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microRNA input into a neural ultradian oscillator
controls emergence and timing of alternative cell
states
Marc Goodfellow1,w, Nicholas E. Phillips1, Cerys Manning1, Tobias Galla2 & Nancy Papalopulu1

Progenitor maintenance, timed differentiation and the potential to enter quiescence are three

fundamental processes that underlie the development of any organ system. In the nervous

system, progenitor cells show short-period oscillations in the expression of the transcriptional

repressor Hes1, while neurons and quiescent progenitors show stable low and high levels

of Hes1, respectively. Here we use experimental data to develop a mathematical model of

the double-negative interaction between Hes1 and a microRNA, miR-9, with the aim of

understanding how cells transition from one state to another. We show that the input

of miR-9 into the Hes1 oscillator tunes its oscillatory dynamics, and endows the system with

bistability and the ability to measure time to differentiation. Our results suggest that a

relatively simple and widespread network of cross-repressive interactions provides a unifying

framework for progenitor maintenance, the timing of differentiation and the emergence of

alternative cell states.
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T
he nervous system is built by progenitor cells that divide
either symmetrically or asymmetrically to give rise to
neurons and glia1,2. Differentiated cells appear in a timed

fashion, and although the timing of generation of different cell
types is not as stereotypical as previously thought3, timing of
differentiation is an important element in the correct
development of the nervous system4. Some progenitors also
need to replenish their population by symmetric proliferative or
asymmetric divisions, whereby at least one of the daughter cells
remains a progenitor. Such maintenance is imperative to avoid
the premature depletion of the progenitor pool and to allow the
nervous system to reach its final size. In addition, progenitors that
remain at the end of neurogenesis may be transformed into
quiescent progenitors that are able to generate neurons in
the adult and be re-activated upon injury or neuronal loss1. Thus,
the timing of differentiation, progenitor maintenance and the
adoption of alternative cell states (that is, differentiation or
quiescence) are three fundamental principles that underlie the
development of the nervous system.

Experimental studies over several decades have elucidated
some of the key molecular regulators of these processes. For
example, Hes1, a basic helix-loop-helix transcriptional repressor
activated in response to Notch signalling, has been shown to
modulate the progenitor state. Hes1 knockout mice show
premature neuronal differentiation accompanied by early pro-
genitor depletion, while Hes1 overexpression prevents neuronal
differentiation5,6. However, it is unclear how progenitor
maintenance is co-ordinated with the timing of differentiation,
the acquisition of alternative cells states and whether there is an
underlying unifying mechanism for these processes.

The development of advanced live imaging techniques has
allowed some hypotheses to be formulated in attempt to answer
these questions. For example, the expression of Hes1 has been
shown to be much more dynamic than previously thought,
displaying short-period (ultradian) oscillations in progenitor cells
of different tissues7–10. Thus, based on a combination of
experimental data and imaging of expression dynamics in
normal development, it has been proposed that the Hes1
oscillatory state is necessary for the maintenance of progenitors,
whereas sustained low or high levels are associated with
differentiation or quiescence, respectively6. This hypothesis led
us to suggest that understanding the mechanisms by which cells
transition from the oscillatory state into sustained high or low
levels of Hes1 may provide the long-sought unifying mechanism
for co-ordination of the basic neurogenic processes.

Oscillations are predominantly caused by Hes1 autorepression,
coupled with messenger RNA (mRNA) and protein instability11–13.
Although mRNA instability is an essential component of oscillatory
dynamics, the mechanisms of its regulation were unknown and
therefore, mRNA degradation rate parameters were fixed in early
models (with the exception of ref. 14). It was subsequently shown
by us, and others, that miR-9 regulates the stability of Hes1 mRNA
and related genes in several model systems9,15–18 and is
transcriptionally repressed by Hes1 in the mouse9 or Her6 in
zebrafish17. We hypothesized that the slow degradation rate of
mature miR-9 can increase the degradation of Hes1 mRNA over
time, leading to an exit from oscillations. Thus, we suggested that
the double-negative feedback loop of miR-9 and Hes1 provides a
mechanism for the exit of oscillations with an embedded self-
limited timer9.

