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ABSTRACT
Most coral reefs have recently experienced acute changes in benthic community
structure, generally involving dominance shifts from slow-growing hard corals to
fast-growing benthic invertebrates and fleshy photosynthesizers. Besides overfishing,
increased nutrification and sedimentation are important drivers of this process, which
is well documented at landscape scales in the Caribbean and in the Indo-Pacific.
However, small-scale processes that occur at the level of individual organisms remain
poorly explored. In addition, the generality of coral reef decline models still needs
to be verified on the vast realm of turbid-zone reefs. Here, we documented the
outcome of interactions between an endangered Brazilian-endemic coral (Mussismilia
braziliensis) and its most abundant contacting organisms (turf, cyanobacteria, corals,
crustose coralline algae and foliose macroalgae). Our study was based on a long (2006–
2016) series of high resolution data (fixed photoquadrats) acquired along a cross-shelf
gradient that includes coastal unprotected reefs and offshore protected sites. The study
region (Abrolhos Bank) comprises the largest and richest coralline complex in the South
Atlantic, and a foremost example of a turbid-zone reef system with low diversity and
expressive coral cover. Coral growth was significantly different between reefs. Coral-
algae contacts predominated inshore, while cyanobacteria and turf contacts dominated
offshore. An overall trend in positive coral growth was detected from 2009 onward in
the inshore reef, whereas retraction in live coral tissue was observed offshore during
this period. Turbidity (+) and cyanobacteria (−) were the best predictors of coral
growth. Complimentary incubation experiments, in which treatments of Symbiodinium
spp. fromM. braziliensis colonies were subjected to cyanobacterial exudates, showed a
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negative effect of the exudate on the symbionts, demonstrating that cyanobacteria play
an important role in coral tissue necrosis. Negative effects of cyanobacteria on living
coral tissue may remain undetected from percent cover estimates gathered at larger
spatial scales, as these ephemeral organisms tend to be rapidly replaced by longer-
living macroalgae, or complex turf-like consortia. The cross-shelf trend of decreasing
turbidity and macroalgae abundance suggests either a direct positive effect of turbidity
on coral growth, or an indirect effect related to the higher inshore cover of foliose
macroalgae, constraining cyanobacterial abundance. It is unclear whether the higher
inshoremacroalgal abundance (10–20%of reef cover) is a stable phase related to a long-
standing high turbidity background, or a contemporary response to anthropogenic
stress. Our results challenge the idea that high macroalgal cover is always associated
with compromised coral health, as the baselines for turbid zone reefsmay derive sharply
from those of coral-dominated reefs that dwell under oligotrophic conditions.

Subjects Ecology, Biological Oceanography
Keywords Cyanobacteria, Coral reefs, Sea surface temperature, Turbid zone reefs, Abrolhos,
Brazil, Turbidity, Symbiodinium, Allelopathy, Turf algae

INTRODUCTION
Coral reef ecosystems are facing a sharp loss of biodiversity and habitat structure (Bruno
et al., 2009; Hoegh-Guldberg, 1999). At the global scale, this decline is associated with
thermal anomalies and ocean acidification, which affect coral fitness through bleaching
and reduced calcification rates (e.g., Veron et al., 2009). Local and regional level drivers
associated with anthropogenic impacts also play a major role in reef degradation (Hughes,
1994). As watersheds become degraded from poor land-use practices and urbanization,
rivers deliver increased sediment loads, as well as industrial, agricultural, deforestation and
domestic by-products (Doney, 2010). Increased nutrification and sedimentation may have
a severe impact on coral reefs, which most often thrive in meso- and oligotrophic tropical
shallow waters (Sanders & Baron-Szabo, 2005). Locally, overfishing promotes an overall
trophic downgrading of the coral reef, with severe consequences to ecosystem functioning
(Edwards et al., 2013).

