Journal of Neuroinflammation

Research

®,

BiolVled Central

Induction of complement proteins in a mouse model for cerebral

microvascular A} deposition
Rong Fan, Kelly DeFilippis and William E Van Nostrand*

Address: Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA

Email: Rong Fan - Rong.fan@stonybrook.edu; Kelly DeFilippis - Kelly.Ziegler@stonybrook.edu; William E Van
Nostrand* - William.VanNostrand @stonybrook.edu

* Corresponding author

Published: 18 September 2007
Journal of Neuroinflammation 2007, 4:22  doi:10.1186/1742-2094-4-22

Received: 30 July 2007
Accepted: |8 September 2007

This article is available from: http://www jneuroinflammation.com/content/4/1/22

© 2007 Fan et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The deposition of amyloid B-protein (AP) in cerebral vasculature, known as cerebral amyloid
angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders.
In familial forms of CAA single mutations in the AP peptide have been linked to the increase of
vascular A} deposits accompanied by a strong localized activation of glial cells and elevated
expression of neuroinflammatory mediators including complement proteins. We have developed
human amyloid-f precursor protein transgenic mice harboring two CAA AP mutations (Dutch
E693Q and lowa D694N) that mimic the prevalent cerebral microvascular AP deposition observed
in those patients, and the Swedish mutations (K670N/M67 L) to increase AP} production. In these
Tg-SwDI mice, we have reported predominant fibrillar A along microvessels in the thalamic region
and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes
have been detected primarily in association with fibrillar cerebral microvascular Af in this model.
Here we show that three native complement components in classical and alternative complement
pathways, Clq, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular
AB. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus,
and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all
three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3
that was below detection level in cortex. Also, in the thalamic region (with hippocampus), Clq and
C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed
largely by activated microglial cells associated with the fibrillar microvascular A deposits. Our
findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in
response to fibrillar vascular AB deposition that is observed in patients with familial CAA.

Background

Abnormal accumulation of amyloid  peptides (AB) in
brain is one of the major pathological characterizations of
Alzheimer's disease (AD) and related disorders [1]. AB, a
39-42 residue proteolytic product of the amyloid-f pep-
tide precursor (ABPP) by - and y-secretase cleavages, pos-
sesses a high propensity to self-assemble into f sheet-rich

fibrils [2]. One prominent site of brain Ap deposition is in
and along the walls of cerebral blood vessels, a condition
known as cerebral amyloid angiopathy (CAA), which is
frequently found in AD [3,4]. In contrast to parenchymal
plaques, which can be composed of either diffuse or fibril-
lar deposits, cerebral vascular Af deposits appear to be
exclusively fibrillar in nature [5]. Several familial forms of
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CAA result from specific point mutations within the mid-
region of the AB domain, which significantly enhance the
fibrillogenic and cerebral vascular cytotoxic properties of
A [6-8].

Previously, we generated transgenic mice that express neu-
ronally derived human ABPP, containing the Dutch-type
(E693Q) and Iowa-type (D694N) familial CAA muta-
tions, the Tg-SwDI mice [9]. These mice were shown to
develop early-onset and robust deposition of cerebral
microvascular fibrillar amyloid but only diffuse parenchy-
mal AP plaques. The microvascular accumulation of fibril-
lar AB is most prominent in the thalamic and subiculum
regions of the brain [9]. In these areas with the most fibril-
lar microvascular A deposits, activated inflammatory
cells, microglia and astrocytes, were also found highly
enhanced [10]. Several pro-inflammatory cytokines were
shown to be elevated in Tg-SwDI mouse brains, indicating
the active synthesis of inflammatory molecules by these
cells [10,11].

Another important aspect of the neuroinflammatory
response in AD and CAA is the innate immune system
activation, among which, complement is a key player
[12]. Complement proteins have been shown to be
induced and associated with AP plaques in brains of AD
patients and familial CAA patients as well as AD animal
models, specifically those plaques containing the fibrillar
form of the AB peptide [13-15]. The overall outcome of
complement activation depends on the balance of its det-
rimental and beneficial effects [16]. On one side, comple-
ment activation could induce cell lysis and cause cell
death [17,18]; on the other side, complement compo-
nents such as C1q and C3b can promote the clearance of
cellular debris and apoptotic cells and enhance cell sur-
vival [15,19]. Although complement proteins are typically
secreted by immune cells, in the CNS, microglia, astro-
cytes, and neurons have been reported being capable of
producing complement components upon stimulation
[20,21]. In the current study, we investigated the expres-
sion of several native complement components in twelve
months old Tg-SwDI and wild-type C57BL/6 mice, and
found they were increased significantly in association
with microvascular amyloid deposits and co-localized
with activated microglial cells. The finding that microglial
synthesis of the native complement proteins was induced
suggests that early complement activation may be
increased in the Tg-SwDI mouse model of cerebral micro-
vacular AP deposition.