Here we use mathematical modelling to analyse the potential of
this simple, but fundamental, transcription factor/microRNA
(miRNA) network to explain the aforementioned principles of
nervous system development. The mathematical model incorpo-
rates the effects of miRNAs on both mRNA stability and
translational repression, using recent experimental results to

constrain its parameters. We then demonstrate that Hes1/miR-9
interactions can lead to high or low Hes1 levels depending upon
the strength of repressive interactions. Furthermore, these levels
can be reached by transient oscillations, the lengths of which
represent the amount of time that a cell spends in the progenitor
state. Finally, we demonstrate that initial concentrations of miR-9
anticipates the future cell state choice, in terms of differentiation
or quiescence, defined by low or high stable Hes1 levels. This is
due to the emergence of bistability in the model, which is brought
about by the introduction of miR-9. Thus, a relatively simple
network of mRNA–miRNA interactions is capable of shaping the
timing and fate choice of neural progenitors. The provision of a
cell autonomous but tuneable timing mechanism reconciles the
influence of intrinsic and extrinsic factors that govern the timing
of differentiation. Furthermore, our model provides a unifying
framework for progenitor maintenance, the timing of differentia-
tion and the acquisition of a differentiated state or quiescence,
thus accounting for some of the fundamental principles of
neurogenesis.

Results
Computational model of the Hes1–miR-9 interaction network.
In Fig. 1, we provide a visual representation of the network of
interactions between Hes1 and miR-9, based on experimental
data9. In addition to the autorepression of Hes1 transcription by
Hes1 protein, the incorporation of miR-9 leads to three new
network interactions, namely the repression of miR-9 production
by Hes1 protein, miR-9-mediated changes in mRNA degradation
rate and putative miR-9 repression of Hes1 protein
translation9,18–20. We use delay differential equations to track
the change in relative amounts of Hes1 protein (p), mRNA (m)
and miR-9 (r) over time arising due to ‘production’ and
‘degradation’ factors. The equations governing the dynamics of
these three species are described sequentially below.

The influence of miR-9 on Hes1 mRNA production.
Equation (1) describes the temporal change of Hes1 mRNA
concentration.

dm
dt
¼ G pðt� tÞð Þ� SðrÞm ð1Þ

The autoinhibition of Hes1 acting as a repressor of transcrip-
tion is implemented via the function G, the form of which is taken
directly from previous models12–14 as follows:

G pðt� tÞð Þ ¼ 1

1þ pðt� tÞ
p0

� �n0 ð2Þ
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egradation
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Figure 1 | Experimentally determined network interactions between Hes1

and miR-9. (a) Detailed visualization of the Hes1/miR-9 network. Solid

arrows indicate production, whereas flat line ends represent repressive

interactions. (b) Simplified network motif.
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As levels of p(t� t) increase (where t� t accounts for the delay
in protein production due to transcription and translation),
autoinhibition increases because G decreases to small positive
values and hence the total production term is reduced. The
transition from minimal to maximal repression is governed by the
shape of the function, G, which is determined by two parameters,
p0 and n0. The parameter p0 represents the amount of protein
required to reduce Hes1 transcription by half and therefore
embodies the relative strength of repression: low values of p0 imply
that low values of protein can have a repressive effect, whereas high
values for p0 imply large amounts of protein are required for
transcription to be attenuated (Supplementary Fig. 1). The
parameter n0 determines the steepness of G and has previously
been described as a Hill coefficient indicating, for example, the
degree of co-operativity in the repressive interaction12. Here, we
describe it as a more abstract term that simply alters the shape of
this function, with higher values of n0 making the transition from
minimal to maximal repression more step-like, as shown in
Supplementary Fig. 1b. In order to demonstrate the possible effects
on the form of repression that arise from changes in p0 and n0, we
provide examples in Supplementary Fig. 1.

The inclusion of miR-9 in the model means that the
degradation term for Hes1 mRNA (m) is now a dynamic function
of miR-9 (r) levels. This function is informed by the experimental
results of ref. 9, in which the authors measured the half-life of
Hes1 mRNA in wild-type cells as well as in cells injected with pre-
miR-9 or containing Hes1 30UTR with mutated binding sites, thus
diminishing the effect of miR-9 (ref. 9). These results can be
incorporated directly into our model since approximate bounds
are provided for the half-life of Hes1 mRNA when miR-9 is at
high, low or intermediate levels. The results suggest that Hes1
mRNA half-life is bounded between B20 min for high levels of
miR-9 and 35 min for low levels of miR-9, with the wild-type
value in between these bounds. Taking this into account, we
propose the following functional form for the role of miR-9 in
altering Hes1 mRNA half-life:

SðrÞ ¼ blþ
bu� bl

1þ r
r0

� �m0 ð3Þ

The general form of S(r) is chosen to be equivalent to that of G
so that its shape is controlled by strength and shape parameters
(here r0 and m0) (Supplementary Fig. 1). The parameters bl and
bu impose lower and upper bounds for Hes1 mRNA half-life and
are fixed to ln(2)/20 min� 1 and ln(2)/35 min� 1, respectively.