Increased sediment load and turbidity, either from dredging or terrigenous/riverine
sources, impact reef organisms by smothering and altering light regimes, inherently
changing community structure and net productivity (Rogers, 1990). Coral responses
to sedimentation comprise decreases in live tissue, growth rates and skeletal density.
Lowered recruitment, diversity and species richness at the assemblage level also result from
overgrowth by macroalgae and cyanobacteria (Fabricius, 2005). In addition, wastewater
discharges often carry organic and inorganic compounds from industry and agricultural
fertilizers, as well as tracemetals that affect coastal reefs (Doney, 2010). Nutrient enrichment
is likely followed by acute changes in benthic community composition and abundance,
including mortality of less tolerant taxa, and increased cover of turf, cyanobacteria and
macroalgae (Albert et al., 2005). Higher levels of dissolved organic carbon (DOC) and
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particulate organic matter (POM) disrupts coral microbiomes, leading to outbreaks of
pathogens, sloughing and death (Kline et al., 2006).

Overfishing of large herbivorous fish contributes to algal outbreaks and increases in
DOC concentrations (Edwards et al., 2013). In addition, fishing pressure on top predators
may increase disease prevalence through the predation release of lower level vector species
(Raymundo et al., 2009). Once the overall biomass and size of higher trophic levels have
sufficiently decreased, the system undergoes cascading effects thatmay disable the top down
control of the entire benthic community, ultimately resulting in the loss of biodiversity and
ecosystem services (Mumby et al., 2006). Such cumulative effects of multiple stressors have
driven several reefs toward a phase-shift from a coral dominated environment to ephemeral
soft-coral, turf and macroalgae dominance (Done, 1992; Mumby et al., 2006). Since
successive perturbations can disrupt ecological interactions, a degradation loop takes place,
releasing algae from competition and predation, allowing less palatable forms to take over,
ultimately preventing coral populations frombeing replenished (Done, 1992;Hughes, 1994).

Cyanobacteria are important players in phase-shifting reefs, growing as dense mats and
tufts, as well as part of the so-called turf consortia (Connell, Foster & Airoldi, 2014). The
abundance of cyanobacteria in reef systems is positively correlated with eutrophication and
thermal anomalies (Taylor et al., 2014). When in direct contact with corals, cyanobacteria
may disrupt the microbial community within the coral mucus biofilm and trigger an
exacerbated growth of pathogens (Morrow et al., 2011). Cyanobacteria are known to inhibit
coral recruitment (Kuffner et al., 2006) and to produce toxins and enzymes with grazing
deterrence properties (Smith et al., 2010). Despite their relatively ephemeral/opportunistic
nature, cyanobacteria can render permanent impacts on corals by overgrowth and
progressive deterioration of live tissue (Bender, Diaz-Pulido & Dove, 2012), shading and
abrasion (McCook, Jompa & Diaz-Pulido, 2001), as well as allelopathy (Rasher et al., 2011).
In addition, they can affect coral larvae settlement (Box & Mumby, 2007) and attract larvae
to ephemeral surfaces (Vermeij et al., 2009).

Long-term (i.e., decadal) data series are lacking for most regions, despite being needed
to assess the dynamics of coral reef cover, because scleractinians grow at a few centimetres
per year and climate-oceanographic forcing may operate either episodically or in cycles
deviating from seasonal oscillation (Hughes, 1994). In addition, percent cover data from
transects, which are usually employed in reef monitoring (e.g., Shuman, 2007), may
not allow for disentangling the outcomes of coral competition with their surrounding
faster-growing organisms. For instance, the negative effect of cyanobacteria on living
coral tissue may not be detected from estimates of percent cover gathered with randomly
distributed transects, as these ephemeral organisms tend to be replaced by longer-living
canopy-forming macroalgae, or complex turf-like consortia structured by articulated
calcareous and other algae (Titlyanov & Titlyanova, 2009). Here, we circumvented this bias
by sampling fixed coral colonies over 11 years.