Methods

Animals

Generation of Tg-SwDI transgenic mice on a pure C57BL/
6 background was recently described [9]. These mice
express low levels of human Swedish/Dutch/Iowa mutant
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ABPP in neurons under control of the mouse Thy1.2 pro-
moter. The deposition of mutant Dutch/Iowa A peptide
starts around 3 months of age and begins to plateau at
about 15 months in transgenic mice with low variation
between individuals. Homozygous Tg-SwDI and non-
transgenic C57BL/6 mice at 12 months of age were used
in this study. All work with animals followed National
Institutes of Health guidelines and was approved by Stony
Brook University Institutional Animal Care and Use Com-
mittee.

Histology

At least 24 mice per genotype were euthanized at 12
months of age. After cold-phosphate buffer saline (PBS,
0.1M, pH 7.6) perfusion, brains were removed and dis-
sected through the mid-sagittal plane. One cerebral hem-
isphere was immersion-fixed with 4% paraformaldehyde
overnight at 4°C and subjected to increasing concentra-
tions (10, 20, and 30%) of sucrose in PBS, then embedded
in OCT compound (Sakura Finetek Inc., Torrance, CA)
and snap-frozen in dry ice. Coronal sections were cut at
20-um thickness using a Leica CM1900 cryostat (Leica
Microsystems, Inc., Bannockburn, IL), and then stored in
PBS with 0.02% NaNj at 4°C.

Immunohistochemistry

Immunostainings were performed on sections mounted
on Colorfrost/Plus slides (Fisher Scientific, Houston, TX).
Antigen retrieval was performed in 1:100 antigen-
unmasking solution (Vector Lab, Burlingame, CA) for 30
min at 90°C for C1q and microglia immunostaining,.
Nonspecific binding was prevented by incubating sections
in blocking buffer (PBS containing 0.1% Triton X-100 and
2% bovine serum albumin (Sigma, St. Louis, MO) for 20
min at room temperature. Brain sections were incubated
with primary antibodies diluted in blocking buffer over-
night at 4° C. The following primary antibodies were used
for immunostaining: mouse monoclonal antibody to glial
fibrillary acidic protein (GFAP) for identification of astro-
cytes (1:300, Millipore, Temecula, CA); mouse mono-
clonal antibody 5D4 to keratan sulfate for identification
of activated microglia (1:300; Seikagaku Corporation,
Japan); monoclonal rat-anti-mouse C3 (1:500) and mon-
oclonal rat-anti-mouse C4 (1:1000, Cedarlane, Burling-
ton, NC); polyclonal rabbit-anti-mouse Clq (1:500,
generous gift from Dr. Andrea ] Tenner, University of Cal-
ifornia, Irvine). Biotinylated donkey anti-rat IgG and don-
key anti-rabbit IgG (both at 1:200, Vector Lab), followed
by Fluor590-conjugated streptavidin (1:500, Invitrogen,
Carlsbad, CA) and Fluor488-conjugated anti-mouse anti-
body (1:500, Invitrogen) were used for immuno-detec-
tion.

The brain sections were examined using an Olympus

BX60 fluorescent microscope (Olympus America Inc.,
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Center Valley, PA) with Olympus DP10 camera (Olym-
pus) and ASI MS-2000 motorized stage (Applied Scientific
Instruments, Eugene, OR). Pictures were taken with 10x
eye-piece and 40x objective.