The influence of miR-9 on Hes1 protein production.
Equation (4) describes the temporal change of Hes1 protein (p)
levels.

dp
dt
¼ FðrÞm� lnð2Þ

mp
p ð4Þ

We have incorporated a new function, F(r), to capture the
attenuation of protein production by miR-9. We retain the
general form of G so that the strength and shape of translational
repression (here governed by the parameters r1 and m1,
respectively) can be tuned as follows:

FðrÞ ¼ 1

1þ r
r1

� �m1 ð5Þ

These equations allow us to study how the presence of miR-9
affects the amount of Hes1 protein by examining its effect on
mRNA degradation independently from its effects on translation
repression (by setting F(r)¼ 1). Doing so renders Hes1 protein
production independent of translational repression by miR-9.

Taken together, equations (1) and (4) represent a description of
the Hes1 oscillator in which the effect of miR-9 levels on its
dynamics can be explored by treating the levels of miRNA, r, as a
parameter. By setting r to certain values and evaluating the
dynamics of this reduced system (henceforth referred to as the
‘two-variable’ system; see below) one can generate a snapshot
view of the way in which r can affect the Hes1 oscillator.
However, this view of the system neglects the feedback from
p onto r, hence a third equation tracking the dynamics of r was
developed.

The dynamics of miR-9 production. We introduce a new vari-
able representing the levels of miR-9, r, and track its dynamics,
taking into account the repression of miR-9 transcription by Hes1
as follows:

dr
dt
¼ Gr pðt� tÞð Þ� lnð2Þ

mr
r ð6Þ

In equation (6), we assume that a constant upstream activation
of miR-9 is attenuated due to the repressive activity of Hes1
protein. This repression is provided by the function Gr, which
follows the same general form as G. We allow for the case that
repression by Hes1 acts differently at the miR-9 and Hes1 loci by
introducing different parameters for the strength and shape of
repression in Gr, that is, p1 and n1 as follows:

Gr pðt� tÞð Þ ¼ 1

1þ pðt� tÞ
p1

� �n1 ð7Þ

Note that Gr is shaped by p1 and n1 in the same way that G is
shaped by p0 and n0. Setting mr (the half-life of miR-9) to high
values replicates the high stability of miR-9 observed
experimentally9.

Degradation terms in the model are expressed as half-lives by
introducing the factor ln(2). The parameters mp and mr are
therefore the half-lives of Hes1 protein and miR-9, respectively.
The half-life of Hes1 mRNA is affected by miR-9, and hence is
given in the model by the function ln(2)/S(r).

In summary, the equations governing the system of Hes1 and
miR-9 interactions are as follows:

dm
dt
¼ G pðt� tÞð Þ� SðrÞm ð8Þ

dp
dt
¼ FðrÞm� lnð2Þ

mp
p ð9Þ

dr
dt
¼ Gr pðt� tÞð Þ� lnð2Þ

mr
r ð10Þ

The system described by equations (8) and (9) is referred to as
the two-variable model, while equations (8–10) are referred to as
the full model.

Model assumptions. A full list of parameters and their default
values is given in Table 1, and a summary of the equations is
given in Supplementary Note 1. The abstract formulation of the
system we employ is based upon the following assumptions. We
neglect the dynamics of external activating factors and focus
instead on the internal dynamics of the Hes1/miR-9 system under
the assumption that Hes1 and miR-9 transcription are con-
stitutively active when not repressed. Note that these activation
factors are absorbed into the strength parameters of the repres-
sion functions12. To support our focus on intracellular
mechanisms, we use bioluminescence imaging to demonstrate
the persistence of oscillations in sparsely plated c17.2 neural
progenitor cells in Supplementary Fig. 2.
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The dynamics of free, mature miR-9 are lumped into a single
variable, r, thus neglecting the pre- and mature versions of this
species. We therefore do not account for differential stability of
pre- and mature miR-9 or the time delay in the production of the
active molecule. Degradation of free miR-9, together with
association and dissociation of the miR-9/Hes1 complex, are
lumped into the degradation term for r. Stability of free miR-9 is

kept high by assuming that the net effect of this degradation is
small (that is, mr is assumed to take large values). Four inhibitory
interactions are modelled by decreasing functions of substrate
(p or r); (i) Hes1 protein inhibiting Hes1 mRNA (G) (ii) Hes1
protein inhibiting miR-9 transcription (Gr), (iii) miR-9 inhibiting
Hes1 mRNA transcription (S) and (iv) miR-9 inhibiting Hes1
translation (F). In the absence of specific information regarding
the shape of these functions, we assume that they are governed by
a function comprising parameters that control the shape (n0, n1,
m0, m1) and strength (p0, p1, r0, r1) of inhibition.