Brazilian reefs are characterized by high endemism levels within low diversity
assemblages subjected to high turbidity and heavy terrigenous sedimentation (Laborel,
1969). Therefore, the Eastern South American coast comprises several notable examples
of turbid-zone reefs in the tropical West Atlantic (see Moura et al., 2016), departing
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from the archetypical Caribbean/Indo-Pacific healthy-reef model (high coral-low algal
cover) (Perry & Larcombe, 2003). Turbid zone reefs, traditionally perceived as marginal
habitats for healthy coral growth, occupy large areas, grow as fast as oligotrophic reefs,
and often support high coral cover (Morgan et al., 2017). In addition, corals from turbid-
zone reefs may be more effective in sediment sloughing and in the concurrent use of
phototropic/heterotrophic feeding, besides being more resistant and resilient to thermal
anomalies (Anthony, 2006; Morgan et al., 2017).

Despite such characteristics, coastal development, overfishing and climate changes
deeply affected the community structure of Brazilian reefs in the last decades (Leão &
Kikuchi, 2005; Dutra, Kikuchi & Leão, 2006). For instance, fisheries yields and fish biomass
already show sharp declines in the Abrolhos Bank (Francini-Filho & Moura, 2008; Freitas et
al., 2011), a region that comprises the largest, richest and best-protected reefs in the South
Atlantic (Laborel, 1969;Moura et al., 2013). Turf algae cover has increased across the region
(Francini-Filho et al., 2013), whereas one of the main endemic reef corals, Mussismilia
braziliensis, a stress-tolerant Neogene relic, is predicted to be nearly extinguished in less
than a century if the current rate of mortality due to diseases is not reversed (Francini-Filho
& Moura, 2008; Bruce et al., 2012). The Abrolhos reefs are distributed along a cross-shelf
gradient of terrigenous influence and fishing effort (Moura et al., 2013), providing a
propitious context to study the relative effects of coastal influence and protection. Here,
we present the results of an 11-year survey of sixteen M. braziliensis colonies and their
neighbouring organisms, complemented by short-term incubation experiments with the
symbionts ofM. braziliensis’ (Symbiodinium spp.) subjected to competitors’ exudates. Our
study addresses the coupling between environmental drivers and competitive processes in
the contact zone between corals and other organisms.

MATERIAL AND METHODS
Study Site
The Abrolhos Bank (16◦40′–19◦40′ S, 39◦10′–37◦20′ W) comprises a 40,000 km2 benthic
mosaic of reefs, rhodolith beds and unconsolidated sediments, encompassing the largest
and richest reefs within the South Atlantic (Moura et al., 2013). The reefs are remarkable for
their mushroom-shaped pinnacles with flat tops, which result in strong habitat variation
at relatively small spatial scales (pinnacles’ walls and tops) (Bastos et al., 2008). Pinnacles
are dominated by massive and encrusting corals, reaching up to 30% of the benthic cover
(Francini-Filho et al., 2013). Most corals are Brazilian-endemic, and there is an overall lack
of branching forms, except for milleporids (Laborel, 1969;Moura et al., 2016). The studied
species,M. braziliensis, is restricted to the shallow (5–10 m depth) pinnacles’ tops, where it
is regarded as one of the most important reef builders (Leão & Kikuchi, 2005, but see Bastos
et al., 2008) and covers up to 10% of the reef (Francini-Filho et al., 2013). Sampling was
carried out in one inshore unprotected reef (Pedra de Leste—PLES) and in one offshore
no-take reef (Parcel dos Abrolhos—PAB), the latter within the Abrolhos National Marine
Park (Fig. 1). When compared to the offshore reef, the inshore reef has lower fish biomass
(Francini-Filho et al., 2008) and higher turbidity, sedimentation, nutrient, DOC levels and
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Figure 1 The Abrolhos reefs off Southern Bahia, Brazil.Depth contours and the Abrolhos National Ma-
rine Park no-take zone are represented as solid and dashed lines, respectively. Sampling sites and coralline
reefs are shown in red and blue, respectively.

