3.2. Dependency of the C-C Bonds Breakage on the Ferric Catalyst (Fe2(SO4)3H2O) Concentration
in the SOC Film CMP Slurry

The chemical bond composition of the SOC film surface immediately after CMP using
slurries both with ferric catalyst (Fe2(SO4)3H2O) and without, as a reference, were analyzed
by XPS as a function of the ferric catalyst concentration. This analysis was conducted to
both find evidence of and quantify C-C bond breakage on the SOC film surface after CMP,
depending on the ferric catalyst concentration in the CMP slurry. The C 1s spectra peaks
of C–O, C–C and C-Fe (via C-C bond breakage) bonds were observed at 286.9, 285.4, and
284.0 eV, as shown in the insets of Figure 3a [20,21]. For the SOC film CMP slurry without a
ferric catalyst, the relative C 1s spectra peak intensities for C–O, C–C and C-Fe bonds were
7214, 26,342, and 121 a.u., respectively. However, for the SOC film CMP slurry with a ferric
catalyst, as the ferric catalyst concentration increased from 0 to 0.20 wt%, the relative C 1s
spectra peak intensity for C–C decreased linearly from 26,342 to 22,014 a.u., while both
C-O and C-Fe bonds increased linearly from 7214 to 9514 a.u. and from 121 to 5014 a.u.,
respectively, as shown in Figure 3b. In particular, at the same ferric catalyst concentration
increase, the increase in the relative C 1s spectra peak intensity for C–Fe (i.e., 4893 a.u.) was
higher than that for C-O (i.e., 2300 a.u.). The ferric catalyst (Fe2(SO4)3H2O) in the CMP
slurry at a strong acidic pH (2.3) was well dissociated into Fe3+ and SO4

−2. During CMP,
Fe3+ chemically reacted with C-C bonds on the SOC film surface, thereby forming carbon
metal complexes (i.e., C-Fe), while SO4

−2, as an oxidant, oxidized C-C bonds, forming C-O
bonds as a result. Note that SO4

−2 is a well-known oxidant—the mechanism of formation
of the carbon metal complex will be explained later. In addition, the O 2p spectra peaks of
C–O and H-O–C bonds on the SOC film after CMP were observed at 531.2 and 532.6 eV,
respectively, as shown in Figure 3c [22,23]. Both C-O-H and C-O bonds increased almost
linearly from 158,213 to 208,157 a.u. and from 23,790 to 47,122 a.u., respectively, as shown
in the insets of Figure 3c. In addition, at the same ferric catalyst concentration increase,
the increase in the relative O 2p spectra peak intensity for C-O-H (i.e., 49,944 a.u.) was
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higher than that for C-O (i.e., 23,332 a.u.). Again, these results indicate that SO4
−2 oxidized