Model oscillations occur for experimental mRNA half-lives.
Experimental results suggest that Hes1 protein oscillations should
exist for half-lives of Hes1 mRNA within the bounds of B20 and
35 min. At values more extreme than these, oscillations are not
sustained9,18. To discover whether our mathematical model
recapitulates this experimental observation, we examined the
presence of oscillations due to changes in the mRNA half-life,
given by S(r). We focused initially on the case in which miR-9
acts only to reduce the stability of Hes1 mRNA9, by setting
F(r)¼ 1 to negate the effects of r on translation of Hes1 protein
(p) in the two-variable model (equations (8) and (9)).

The parameter that defines the steepness of Hes1 transcrip-
tional autorepression, n0, was fixed to a value that has been shown
to generate oscillations (that is, n0¼ 5 (ref. 12), but the relative
strength of transcriptional autorepression by Hes1 protein, p0,
and the time delay in protein production, t, were varied as shown
in Fig. 2. The delay, t, was allowed to take values in the
physiologically plausible range of 20–30 min21. Figure 2 shows
that, for each value of p0, oscillations exist as the half-life of Hes1
mRNA (ln(2)/S(r)) is decreased. Furthermore, when t¼ 29 min, a
window of oscillations arises that lies within the experimentally

Table 1 | Parameters of the model and their default values.

Para-
meter

Default
value

Interpretation Reference

t 29 min Time delay in Hes1 protein
production.

21

p0 390 Amount of protein required to reduce
Hes1 mRNA transcription by half.

n0 5 Quantifies the step-like nature of G. 12

r0 100 Amount of miR-9 required to reduce
Hes1 mRNA degradation rate by half.

m0 5 Quantifies the step-like nature of S.
bl ln(2)/

20 min� 1
Lower bound for Hes1 mRNA half-life. 9

bu ln(2)/
35 min� 1

Upper bound for Hes1 mRNA half-life 9

r1 300 Amount of miR-9 required to reduce
Hes1 protein translation rate by half.

m1 5 Quantifies the step-like nature of F.
p1 Varies Amount of protein required to reduce

miR-9 production rate by half.
n1 5 Quantifies the step-like nature of Gr.
mr 1,000 min Lumped half-life for free miR-9.
mp 22 min Half-life of Hes1 protein. 11
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Figure 2 | Presence of oscillations in the model when miR-9 acts only to affect the stability of Hes1 mRNA. (a) Different combinations of t, p0 and S(r)

are used to test for the presence of oscillations. The different coloured lines denote Hopf bifurcations for different values of t as indicated. A Hopf

bifurcation denotes the transition of a system from a stable to an unstable, oscillatory state or vice versa, as a parameter of the system is varied. Fixed points

exist to the right of the curves whereas oscillations are present to the left. The inset shows the curve for t¼ 29. The dashed red line indicates the value

of p0 for which two Hopf bifurcations exist for mRNA half-lives of B35 and 20 min. (b) A window of oscillations emerges for changes in r, with p0

fixed at 390 and t¼ 29 min. (c) Example time series when r is fixed to the values given by crosses in (b). These r values give rise to the half-lives (ln(2)/

S(r)) as indicated. n0¼ 5, mp¼ 22 min, bl¼ ln(2)/20 min� 1, bu¼ ln(2)/35 min� 1, r0¼ 100, m0¼ 5.
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determined values of mRNA stability when p0 is around 390
(arbitrary units) (inset of Fig. 2a,b). Example time series are
shown in Fig. 2c. In contrast to the sustained oscillations when
Hes1 mRNA half-life is around wild-type levels (ln(2)/
S(r)¼ 27 min (ref. 9)), oscillations dampen for parameters
chosen outside the half-life boundaries reported in ref. 9.

Although the effect of miR-9 on Hes1 mRNA stability has been
experimentally demonstrated, it is increasingly clear that miRNAs
exert a combined effect on mRNA stability and translation22–24. To
account for a combined action on Hes1 mRNA degradation and
translational repression, we introduced F(r) into the two-variable
model. In this scenario, as r is varied over increasing positive values,
the two repressive effects of r, that is, the degradation of Hes1
mRNA and inhibition of the translation of Hes1 protein, act
simultaneously. Supplementary Fig. 3 demonstrates that several
parameter sets allow the generation of sustained oscillations under
these circumstances. Furthermore, Fig. 3a,b demonstrate that an
oscillatory window that contains the wild-type mRNA half-life value
exists, in line with the results of Bonev et al.9, when the strength of
the translational repression is relatively small (large r1) and the
steepness of the repressive interactions relatively high (m0¼m1¼ 5).
These results show that our model recapitulates the experimentally
observed window of oscillations9 either by mRNA degradation
acting alone or in combination with translational repression.