Full-size DOI: 10.7717/peerj.5419/fig-1

microbial loads (Segal et al., 2008; Bruce et al., 2012), as well as a higher cover of fleshy
macroalgae (mostly Dictyota spp.) reaching up to 20% of the reef tops compared to less
than 5% on the reef tops found offshore (Francini-Filho et al., 2013).

Sampling and sample processing
Coral colonies (n= 16, 8 from PLES and 8 from PAB) were selected from the database of
a long-term monitoring program with fixed photo-quadrats, based on the completeness
and quality of the time series. Sampling was carried out yearly during the austral summer
(January–March), from 2006–2016. No data are available for 2007, 2010 and 2011 (both
sites), and from 2008 (PLES). The living area of each coral colony and the perimeter in
contact with each organism were measured with ImageJ software (Schneider, Rasband
& Eliceiri, 2012). Categories of surrounding organisms included the most abundant
functional groups: turf algae, cyanobacteria, corals, crustose coralline algae (CCA) and
foliose macroalgae. Turf algae comprise a matrix of fine-branched filamentous macroalgae
of distinct taxa interwoven within 2–5 cm thick mats (Connell, Foster & Airoldi, 2014),
while cyanobacteria appeared as homogeneous brown-red mats and tufts (Fig. 2). Coral
growth (planar area change, which is not equivalent to liner extension) and changes in the
relative perimeter of surrounding organisms were estimated from the difference between
measurements from each sampling period.
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Figure 2 Sequential images from individual colonies in the inshore (PLES: A–E) and offshore (PAB, F–
J) reefs. Images show the contrasting growth trajectories of the corals and turf/cyanobacteria dominance
in their perimeters. Scale bars= 2 cm. Photographs taken by the authors.

Full-size DOI: 10.7717/peerj.5419/fig-2

Environmental data
Summer sea surface temperatures (SSTs) (4 µnighttime, January–March) and turbidity
data (Diffuse Attenuation Coefficient at 490 nm—Kd 490) for both reefs were extracted
and processed with SeaDas software (ver. 7.4) using level-3 imagery from the MODIS
sensor (https://oceancolor.gsfc.nasa.gov) onboard the Terra satellite, using a monthly
compositing period and 9 km spatial resolution.

Allelopathy experiments
Cyanobacterial outbreaks can be harmful to corals and were recently recorded in Abrolhos
(Ribeiro et al., 2017). In order to investigate their effects over corals we ran incubation
experiments with the symbionts from M. braziliensis’ (Symbiodinium spp.) subjected
to cyanobacterial exudates obtained from cultures of the most common filamentous
cyanobacterial morphotype found in Abrolhos, cf. Lyngbya majuscula. Symbionts (Culture
Collection of Microalgae at UFRJ - CCMR 0100) and cyanobacteria (CCMR 0174,
0175, 0176) were collected in the Abrolhos reefs and cultivated at the Laboratory of
Marine Phytoplankton, Federal University of Rio de Janeiro. Both, the symbionts and
the cyanobacteria were maintained at 26 ◦C, under a 16:8 h light:dark period (ca. 50
µmol photons m−2 s−1). Three cyanobacterial isolates (n= 3, plus control) were tested to
account for possible intraspecific variation in metabolite concentration. The cyanobacterial
cultures were left growing for one month, and then 50 mL aliquots were extracted and
filtered with Whatman R© glass microfiber filters (GF/F, 25 mm). The filtrate from each
cyanobacterial culture was than distributed into quadruplicate 20 mL glass vials containing
9 mL of symbiont culture in f/2 medium. Each vial of treatments and control incubations
received 9 ml of cyanobacterial exudate. Controls were made by adding f/2 medium to the
symbiont cultures. Two millilitres of f/2 medium were added to the treatments in order
to avoid nutrient limitation. After addition of cyanobacterial exudates and f/2 medium,