Western blot

Micro-dissected tissue was removed from the thalamic
(with hippocampus) and cortical (frontal cortex) brain
regions of 12-months old Tg-SwDI and non-transgenic
(C57BL/6) mice (from the other hemisphere of the same
animals used for histology). Half of each group were
homogenized on ice in lysis buffer containing 1% SDS,
0.5% IGPEL in PBS with Complete protease inhibitor
(Roche, Basel, Switzerland) at 10 ml/g tissue ratio. The
protein concentration was determined using the bichin-
chonic acid method (Pierce, Rockford, IL). Equal amounts
of protein (50 pg) were loaded, fractionated on 10% SDS-
polyacrylamide gels, and subsequently electrophoretically
transferred to nitrocellulose membranes (Schleicher and
Schuell, Hertogen-bosch, Netherlands) in blotting buffer
(25 mM Tris-HCl, pH 8.6, 192 mM glycine, and 20%
methanol). Blots were washed for 15 min in PBS contain-
ing 0.05% Tween 20 (PBST), pre-incubated with blocking
solution (5% non-fat milk powder in PBST), washed three
times with PBST, and subsequently incubated with pri-
mary antibodies and peroxidase-labeled secondary goat
anti-rat or donkey anti-rabbit antibodies (Dako, Glostrup,
Denmark). Detection was performed by chemilumines-
cence according to the description of the manufacturer
(Boehringer Mannheim, Almere, Netherlands) and
exposed to Kodak (Rochester, NY) X-OMAT-R films and
quantified using VersaDoc imaging system (BioRad, Her-
cules, CA). The molecular mass of specific bands was
determined by comparing to the BenchMark pre-stained
protein ladder (Invitrogen) electrophoresed on the same
gels.

Real-time reverse transcriptase polymerase chain reaction
Total RNA was isolated from the tissue using RNeasy Lipid
Tissue Kit (Qiagen, Hilden, Germany) as per manufac-
turer's instructions. Single stranded cDNA was prepared
using 10 pl of total RNA using iScript cDNA Synthesis Kit
(Biorad) per manufacturer's instructions. 6-carboxyfluo-
rescein (FAM) 5' end labeled Tagman Assay on Demand
primer and probe sets (Applied Biosystems, Foster City,
CA) were used to assess expression levels of Clq
(Mmo00437836_m1) and C3 (MmO01232773_m1) for
each cDNA sample. All samples were normalized against
the endogenous control, TATA box binding protein
(MmO00446973_m1). 500 ng of each cDNA sample was
used in conjunction with 8 pmoles of each primer/probe
set plus Tagman Universal Master Mix (Applied Biosys-
tems). Each sample was analyzed in triplicates. Real-time
quantitative PCR was performed on an Opticon2 (Biorad)
using the following program: 95 °C for 10 sec, followed by
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40 cycles of denaturation, 95°C for 15 sec and anneal/
elongation, 60°C for 1 min. The relative expression level
of C1q or C3 was computed with respect to the mRNA
expression of the endogenous control using the following

formula: Relative mRNA expression = 2-(-Ct gene of interest-Ct
TATA)

Ct is the threshold cycle value [22,23].

Statistical analysis
Biochemical and molecular data were analyzed by
ANOVA single factor test at a = 0.05 significance level.

Results

Clq, C3, and C4 were induced in Tg-SwDI mice

In our previous studies, we showed that in Tg-SwDI mice,
thioflavin-S positive fibrillar AR deposits were primarily
found to be associated with the microvasculature in the
thalamus, subiculum, as well as hippocampus [9]. How-
ever, in the cortex AB deposits were largely in the paren-
chyma and in diffuse form. In the transgenic mice,
activation of microglia and astrocytes was also elevated
along with the microvascular fibrillar Af accumulation in
the thalamic and hippocampal regions [10]. Since com-
plement proteins have been reported to be present in reac-
tive inflammatory cells associated with amyloid deposits,
we first examined the presence of the three early native
complement components in different brain regions of Tg-
SwDI and wild-type C57BL/6 mice and their relationship
with fibrillar AB deposits in the transgenic mice. Brains
from twelve months old mice were harvested and proc-
essed as described in Materials and Methods. Immunos-
taining for Clq revealed very little cellular labeling in
either the cortex of transgenic animals (Fig 1A) or the
entire C57BL/6 wild-type mouse brain (data not shown).
However, in thalamic region of Tg-SwDI mouse brains
(Fig 1B), C1q was present in many cells associated with
the microvascular fibrillar amyloid. Similarly, there were
minimal immunoreactivities for either C3 or C4 in the
cortical region of Tg-SwDI (Fig 1C and 1E, respectively) or
any region of C57BL/6 mice (data not shown), but strong
staining in the thalamus of Tg-SwDI mice (Fig 1D and 1F,
respectively). Increased immunostaining of C1q, C3, and
C4 was also detected in hippocampus and subiculum
(data not shown), another two regions with prominent
fibrillar AB deposition.