In summary, we have demonstrated that the experimentally
observed window of oscillations can be present in the model for
relevant values of the Hes1 mRNA degradation rate. In the
remainder of the paper, we investigate the effects of incorporating
miR-9 interactions into the network. We fix t, p0, m0, m1, r0 and
r1 to the values given in Table 1, which represents a set of values
for which the alignment with experiments holds. Other possible
parameter values can be used, as demonstrated in Figs 2,3 and
Supplementary Fig. 3 but these would not necessarily allow the
model to match experimental observations.

Attaining low values of Hes1. Experimental evidence shows that
differentiated neurons are characterized by low stable levels of

Hes1 protein25. We were therefore particularly interested in
defining the conditions under which this dynamic network
achieves low stable levels of Hes1. We analysed the two-variable
model and focused initially on the case that miR-9 acts only to
reduce the stability of Hes1 mRNA by setting F(r) to 1, thus
removing the influence of miRNA on the protein production rate.
The stability and steady-state values of Hes1 protein were
calculated and are shown in Fig. 2b. It can be seen that the system
displays an oscillatory window (unstable dynamics, or ‘limit
cycle’) while the final protein levels on either side of the
oscillatory window are stable, either high or low. However, the
accumulation of miR-9 can reduce the levels of Hes1 protein only
by B12% due to its action on mRNA degradation alone (Fig. 2b).
A difference in concentration of this magnitude has been shown
to be capable of mediating different cell states in the context of
morphogens in Drosophila embryos26. However, neurons express
very low or no levels of Hes1 (refs 25,27); therefore, it is unclear
whether such a small change would be sufficient in the developing
nervous system. We therefore sought to determine the conditions
that allow for a greater degree of attenuation of Hes1 protein, by
allowing miR-9 to repress Hes1 translation (that is, by allowing
F(r) to vary). In this case, since F(r) can take values close to zero,
the steady-state value of p can also, in principle, reach values close
to zero. Thus, with translation repression acting alongside mRNA
degradation, miR-9 is able to reduce Hes1 to lower stable state
levels than when miR-9 acts solely to increase the degradation
rate of Hes1 mRNA (Fig. 3c, compare with Fig. 2b). The exact
steady-state value of p attained depends upon all of the
parameters of the system. We henceforth focus on the case that
p is close to zero at high levels of r, though we note that a
continuum of steady-state values of p can be attained by adjusting
the parameters of the system.

Including miR-9 in the Hes1 oscillator leads to bistability.
Progenitors give rise to differentiated neurons but may also
become quiescent, or slowly proliferating cells. Slowly pro-
liferating, non-neurogenic progenitors, are found in boundary
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Figure 3 | Presence of oscillations in the two-variable model when r acts via both mRNA degradation and translational repression. (a) Shows the

location of Hopf bifurcations as r1 and r are varied. Here, oscillations exist to the right of the curve. The horizontal line indicates the value of r for

which ln(2)/S(r)¼ 25. The vertical dashed line indicates a value of r1¼ 300. (b) as (a) but with y axis plotted in terms of mRNA half-life (ln(2)/S(r)).

(c) A window of oscillations emerges for changes in r. The addition of translational repression allows a lower steady state for high r. Other parameters are

p0¼ 390, t¼ 29 min, bl¼ ln(2)/20 min� 1, bu¼ ln(2)/35 min� 1, n0¼m0¼m1¼ 5, r0¼ 100, mp¼ 22 min.
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regions of the central nervous system and they are characterized
by high stable levels of Hes1 (ref. 25). Progenitors may also enter
a quiescent or slowly dividing state at the end of embryonic
neurogenesis1,28. We therefore asked whether our model can lead
to a mechanistic understanding of how this cell state is attained.
Comparing the levels of p at either side of the oscillatory window
in Fig. 3c demonstrates that higher steady-state levels of Hes1
protein are obtained when miR-9 levels are low (and hence Hes1
mRNA half-life longer). However, this analysis does not take into
account the mechanisms by which different miR-9 levels are
attained. The findings of ref. 9 highlight that miR-9 is a dynamic
component of the network and, therefore, we introduced r as a
dynamic variable in the model. We assume that the production of
miR-9 is constitutive but repressed by Hes1 (ref. 9) as described
in equation (10) of the full Hes1/miR-9 network. The sum of the
production and degradation rates determine whether miR-9 levels
increase or decrease over time.

Figure 4a shows a bifurcation diagram for changes in the
strength of repression of miR-9 by Hes1 (p1) in the full model. It
can be seen that there are two branches of stable fixed points,
which represent the high and low stable values of Hes1 described
earlier. These states are produced in the model in an intuitive way
due to changes in p1. When the strength of repression of miR-9
by Hes1 is low (high p1), miR-9 accumulates due to weak
repression by Hes1 and this leads to a stable state with low Hes1
(p). However, as the strength of repression of miR-9 by Hes1
increases (decreasing p1), a new stable steady state emerges that
has high Hes1 levels.