Ribeiro et al. (2018), PeerJ, DOI 10.7717/peerj.5419 6/20

https://peerj.com
https://doi.org/10.7717/peerj.5419/fig-2
https://oceancolor.gsfc.nasa.gov
http://dx.doi.org/10.7717/peerj.5419


each experimental unit had an initial symbiont concentrations of 6 ×104 cells mL−1.
The experiment was run for 72 h with the same temperature and irradiance as described
above. Cell counts were performed daily with a BD AccuriTM C6 flow cytometer using
the chlorophyll fluorescence and forward-scattered light as discrimination parameters to
detect Symbiodinium cells. Daily values were normalized using time zero concentrations.

Statistical analyses
A distance-based linear model (DISTLM; Legendre & Anderson, 1999;McArdle & Anderson,
2001) was used to investigate the relationships between coral growth and its possible
predictors (turf algae, cyanobacteria, foliose macroalgae, CCA, coral, temperature and
turbidity), using different time lags for temperature and turbidity (0, 1 and 2 years). We
retained only the 1-year lag in subsequent models (i.e., using temperature and turbidity
from the previous year), as it presented the highest explanatory power. Distance offshore
was not incorporated in themodels due to its colinearity with turbidity. Themost significant
predictors were selected using the best selection procedure, and the Akaike’s information
criterion (AIC) was used to select the most parsimonious models. A distance-based
redundancy analysis (dbRDA, Legendre & Anderson, 1999;McArdle & Anderson, 2001) was
used to quantify the associations between predictors and colony area change. Multiple
partial correlations of the selected predictors according to DistLM analysis with the dbRDA
axis were also examined in order to interpret the relationship and identify the dominant
forces driving the coral growth response to the environmental variables. PERMANOVA
pairwise tests were performed in order to discriminate differences in coral growth among
years, as well as the frequency of contact with neighbouring organisms between sites.
Analyses were run with software Primer 6 (Anderson, Gorley & Clarke, 2008).

Permits for the field study were granted by the Abrolhos National Park (SISBIO permits
number 49667-1, 50872-2, 51670-2).

RESULTS
Mean summer SSTs ranged from 26.4 to 27.5 ◦C during the 11 year survey period and
presented only slight spatial variation, with less than 0.2 ◦C differences between the two
sites, whereas turbidity (Kd 490) in PLES (inshore) was 1.5 times higher on average than
that recorded in PAB (offshore). Turbidity spikes in PLES occurred in 2010, 2011 and
2016. Positive temperature anomalies with mean summer SSTs up to 0.5 ◦C above the
study period average were recorded in 2010 (Fig. 3).

Turbidity and the coral perimeter in contact with cyanobacteria were significant
predictors of coral growth, accounting for 27.5% of coral growth variation (Table 1).
Turbidity was positively correlated with the first dbRDA axis, indicating a positive
association with coral growth, while cyanobacteria was negatively correlated (Fig. 4).

Coral growth responded negatively to direct contact with cyanobacteria (Figs. 4 and
5) and contact length with surrounding organisms was significantly different between
reefs (Table 2). Over the entire study, coral-algae contacts predominated inshore, while
cyanobacteria and turf dominated the contacts with corals in the offshore reef. An overall
trend of positive coral growth was detected from 2009 onwards in the inshore reef,
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Figure 3 Summer sea surface temperatures and turbidity for the inshore (PLES) and offshore (PAB)
reefs during the study period (2006–2016). Triangles represent temperatures and squares represent tur-
bidity. Dashed horizontal lines represent average values.

Full-size DOI: 10.7717/peerj.5419/fig-3

Table 1 DistLMmarginal test results andmodel selection.