C-H as well as C-C bonds, resulting in the formation of C-O-H and C-O bonds on the
SOC film surface after CMP. It is important to remember that the SOC film surface was
composed of a polyarylene-ether block copolymer including C-C, C=C, O-C, and C-H
bonds. Moreover, the Fe 2p spectra peaks of Fe2p1/2(FeO), Fe(II)3/2, and Fe2p3/2(FeO)
bonds on the SOC film after CMP were found at 723.1, 715.2, and 710.2 eV, respectively, as
shown in Figure 3d [24]. The Fe 2p spectra peak intensities of Fe2p1/2(FeO), Fe(II)3/2, and
Fe2p3/2(FeO) bonds almost linearly increased from 115 to 3477 a.u., 104 to 3204 a.u., and
97 to 2904 a.u., respectively, as shown in Figure 3e. These results demonstrate that during
CMP, Fe3+ chemically reacted with O-C bonds on the SOC film surface, generating FeO
bonds, and diffused into C-C, C=C, O-C, and C-H bonds without chemical reaction through
a rubbing process between abrasives and the SOC film surface, producing interstitial Fe3+.
Finally, the S 2p spectra peaks of the S2p3/2 bond on the SOC film after CMP were shown
at 161.8 eV, as shown in Figure 3f [25]. The S 2p spectra peak intensities of the S2p3/2
bond almost linearly increased from 115 to 3477 a.u., as shown in the inset of Figure 3f.
This result means that S2− ions diffused into C-C, C=C, O-C, and C-H bonds without
chemical reaction through a rubbing process between abrasives and the SOC film surface,
producing interstitial S2− ions. Therefore, during the SOC film surface CMP, using the
CMP slurry, including nanoscale (i.e., 45 nm in diameter) ZrO2 abrasives, a ferric catalyst
(i.e., Fe2(SO4)3)) and an abrasive stabilizer (i.e., picolinic acid: C6H5NO2), the chemical
compositions of the SOC film surface were transformed from C-C, C=C, O-C, and C-H
bonds into C-O, C-Fe, C-O-H, FeO bonds, Fe3+ ions, and S2− ions, increasing the polishing
rate of the SOC film surface with the ferric catalyst (i.e., Fe2(SO4)3)), as shown in Figure 2.
In particular, comparing the spectra peak intensities for C-O, C-Fe, C-O-H, and FeO bonds,
Fe3+ ions, and S2− ions, although the higher sequence of the spectra peak intensities on
the SOC film surface after CMP was followed by C-O-H, C-O, C-Fe, FeO, interstitial Fe3+,
and S2− ions; the formation of C-Fe bonds via C-C bond breakage enhanced the polishing
rate of the SOC film surface, as it resulted in C-C bond breakage rather than the oxidation
of C-C bonds, such as C-O-H and C-O bonds. Thereby, the polishing rate of the SOC
film surface would increase with the ferric catalyst (i.e., Fe2(SO4)3) concentration in the
SOC film CMP slurry, mainly influencing the chemical properties of the SOC film CMP.
Furthermore, the formation degree of the carbon–iron complex on the SOC film surface
during CMP would be limited by the decomposition degree of the ferric catalyst into
ferric ions (Fe3+) that depends on the ferric catalyst type and pH in the CMP slurry. At
an acidic pH (i.e., 2.3), Fe2(SO4)3H2O C11H18N2O84Fe, and Fe(NO3)39H2O could achieve
the maximum decomposition degree of the ferric catalyst into ferric ions (Fe3+). Among
them, Fe2(SO4)3H2O demonstrated the highest polishing rate of the SOC film, indicated
that the higher sequence of the maximum decomposition degree would be followed by
Fe2(SO4)3H2O, C11H18N2O84Fe, and Fe(NO3)39H2O, as shown in Table S1.
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polished SOC film surface after CMP, analyzed by XPS. (a) C 1s spectra, (b) relative XPS intensity
for C 1s spectra depending on the ferric catalyst concentration, (c) O 1s spectra, (d) Fe 2p spectra,
(e) relative XPS intensity for Fe 2p spectra depending on the ferric catalyst concentration, and
(f) S 2p spectra.

3.3. Dependency of the Mechanical Properties (i.e., Electrostatic Force between Abrasive and
SOC Film Surface and Absorption Degree of CMP Slurry) on the Ferric Catalyst
(i.e., Fe2(SO4)3) Concentration

As the polishing rate of the SOC film surface peaked at a specific ferric catalyst con-
centration, as shown in Figure 2, the dependency of the chemical property (i.e., C-C bonds
breakage) on the ferric catalyst (Fe2(SO4)3H2O) concentration could not completely explain
the dependency of the SOC film surface polishing rate on the ferric catalyst concentration.
Hence, the dependency of the mechanical properties (i.e., electrostatic force between abra-
sive and the SOC film surface and absorption degree of CMP slurry) on the ferric catalyst
concentration was estimated for the SOC film surface CMP, as shown in Figure 4. When the
ferric catalyst concentration increased from 0 to 0.04 wt%, the zeta-potential of the SOC film
surface significantly decreased from −14.13 to 0 mV. Then, it increased considerably, from
0 to +26.91 mV, when the ferric catalyst concentration increased from 0.04 to 0.20 wt%. This
result demonstrated that there are two regions of the ferric catalyst concentration, i.e., Re-
gion 1 (negatively charged SOC film surface) and Region 2 (positively charged SOC film
surface). Otherwise, the zeta-potential of the ZrO2 abrasives in the CMP slurry decreased
slightly, from −3.42 to −1.21 mV, when the ferric catalyst concentration increased from 0 to
0.20 wt%. As a result, for Region 1, with a ferric catalyst concentration of 0~0.04 wt%, the
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repulsive force between the negatively charged ZrO2 abrasives and the negatively charged
SOC film surface decreased abruptly from 48.32 to 0 abs. This result predicts that the
polishing rate of the SOC film increases rapidly with the ferric catalyst concentration, as
shown in Region 1 of Figure 2. It is important to remember that, generally, the polishing
rate of the SOC film surface increases with a decreasing repulsive force between the ZrO2
abrasives and the SOC film surface. [26–29]. Otherwise, for Region 2, with a ferric catalyst
concentration of 0.04~0.20 wt%, the attractive force between the negatively charged ZrO2
abrasives and positively charged SOC film surface increased notably, from 0 to 32.67 abs.
This result demonstrates that the polishing rate of the SOC film increases considerably with
ferric catalyst concentration, and would show the inverse dependency of the SOC film
surface polishing rate on the ferric catalyst concentration in Region 2 of Figure 2. In general,
the polishing rate of the SOC film surface increases with the attractive force between the
ZrO2 abrasives and the SOC film surface. [26–29]. Therefore, for Region 2, the increase
in the SOC film surface polishing rate with the ferric catalyst concentration could not be
understood from the increase in both the chemical property (i.e., C-C bonds breakage) and
the mechanical property (i.e., electrostatic force between the ZrO2 abrasive and the SOC
film surface).