Figure 4a also shows that the network interactions of the full
model give rise to a state of bistability between the high and low
Hes1 states. Bistability (here due to fold bifurcations) means that,
for identical parameter settings, the model can attain either
sustained high or sustained low levels of Hes1 depending upon
the levels of m, p and r that it is initiated with. Example time
series for a bistable situation are shown in Fig. 4b,c. Figure 4b
demonstrates that initially high levels of miR-9 (r) accumulate
and maintain the suppression of Hes1 (p). In contrast, initially
low levels of miR-9 (r) remain low, and lead to higher, stable
levels of Hes1.

A Hopf bifurcation that gives rise to stable oscillations resides
on the top branch of fixed points, and therefore the high Hes1
steady state is a focus near this bifurcation. A consequence of this
is that the steady state on the top branch is ‘excitable’ in that it
can produce transient oscillations in response to a brief
perturbation to the system. An example of this excitability is
shown in Fig. 5a, wherein a small, immediate increase in m can
cause the onset of transient oscillations. In contrast, the steady
state on the lower branch does not produce transient oscillations
in response to this perturbation, or other, much larger
instantaneous changes in m (data not shown). We sought an
alternative means by which transient oscillations could be
initiated from the low Hes1 steady state, and found that a
prolonged, pulse perturbation to p could achieve this aim, as
demonstrated in Fig. 5b. This difference in stability of the top and
bottom branches is consistent with their representation of
quiescent progenitors and differentiated neurons, respectively.
Our interpretation of the result in Fig. 5 is that quiescent
progenitors (high steady-state Hes1) are readily re-activated,
consistent with the current thinking that they are ‘poised for
activation29 whereas the differentiated state is robust to change.

Timing transitions from oscillatory to stable Hes1 dynamics.
Having shown that high or low steady-state levels of Hes1 can be
attained, and even exist in a bistable regime, it is important to
consider how the length of time a cell spends as a progenitor

before activating differentiation pathways is controlled. We define
the length of time that a cell remains as an actively proliferating
progenitor as the length of time that Hes1 shows oscillatory
dynamics. Introducing miR-9 as a dynamic variable in the system
allows miR-9 to increase over time when the production term
exceeds the degradation term, recapitulating the increase that is
observed experimentally under proliferating conditions. Figure 6
demonstrates two possible ways by which different durations of
oscillations can be achieved, before reaching a stable state with
low levels of Hes1.

The first of these is a change of parameters. Figure 6a shows
that increasing the strength of repression of miR-9 by Hes1
(decreasing p1) leads to longer transient oscillations. The reason
for the lengthening of the transient is that the build up of miR-9 is
initially slower, such that the threshold of miR-9 at which
oscillations no longer exist is reached at a later time point.

A second way by which the timing of exit from oscillations can
be controlled is by the initial amount of miR-9 present in the
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system, as demonstrated in Fig. 6b. When r is initially high, Hes1
is more rapidly repressed to the non-oscillatory state. This is
because r resides closer to, or even beyond the threshold at which
it can be substantially repressed by Hes1 protein and therefore
levels of r more rapidly increase, further suppressing Hes1.

The transient oscillations of Fig. 6 dampen in amplitude over
time. It is therefore important to consider whether the
corresponding oscillations in cultured cells would be detectable
by our experimental methods. In order to investigate this point,

we measured Hes1 expression using bioluminescence imaging of
c17.2 cells stably transfected with a Hes1::ub-luciferase reporter.
We extracted peaks in an objective way and quantified their
amplitude and period. Supplementary Fig. 4 demonstrates that
the amplitude and period of the model oscillations are within the
range of experimentally quantified values. In the case of
dampening oscillations in the example of Supplementary Fig. 4,
only the last 3 cycles out of 10 are close to the lower bound of
amplitudes that were detected in c17.2 cells, and therefore the
majority of these model oscillations would, in principle, be
detected experimentally.

A comprehensive analysis of the presence of Hopf and fold
bifurcations in the full system and its resulting dynamics is shown
in Fig. 7 and Supplementary Fig. 5. Hopf and fold bifurcations
exist for a range of n1, p1 and mr values, although their relative
position in parameter space is dependent on the choice of n1.

Discussion
In this paper, we used mathematical modelling to demonstrate
that a negative feedback circuit between miRNA and an
autorepressive transcription factor can unify the basic principles
of neurogenesis; progenitor maintenance, acquisition of a
differentiated state or quiescence and the timing of differentia-
tion. Our model incorporates experimentally constrained para-
meters, explains a number of experimental observations and
provides a unifying theory for cell fate progression, which is likely
to be applicable to any organ system that develops from dividing
progenitor cells.