DistLMmarginal test
Variable Variable SS(trace) Pseudo- F P Prop.
1 Turf 24.055 0.16538 0.678 0.0016
2 Cyano 1,929.7 15.29 0.001 0.134
3 Dicty 61.884 0.42658 0.495 0.0042
4 CCA 240.7 1.6801 0.205 0.0167
5 Coral 123.31 0.85364 0.382 0.0085
6 Turbidity 2,068.7 16.576 0.001 0.143
7 Temperature 49.772 0.3428 0.568 0.0034

Overall best solution
AIC R2 RSS No. Of Variables Selections
474.62 0.27512 10,456 2 2;6

whereas retraction in live coral tissue was observed offshore during this same period. The
PERMANOVA pairwise comparisons confirmed statistical differences in coral growth
between years and sites (p< 0.05) (Table S1), as well as in the frequency of cyanobacteria,
foliose macroalgae and CCA contacting coral colonies (Table 2).

Exudates harvested from the media of cyanobacteria cultures affected symbiont growth
during incubations. Percent variation of Symbiodinium cell concentrations in treated vials
dropped consistently during the 72 h incubations, whereas in untreated vials it increased
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Figure 4 Coral growth response relationship with the first Distance-based Redundancy Analysis
(dbRDA) axis, related to turbidity and cyanobacteria perimeter. Insert shows Pearson correlation
coefficients.

Full-size DOI: 10.7717/peerj.5419/fig-4

Figure 5 Mean values of coral and cyanobacteria area change at the inshore (A) and offshore reef (B).
Letters show significant differences (PERMANOVA) for pairwise comparisons ofM. braziliensis area
change between each sampling time.

Full-size DOI: 10.7717/peerj.5419/fig-5

for the first 48 h, and slightly dropped after 72 h, but always had higher concentrations
compared to the exudate-treated vials (Fig. 6). Cell counts in vials with cyanobacteria
exudates had a negative variation of 1.0.104 cells ml−1 after 24 h, 2.0.104 cells ml−1 after 48
h and 2.3.104 cells ml−1 after 72 h, whereas controls showed a positive variation of 1.4.104,
1.6.104 and 1.0.104 cells ml−1, respectively.
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Table 2 Mean extension of contacts withM. braziliensis colonies (2006–2016) and PERMANOVA
pairwise tests results contrasting inshore and offshore samples.

Variable PLES (%,±SD) PAB (%,±SD) t P Permutations

Turf 12.62 (±9.92) 14.55 (±8.40) 0.7887 0.4349 9,582
Cyanobacteria 0.10 (±0.42) 3.90 (±5.37) 4.8866 0.0001 9,364
Foliose macroalgae 6.89 (±6.35) 0.02 (±0.14) 8.4528 0.0001 9,481
CCA 0.83 (±2.10) 4.68 (±5.50) 4.3167 0.0002 9,372
Coral 2.16 (±3.51) 1.23 (±1.77) 1.8772 0.0661 9,021

Figure 6 Effect of three cyanobacterial exudates on Symbiodinium spp. cultivated from Abrolhos’
specimens ofM. braziliensis. Bars represent SE. Codes refer to the catalogue numbers of the Culture Col-
lection of Microalgae at the Universidade Federal do Rio de Janeiro (CCMR-UFRJ).

Full-size DOI: 10.7717/peerj.5419/fig-6

DISCUSSION
Turbid zone reefs, often considered marginal sites for coral communities, may harbour a
significant cover of fast-growing and/or stress-tolerant coral species within low diversity
assemblages (Anthony, 2006;Cacciapaglia & Van Woesik, 2016;Morgan et al., 2017). Rather
than being local or ‘‘marginal’’ features, these reefs cover vast and yet unmapped areas
of invaluable coralline habitat in several ocean basins (Kleypas, 1996; Moura et al., 2016;
Bastos et al., 2008). Understanding the dynamics of turbid-zone reefs is essential to evaluate
the generality of the models explaining the decline of coral reefs, which often involve a
positive feedback loop of DOC, disease, algae, andmicroorganisms (DDAMmodel,Haas et
al., 2016), among other climate and anthropogenic stressors (Hughes, 1994). The Abrolhos
Bank is a foremost example of turbid zone reef (Leão & Ginsburg, 1997), with a strong
cross-shelf gradient of turbidity and sedimentation, related to coastal/riverine inputs and
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seasonal resuspension of autochthonous fine sediments during winter intrusions of polar
fronts (Leão & Kikuchi, 2005; Segal et al., 2008).