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 14 
 

Hence, the dependency of the mechanical properties (i.e., electrostatic force between abra-
sive and the SOC film surface and absorption degree of CMP slurry) on the ferric catalyst 
concentration was estimated for the SOC film surface CMP, as shown in Figure 4. When 
the ferric catalyst concentration increased from 0 to 0.04 wt%, the zeta-potential of the 
SOC film surface significantly decreased from −14.13 to 0 mV. Then, it increased consid-
erably, from 0 to +26.91 mV, when the ferric catalyst concentration increased from 0.04 to 
0.20 wt%. This result demonstrated that there are two regions of the ferric catalyst con-
centration, i.e., Region 1 (negatively charged SOC film surface) and Region 2 (positively 
charged SOC film surface). Otherwise, the zeta-potential of the ZrO2 abrasives in the CMP 
slurry decreased slightly, from −3.42 to −1.21 mV, when the ferric catalyst concentration 
increased from 0 to 0.20 wt%. As a result, for Region 1, with a ferric catalyst concentration 
of 0~0.04 wt%, the repulsive force between the negatively charged ZrO2 abrasives and the 
negatively charged SOC film surface decreased abruptly from 48.32 to 0 abs. This result 
predicts that the polishing rate of the SOC film increases rapidly with the ferric catalyst 
concentration, as shown in Region 1 of Figure 2. It is important to remember that, gener-
ally, the polishing rate of the SOC film surface increases with a decreasing repulsive force 
between the ZrO2 abrasives and the SOC film surface. [26–29]. Otherwise, for Region 2, 
with a ferric catalyst concentration of 0.04~0.20 wt%, the attractive force between the neg-
atively charged ZrO2 abrasives and positively charged SOC film surface increased nota-
bly, from 0 to 32.67 abs. This result demonstrates that the polishing rate of the SOC film 
increases considerably with ferric catalyst concentration, and would show the inverse de-
pendency of the SOC film surface polishing rate on the ferric catalyst concentration in 
Region 2 of Figure 2. In general, the polishing rate of the SOC film surface increases with 
the attractive force between the ZrO2 abrasives and the SOC film surface. [26–29]. There-
fore, for Region 2, the increase in the SOC film surface polishing rate with the ferric cata-
lyst concentration could not be understood from the increase in both the chemical prop-
erty (i.e., C-C bonds breakage) and the mechanical property (i.e., electrostatic force be-
tween the ZrO2 abrasive and the SOC film surface). 

 
Figure 4. Relative electrostatic force between the ZrO2 abrasives and the polished SOC film surface, 
depending on the ferric catalyst (Fe2(SO4)3H2O)) concentration in the SOC film CMP slurry. 

To precisely understand the dependency of the SOC film surface polishing rate on 
the ferric catalyst concentration for Region 2, the absorption degree of the SOC film CMP 
slurry on the polished SOC film surface was measured as a function of the ferric catalyst 
concentration, as shown in Figure 5. As a reference, the DIW of 0.01 mL was dropped on 
the unpolished SOC film surface (i.e., negatively charged surface), and the contact angle 

Figure 4. Relative electrostatic force between the ZrO2 abrasives and the polished SOC film surface,
depending on the ferric catalyst (Fe2(SO4)3H2O)) concentration in the SOC film CMP slurry.