Complement proteins are synthesized in Tg-SwDI mouse
brain

Many studies have demonstrated that complement com-
ponents can be generated locally in brain. Given that no
prominent hemorrhage or compromised blood brain bar-
rier has been observed in Tg-SwDI mice, the elevated
expression of cerebral complement components is
unlikely from peripheral leakage. To test this hypothesis,
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Cortex

Immunoreactivities of native complement proteins Clq (A, D), C3 (B, E), and C4 (C, F) expressions were elevated in Tg-SwDI
mice over wild-type. Forebrains of twelve months old Tg-SwDI and C57BL/6 mice were stained for fibrillar Af using thioflavin-
S amyloid staining (green) and every one of the three complement proteins with specific antibodies (red). Positive complement
immunoreactivity was associated with amyloid staining seen in thalamic regions (D, E, F), but not in cortical regions (A, B, C).

Scale bars = 50 um.

we next investigated the messenger RNA productions of
these proteins to determine that the increase of comple-
ment expression was due to local synthesis. Quantitative
real-time PCR was performed for C1q and C3 on mRNAs
extracted from micro-dissected brain regions, using TATA
box binding protein as the housekeeping gene. The data
showed that there was a significant increase (p < 0.02) in
the mRNA levels of both C1q and C3 in the thalamic
regions of Tg-SwDI over wild-type (Fig 2). The increase in
cortex of C3 mRNA was also statistically significant (p <
0.02), but not of C1q mRNA (Fig 2). To confirm that the
increase in mRNA was translated into changes in protein
levels, we performed quantitative Western blot analysis
for these three complement proteins on homogenates
from micro-dissected thalamic and cortical regions. In
thalamic region, the results were consistent with both the
immunohistochemical and real-time PCR data that pro-
tein levels of C1q (Fig 3A), C3 (Fig 3B), and C4 (Fig 3C)
were statistically significantly higher (p < 0.01) in Tg-
SwDI mice compared to C57BL/6 mice. In cortex, Clq
and C4, but not C3 (undetectable in either genotype),

were also significantly elevated (p < 0.01) in Tg-SwDI
mice.

Complement proteins are expressed in activated microglia
of Tg-SwDI mice

In Tg-SwDI mice, we previously reported that activated
microglia and astrocytes were greatly enhanced in associ-
ation with microvascular fibrillar AB, thus were most
dense in the thalamic and hippocampal regions rich in
these deposits. Both microglia and astrocytes, when acti-
vated, can produce many complement components. In
order to investigate the cell types that were responsible for
the induction of complement synthesis in Tg-SwDI mice,
brain sections were immunolabeled for both complement
proteins and markers of activated microglia or reactive
astrocytes. The cells positive for complement proteins
morphologically resembled activated microglial cells.
When fluorescent images of both stainings were merged,
it was clear that while almost no astrocytes were positive
for any of the three complement proteins (Fig 4), most of
the complement-positive cells were strongly labeled with
antibody for activated microglia (Fig 4). Again, in hippoc-
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Clq and C3 mRNAs were increased in Tg-SwDI mouse
brains. Real-time PCRs for Clq (A) and C3 (B) were per-
formed on cDNAs synthesized from mRNAs extracted from
twelve months old C57BL/6 (white bars) and Tg-SwDI (gray
bars) mouse cortical and thalamic regions. Data shown are
mean % S.D. (n = 9). Both Clq and C3 were statistically sig-
nificantly higher in transgenic mice over wild-type (*p < 0.02)
except Clq in cortex.

ampus and subiculum, C1q, C3, and C4 immunoreactiv-
ities were also greatly overlapped with microglial cells, not
astrocytes (data not shown).

Discussion

We have reported before that in Tg-SwDI mice, in spite of
the low expression level of transgene encoded human
ABPP, profuse fibrillar amyloid deposits were present in
cerebral microvessels, likely due to the highly fibrillogenic
property of the Dutch/Towa CAA mutant AB peptide, with
no detectable export of this AB into the periphery [9]. In
association with the microvascular fibrillar AB deposits,
reactive microglia and astrocytes were found in these ani-
mals, and increased with age in parallel to the microvas-
cular AP deposition [10]. We also detected pro-
inflammatory cytokines such as TNFa, IL-1B, and IL-6 to

http://www.jneuroinflammation.com/content/4/1/22

A C1q Western Blot Quantitation
5 .
aWwT *
E 44 mTg-SwDi *
4
° 3
8
$e2
i
T
s 1
w
0+ T
Cortex Thalamus
Brain regions
WT Tg-SwDI WT Tg-SwDl
r \ r N\ e — T —
e e w24 KD
\ ’. \ J
Cortex Thalamus
B C3 Western Blot Quantitation
4 g —
oWT
5 mTg-Swhi
3
]
H
@
w2
@
21
'S
0
Cortex Thalarmus
Brain regions
WT Tg-SwDI WT Tg-SwDI
— N
= = == == == 113 KD
Cortex Thalamus