Our DistLim model evidenced that cyanobacteria and turbidity were the best predictors
of coral growth in Abrolhos (see Table 1), the former presenting a negative effect.
Conversely, turbidity (Kd490) was associated with positive changes in living coral tissue.
For instance, the larger positive change in net coral growth in the inshore reef (2009–12)
followed the 2010–11 turbidity peak (Fig. 5), suggesting improved conditions for the
corals. Despite the higher nearshore turbidity and sedimentation, there was no significant
cross-shelf difference in SST (Fig. 3). Indeed, we failed to detect an effect of SST on M.
braziliensis growth, evidencing a stronger influence of the turbid regime and competition
with cyanobacteria. Turbidity inherently alters light penetration and reduces the incidence
of damaging UV radiation. Akin to shading (McCook, Jompa & Diaz-Pulido, 2001), this
widespread ‘‘sunblock effect’’ in turbid zone reefs may interact antagonistically with other
disturbances to alleviate the impact of coral bleaching during severe thermal stress (Guest
et al., 2016;Morgan et al., 2017). In addition, higher nutrient availability may contribute to
enhanced growth ofM. braziliensis, possibly related to heterotrophic feeding, and previous
studies have demonstrated increased reproductive output on inshore reefs of the Abrolhos
Bank (Pires, Segal & Caparelli, 2011). However, increased sedimentation and nutrification
from land-based sources may have a detrimental effect on coral growth. Indeed, corals may
increase growth under physiological stress and display a ‘‘maximum-accretion-to-turnoff’’
response (Wooldridge, 2014). Under such circumstances, skeletal density may decrease and
extension rates may increase until abrupt cessation of growth.

Benthic cyanobacteria produce a broad array of secondary metabolites, with several
bioactive compounds that interfere with bacterial quorum sensing and coral diseases
(Engene et al., 2011; Puglisi et al., 2014). Such compounds could also be cytotoxic and exert
allelopathic effects in corals (Morrow et al., 2011). Contact with chemically defended algal
speciesmay trigger immune responses in Symbiodinium, depending on exposure, length and
specific activities of secondary metabolites (Shearer, Snell & Hay, 2014). Here we present
evidence of an inhibitory effect of compounds exuded by filamentous cyanobacteria over
ex hospite Symbiodinium isolated from M. braziliensis. Cyanobacteria affect dinoflagelates’
development and reduce their in hospite density and photochemical efficiency, ultimately
impairing coral growth (Titlyanov, Yakovleva & Titlyanova, 2007). Therefore, the negative
effect of cyanobacteria exudates over the symbionts may play a major role in coral tissue
necrosis, adding to the deleterious effects of small-scale oxygen depletion in contact zones
(Haas et al., 2016). Although cyanobacteria density is positively correlated with nutrient
availability from coastal sources (Ahern et al., 2007), both inshore and offshore Abrolhos’
sites have similar DOC and total nitrogen concentration (Bruce et al., 2012). Therefore, the
recent cyanobacterial outbreaks, along with microbialization and diseases reported across
the region (Ribeiro et al., 2017; Bruce et al., 2012; Francini-Filho & Moura, 2008), may have
not been driven solely by nutrification. The allelopathic effect observed is consistent with
the negative effect of cyanobacteria on coral growth shown by the DistLimmodel (Table 1).
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While water temperature had a limited effect over the long-term M. braziliensis growth
trends, it may trigger cyanobacterial outbreaks and indirectly affect coral health (Ribeiro
et al., 2017)