To precisely understand the dependency of the SOC film surface polishing rate on
the ferric catalyst concentration for Region 2, the absorption degree of the SOC film CMP
slurry on the polished SOC film surface was measured as a function of the ferric catalyst
concentration, as shown in Figure 5. As a reference, the DIW of 0.01 mL was dropped on
the unpolished SOC film surface (i.e., negatively charged surface), and the contact angle of
DIW was 77.45◦. This result implies that the unpolished SOC film has a strong hydrophobic
surface. However, when the SOC film surface CMP slurry of 0.01 mL was left on the polished
SOC film surface, the contact angle of the SOC film surface CMP slurry decreased notably,
from 62.71 to 42.18, when the ferric catalyst concentration was 0~0.20 wt%. This result
indicates that the degree of absorption (i.e., hydrophilicity) of the SOC film CMP slurry
on the polished SOC film surface enhances the ferric catalyst concentration. Considering
Stoke’s law for abrasive moving behavior in a fluid (i.e., the SOC film surface CMP slurry),
as shown in Figure S4, during CMP, a higher absorption degree of the SOC film CMP slurry
on the polished SOC film surface would lead to less movement in and out of the ZrO2
abrasives on the CMP pad [30]. Thus, the polishing rate of the SOC film surface decreased
with increasing ferric catalyst concentration, as the absorption degree of the SOC film CMP
slurry on the polished SOC film surface increased significantly with the ferric catalyst
concentration, demonstrating why the polishing rate of the SOC film surface decreased with
increasing ferric catalyst concentration for Region 2, as shown in Figure 2. In summary, the
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polishing rate of the SOC film surface enhanced rapidly with the ferric catalyst concentration
for Region 1, as shown in Figure 2, mainly related to the chemical properties (i.e., C-C bond
breakage). Otherwise, it decreased with increasing ferric catalyst concentration for Region 2,
as shown in Figure 2, predominantly associated with the mechanical property (i.e., the
absorption degree of the CMP slurry rather than the electrostatic force between the ZrO2
abrasive and the SOC film surface). Furthermore, to confirm the cleaning performance, the
absorption degree of the CMP slurry after dipping and loading-up the SOC film wafer in
the CMP slurry was observed as a function of the ferric concentration CMP slurry, as shown
in Figure S4. Note that, in general, the post cleaning after CMP had been conducted by a DI
and diluted HF spray cleaning on the vertically loaded wafer so that a free of the remaining
CMP slurry on the SOC film surface has been required after dipping and loading-up the
SOC film wafer in the CMP slurry. Fortunately, none of the remaining CMP slurry on the
SOC film surface were found after dipping and loading-up the SOC film wafer in the CMP
slurry, as shown in Figure S4. This result indicates that the remaining CMP slurry on SOC
film surface after CMP would be completely cleaned, although the formation of carbon–iron
complex transferred the surface zeta potential of the SOC film from the negative-charged
surface to the positive-charged surface.
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3.4. C-C Bond Breakage Mechanism of the SOC Film Surface during CMP Using Ferric Catalyst
(i.e., Fe2(SO4)3) Concentration

During the SOC film surface CMP, four different types of surface chemical reaction
could happen, based on the chemical compositions of the polished SOC film surface,
depending on the ferric catalyst concentration, as shown in Figure 3, i.e., C-O-H, C-O,
C-Fe (i.e., C=Fe=C), Fe=O, interstitial Fe, and interstitial S. First, the C–H bonds on the
SOC film surface (i.e., polyarylene-ether block copolymer) were dissociated by yielding
carbon radicals and an intermediate iron complex containing a hydroxyl group (OH) on the
SOC film surface, as shown in a and b of Figure 6a [31]. Afterwards, the hydroxyl group
of the intermediate iron complex was transferred to the carbon radicals on the SOC film
surface and the remaining Fe atom was oxidized back to its original form (i.e., Fe=O). This
reaction was repeated, eventually producing C-O-H bonds on the SOC film surface with
532.6 eV in binding energy, as shown in b and c of Figure 6a. Second, the C-H bonds on the
SOC film surface were dehydrated, producing H2 and two carbon radicals, as shown in
a and b of Figure 6b. Afterwards, two dehydrated =C- bonds (i.e., carbon radicals) were
attached to O atoms, producing C-O bonds on the SOC film surface with 286.9 and 531.2 eV
in binding energy, as shown in b and c of Figure 6b. Third, Fe atoms were inserted into
C-H bonds on the SOC film surface via an oxidative addition reaction, as shown in a and
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b of Figure 6c [31–35]. The second C–H bond additions were located at the adjacent C–H
bonds, known as β-hydrogen elimination, as shown in b and c of Figure 6c [36]. Then,
two hydrogen atoms bonded with Fe atom were separated by generating a molecule of
hydrogen. Finally, the C–C bonds bridged by the Fe complexes were broken, yielding C-C
bond breakage (i.e., C=Fe=C) on the SOC film surface with 284 eV in binding energy, as
shown in c and d of Figure 6c [37]. Fourth, Fe=O, Fe3+ ions, and S2− ions were inserted into
the SOC film surface via rubbing between the ZrO2 abrasives and the SOC film surface,
with 710, 715, and 162 eV in binding energy, respectively, generating interstitial Fe=O, Fe3+