Our principal finding is that the amount of active miR-9
available in the cell provides a mechanism to tune the degradation
rate of Hes1 mRNA. From then on, we show that the introduction
of miR-9 as a dynamic entity in the Hes1 oscillator has a
profound effect on the properties of the regulatory network, over
and above the Hes1 oscillator (shown comprehensively in Fig. 7).

First, it gives the Hes1 oscillator the ability to attain either high
or low stable Hes1 states. In development, this could account for
the ability of progenitor cells to progress either towards
differentiation or towards a quiescent, slowly dividing state.
Bistability in the system is due to the double-negative feedback
loop30,31, which allows the network to settle into a high or low
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Hes1 stable state solely by adjusting the initial level of miR-9. Such
bistability may account for the ambivalent state of progenitors
reported in ref. 17. Alternatively, high or low Hes1 states can be
attained by changing the parameters of the system, such as various
forms of repression strength. Differential inheritance of miR-9
during mitosis can easily account for varying starting levels of
miR-9 in daughter cells. Such differential inheritance could be
either stochastic32 or the result of fate asymmetric divisions, which
are prevalent in the development of the nervous system2.

Second, introducing miR-9 as a dynamic entity gives the
network the ability to measure lapsed time. In turn, if the
transition from oscillatory to stable dynamics marks the transition
of cell states, it follows that the network has the ability to time the
duration of progenitor maintenance, defined as the time that cells
spend in the oscillatory state. We demonstrated that in the model,
the timing of transient oscillations can be affected by intrinsic
factors (the initial concentration of miR-9) or by factors extrinsic
to the model (changes of parameters, see Fig. 6).

The measurement of biological time has been one of the most
elusive areas of biology. While progress has been made on
understanding cyclical time, found in biological clocks such as the
circadian clock33, linear time progression has been more difficult to
understand, perhaps with the exception of the temporal control of
somite segmentation34. Our model provides a mechanism by which
cyclical time can be converted into linear time. Finally, the
observation that the duration of oscillations can vary depending on
the parameters of the system or the initial conditions means that
although the timer is cell autonomous, it can be externally tuned, by
extrinsic factors such as extracellular signalling or cell interactions.

This property endows cells with an innate ability to measure
time, while having the flexibility to adjust the timer to external
stimuli. We propose that this model reconciles the observation
that timed differentiation can be cell autonomous35, or can be
influenced by extrinsic factors, such as signals from the stem cell
niche (reviewed in Okano and Temple36). In principle, such
extrinsic factors could act in a number of ways, modifying one or
more of the parameters of the network such as the strength of
repressive interactions. A good example of this is the presence of
co-factors (such as Id) that may diminish the autorepressive
strength of Hes1 (ref. 37).

Double-negative feedback loops of the sort described here are
extremely widespread in biology and particularly in developing

systems. Such double-negative loops have been reported between
transcription factors (see D-V patterning of the neural tube38) or
even between transcription factors and miRNAs31,39. Thus, we
predict that the network behaviour that we have described here is
widely used by developing systems, the immune system and stem
cells, where oscillatory gene expression is also observed40–42.
Indeed, similar network motifs have been described that account
for multi-state gene expression and oscillations due to spatial
morphogen gradients43. Although the network topology is
similar, the output of our model is temporal rather than spatial.

There are several questions that remain to be answered; our
model serves to highlight and predict areas of high priority. In
many cases, our numerical investigation of the model indicated a
switch type behaviour in inhibitory interactions based on the
assumption of a relatively steep transition from minimum to
maximum repression. Biophysical measurements, such as the
precise strength and shape of transcriptional and post-transcrip-
tional repressive interactions and their effect on the duration of
oscillations will need to be established in vivo in order to test the
validity of such assumptions. Future experimentation should also
establish quantitative measurements of the abundance of Hes1
and miR-9 in progenitors and neurons, and examine whether
there is differential inheritance during cell division that may
predict the fate of daughter cells. Simultaneous imaging of
dynamic gene expression and cell fate transition, coupled with
optogenetic methods for manipulating oscillations (as recently
described in ref. 10) will directly test some of the timing ideas put
forward in this paper.

Overall, our data highlights miRNA processing and biogenesis
as an important area of research44, since the output of our model
is sensitive to the concentration of active miR-9. Wider adoption
of live imaging techniques and quantitative methods for such
highly dynamic gene expression will help the community provide
answers to some of the emerging questions.