' €4 Western Blet Quantitation

owT *

mTg-SwDl
5 g
Cortex Thalanus

*
0l !_-
Brain regions

Fold increase over WT
~ S

WT Tg-SwDI wT Tg-SwDlI
N '
- 2 - - s e 90 KD
Cortex Thalamus

Figure 3

Clg, C3, and C4 protein levels are elevated in Tg-SwDI mice
thalamic region. Western blot analysis of complement pro-
teins was performed using rabbit anti-Clq (A), rat anti-C3
(B), and rat anti-C4 (C) antibodies. Data shown are mean %
S.D. (n > 6). The increase of all three proteins in both regions
of the transgenic over wild-type reached statistical signifi-
cance (*p < 0.01) except C3 was undetectable in cortex.
Representative western blots are shown below the quantita-
tion.
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Figure 4
Clqg, C3, and C4 are expressed in activated microglia not astrocytes. Colocalization of activated microglial cells (green A,B,C)
or reactive astrocytes (green D,E,F) and complement components Clq (red A,D), C3 (red B,E), and C4 (red C/F) in the tha-
lamic regions of twelve months old Tg-SwDI mice. Scale bars = 50 um.
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microglia

astrocyte

be enhanced in Tg-SwDI mice, suggesting that these acti-
vated cells are actively expressing inflammatory molecules
surrounding the microvasculature [10,11]. Previously, it
has been shown that complement components are
induced in AD patients and familial CAA patients as well
as brains of AD animal models [24]. In addition to the
well-studied pathogen elimination by complement acti-
vation, amyloid clearance may be promoted by C1q bind-
ing to fibrillar amyloid deposits, and generation of an
opsonin, the C3b fragment [15,25]. Human studies have
also shown increasing complement staining with growing
presence of CAA [26]. However, due to the inefficient
binding of mouse C1q to human A, complement activa-
tion is much less in mouse models for AD than in AD
patients [27], which might explain why we did not
observe the presence of late-stage complement activation
products. In brain, activated microglia are the major
source of complement proteins in brain, although reactive
astrocytes and neurons have also been shown to express
complement when stimulated [28,29].

Here we demonstrate that early native classical comple-
ments C1q and C4, as well as C3, an important player in
both classical and alternative complement pathways, are
up-regulated in Tg-SwDI mouse brains. This induction
was likely due to local synthesis since we have detected the

increase in messenger RNA and protein levels by real-time
PCR technique and Western blot, respectively. The
observed differences between mRNA and protein levels of
Cl1lq and C3 were possibly due to several reasons. For
example, increased levels of certain complement proteins
may reflect decreased turnover and/or accumulation with
amyloid deposits in the absence of increased expression.
Also, the sensitivities of real-time PCR and Western blot
are different depending on primers and antibodies, and
the message levels may not be translated linearly to pro-
tein expression.

The immunoreactivities of C1q, C3, and C4 were cell asso-
ciated and appeared to track along cerebral microvascular
amyloid deposits, particularly in thalamus and subiculum
(data not shown). We then investigated the cell type that
expressed the complement. Double immunofluorescent
labeling indicated that most complement-positive cells
were activated microglia, not astrocytes. Although not all
complement-positive cells overlapped with activated
microglial labeling, this was possibly due to the multiple
activation stages and types of microglia and one activation
marker (keratan sulfate in this case [30, 31] may not
reflect all activated microglial cells. These findings further
support the notion that microglia in the Tg-SwDI mouse
model are actively participating in the neuroinflamma-
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tory response and provide more insight into the specific
reactions of microglia during disease progression as well
as modulations of these reactions. In light of our recent
work in which we detected improvement of memory per-
formance in animals when microglial activation was sup-
pressed [11], the effect of that inhibition on complement
induction remains to be investigated to further elucidate
the function of elevated complement in this model.

Conclusion

In summary, complement proteins C1q, C3, and C4 were
induced in Tg-SwDI mice in proximity to the cerebral
microvasculature. This increase in expression was prima-
rily in thalamus and hippocampus, and also in subiculum
by immunohistochemistry (data not shown), regions that
contain the highest amount of fibrillar microvascular
amyloid deposition. These complement proteins were
locally synthesized in brain, and mostly by activated
microglial cells associated with microvascular Ap depos-
1ts.
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