ions, and S2− ions on the SOC film surface, as shown in Figure 6d. Among the transformed
surface bonding states (i.e., C-O-H, C-O, and C=Fe=C) on the SOC film surface during
CMP using the ferric catalyst (i.e., Fe2(SO4)3), the C=Fe=C bonds presented the lowest
binding energy, and thus were easily broken during rubbing between the ZrO2 abrasives
and the SOC film surface, enhancing the polishing rate of the SOC film surface. However,
the transformation of the SOC film surface from C-C, C=C, O-C, and C-H bonds to C-O-H,
C-O, C=Fe=C, Fe=O, interstitial Fe3+ ions, and interstitial S2− ions on the SOC film surface
during CMP significantly enhanced the absorption degree (i.e., hydrophilicity) of the SOC
film surface CMP slurry, reducing the polishing rate of the SOC film surface. As a result of
the C-C bond breakage, as well as the absorption degree of the CMP slurry, the polishing
rate of the SOC film surface (i.e., 202.3 nm/min) peaked at a ferric catalyst concentration of
0.05 wt%, as shown in Figure 2.
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4. Conclusions

As the SOC film (i.e., polyarylene-ether block copolymer) surface, as a hard-mask
material, was principally composed of strong carbon covalent bonds (i.e., C-C, C=C, O-C,
and C-H bonds), a breakage of the strong carbon covalent bonds is necessary for the
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planarization of a huge topography of the SOC film surface during CMP. The mechanical-
dominant CMP (i.e., mechanical rubbing between the ZrO2 abrasives and the SOC film
surface) itself could not perform a perfect removal of such high topography. Thus, an
additional chemical-dominant CMP (i.e., transformation of a hard carbon covalent bond
into a soft carbon–metal complex on the SOC film surface) was introduced by adding a
ferric catalyst (i.e., Fe2(SO4)3) in the SOC film CMP slurry. During CMP, the SOC film
surface was transformed from a hard surface, with C-C, C=C, O-C, and C-H bonds, to a soft
surface, with C-O-H, C-O, C=Fe=C, Fe=O, interstitial Fe3+ ions, and interstitial S2− ions. In
particular, the C-C bond breakage (i.e., C=Fe=C bonds) on the SOC film surface enhanced
the polishing rate of the SOC film surface; as a result, the polishing rate increased with
the ferric catalyst (i.e., Fe2(SO4)3) concentration. These surface transformations enhanced
the chemical-dominant CMP property during the SOC film surface CMP. However, during
CMP, the SOC film surface transformation from C-C, C=C, O-C, and C-H bonds to C-O-H,
C-O, C=Fe=C, Fe=O, interstitial Fe3+ ions, and interstitial S2− ions transformed the SOC film
surface from a strongly hydrophobic to a hydrophilic surface, i.e., the absorption degree
(i.e., hydrophilicity) of the SOC film CMP slurry on the polished SOC film surface increased
noticeably with the ferric catalyst concentration. Thus, the polishing rate of the SOC film
surface was notably decreased with increasing ferric catalyst concentration. The absorption
degree of the SOC film surface CMP slurry on the polished SOC film surface decreased
greatly, owing to the mechanical-dominant CMP property. Because of a trade-off in the
polishing rate between the chemical-dominant and mechanical-dominant CMP properties,
depending on the ferric catalyst concentration, the polishing rate of the SOC film surface
peaked at a specific ferric catalyst concentration (i.e., 0.05 wt%). This study can be expanded
for another organic polymer-film surface CMP, i.e., amorphous carbon film as a hard-mask
of semiconductor lithography and polyimide as an insulator material in an OLED display.
For these new CMP applications, further studies on the design of a CMP slurry are required.
In addition, for a real industrial application, such as logic devices and DRAM, when our
proposed CMP slurry was used for the SOC film CMP, the dependency of erosion on the
pattern density would be essentially investigated.
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