Methods
Experimental methods. c17.2 neural progenitor cells (Sigma-Aldrich) were grown
in Dulbecco’s Modified Eagle medium with 10% fetal bovine serum (FBS). To
generate stable Hes1 reporter cell lines, pcDNA4-Hes1::ubq-luciferase WT 30UTR
was transfected into c17.2 cells using Lipofectamine 2000 (Invitrogen). Forty-eight
hours after transfection, cells were plated into 1 mg ml� 1 Zeocin (Invitrogen) and
maintained in antibiotic selection for 2 weeks. Stable transfectants were plated at
low density and individual resistant colonies picked to generate single-cell clones.
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c17.2 Hes1::ubq-luciferase clones were tested for luciferase expression and positive
response to transient NICD overexpression on a FLUOstar Omega plate reader
(BMG LABTECH). A representative clone was used for subsequent imaging.

In bioluminescent imaging experiments, c17.2 Hes1::ubq-luciferase reporter
cells were plated on 35 mm glass-based dishes (Greiner-Bio One) in sparse
(14,000 cells per ml) or confluent conditions (50,000 cells per ml). Sparse cells were
allowed to adhere before FBS withdrawal for 3 h and subsequent imaging in the
presence of 10% FBS. Confluent cells were serum starved for 24 h before imaging in
10% FBS. 1 mM D-luciferin (Promega) was added prior to imaging and plates were
placed on an inverted microscope stage and maintained at 37 �C in 5% CO2.
Luminescent images were obtained using a 10� 0.3 NA air objective and collected
with a cooled charge-coupled device camera (Orca II ER, Hamamatsu Photonics).
A 30-min exposure and 4� 4 binning were used.

Bioluminescent movies were analysed using Imaris (Bitplane). Images
were subject to smoothing using a 3� 3 median filter. Individual cells and
background regions were tracked manually using the ‘spots’ function. Single-cell
bioluminescence values over time were extracted and subsequently analysed for
the presence of peaks using MATLAB 7.12 (The MathWorks, Natick, MA, US)
(see below).

Data analysis. We sought to define real peaks and troughs in the data that were
distinct from background fluctuations (Supplementary Fig. 7a,b) and spurious
changes in ongoing trends (Supplementary Fig. 7b,c).

The first step of the analysis was to calculate background measurements from
the data. To this end four control regions of a plate, for each experiment, were
identified by the absence of luminescent cells. Sequential changes in luminescence
in control regions gave a distribution of values, and we required that real peaks had
amplitudes greater than the majority of these. Thus, we set the value of the
fluctuation at the 99th percentile in the distribution as a threshold above which
the amplitude of real peaks should lie. This process is demonstrated in
Supplementary Fig. 6.

All turning point maxima in single-cell data were identified using the MATLAB
function ‘findpeaks’, and it was assessed whether their amplitude was greater than
the background threshold defined above. We defined amplitude as the change in
luminescence measured from the peak to subsequent and previous time points
(that is, we considered the descent on either side of the peak), greater than one-
time step away. We defined a window length of 15 data points (7.5 h) either side of
the peak, which allowed us to include peaks riding on slow changes in
luminescence. Shorter windows neglected peaks with long period, whereas larger
windows could generate spurious peaks due to chance drops in luminescence at
distant time points. Supplementary Fig. 7a,b demonstrate the amplitude thresh-
olding step.

An undesired consequence of the window approach is that peaks occurring as
shoulders on larger peaks could still pass the amplitude threshold criterion.
Therefore, we required that a significant drop in luminescence (using the same
threshold as previously) occurred on either side of the peak before the next peak
was encountered. An example of this final processing step is shown in
Supplementary Fig. 7c. Troughs were identified by running the algorithm on the
negative of the time series.

Having defined ‘real’ peaks and troughs in the data as above, we could proceed
to calculate the amplitude and period of oscillations in bioluminescent data. The
amplitude was defined as the percentage change in luminescence above
background. The mean value over time of each four control regions was calculated,
and the lowest of these values designated as a baseline. For each peak, its previous
and subsequent troughs were identified and the baseline subtracted from each peak
and trough. The two troughs either side of each peak gave two possible estimates
for the peak amplitude. The normalized amplitude was defined as the minimum
(over these two possible choices) ratio of baseline subtracted peak to trough
((peak–baseline)/(trough–baseline)). The normalized amplitude of the model peaks
was calculated in the same way. In this case, the background was taken to be the
eventual steady state of protein levels in the model. The period of oscillations in the
model and in the data was calculated as the difference in time between each
consecutive pair of peaks. All analyses and simulations were performed using
MATLAB. For simulations of time series, we used the MATLAB function ‘dde23’
with options ‘RelTol’¼ 10� 5 and ‘AbsTol’¼ 10� 8. For history vectors, we used a
single value repeated over prior time points. Numerical bifurcation analysis was
performed using DDE-BIFTOOL45.
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