The cross-shelf trend of decreasing turbidity and macroalgae abundance suggests either
a direct positive effect of turbidity on coral growth, or from the higher inshore cover
of foliose macroalgae that constrain cyanobacterial abundance, such as recorded in the
offshore reef site. Altered light regimes may lead to shifts in cyanobacterial abundance
(Castenholz & Garcia-Pichel, 2013). When compared to primary succession organisms
(e.g., turf and cyanobacteria), foliose macroalgae establish relatively stable assemblages
with dense canopies (Steneck & Dethier, 1994), which may be considerably resistant to
herbivory (Francini-Filho et al., 2010). Although macroalgae are able to compete and
damage coral tissue (Tanner, 1995; McCook, Jompa & Diaz-Pulido, 2001), their negative
effects over corals may be less important than those from chemically-driven cyanobacterial
outbreaks. In addition, macroalgae may provide shelter for coral recruits (McCook, Jompa
& Diaz-Pulido, 2001) and control epiphytism of cyanobacteria, ultimately rendering
reduced contact of toxic filaments with coral colonies (Fong, Smith & Wartian, 2006).
Although some CCA species may be deleterious to corals, these organisms generally
facilitate coral growth in heterogenous landscapes (Price, 2010). In our study, the strong
effect of cyanobacteria may have obliterated the statistical effect of CCA on coral growth
trends. Similarly, temperature was not a significant predictor of coral growth, even though
coral growth declined after the 2010 temperature spike (Figs. 2 and 5).

In Abrolhos, roving herbivorous fish are more abundant in offshore protected reefs
(Francini-Filho & Moura, 2008). From 2003 to 2008, Francini-Filho et al. (2013)monitored
the region’s benthic assemblages and failed to detect significant temporal changes in foliose
macroalgae cover in both inshore and offshore reefs, despite recording consistent cross-shelf
differences in macroalgal abundance. Although it is unclear whether the higher inshore
macroalgal abundance (10–20% of reef cover) is a stable phase related to a long-standing
high turbidity background, or a contemporary response to overfishing (Freitas et al., 2011),
increased macroalgal abundance implies a higher contact frequency with corals (Grillo,
Bonaldo & Segal, 2018). Poor land use and coastal development enhances sedimentation
and reduce the overall vitality of reef systems, which is generally inversely related to distance
offshore (Dutra, Kikuchi & Leão, 2006). However, our results challenge the idea that high
macroalgal cover is always associated with compromised coral health, as baselines for
turbid zone reefs may differ sharply from those of coral-dominated reefs that dwell under
more oligotrophic conditions (Rogers, 1990; Kleypas, 1996). Indeed, our results add to the
growing evidence of increased physiological plasticity of South Atlantic corals in terms of
fecundity (Pires, Segal & Caparelli, 2011) and photoacclimation (Sugget et al., 2012) under
marginal conditions. In Abrolhos, instead of being additive or synergistic (e.g.,Diaz-Pulido
et al., 2011), the effects of turbidity and cyanobacteria were antagonistic.

Conservation concerns are higher in inshore unprotected reefs, due to their proximity
to anthropogenic stressors and overfishing (e.g., Francini-Filho & Moura, 2008). However,
coral decline was faster in offshore reefs, which may be more vulnerable to stressors that
operate at larger spatial scales, such as light and temperature anomalies. The anomalous
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growth of cyanobacteria, leading to toxic amounts of cyanotoxins (Rastogi, Madamwar &
Incharoensakdi, 2015), are often attributed to temperature anomalies and anthropogenic
impacts such as nutrient input. However, as we have demonstrated, distance offshore and
no-take zoning are not always sufficient to keep reefs from harmful cyanobacterial blooms.
For instance, despite the significantly higher fish abundances inside the offshore no-take
zone (Francini-Filho & Moura, 2008), roving herbivorous were never recorded eating
cyanobacteria mats and tufts. Avoiding coral decline goes well beyond no-take zoning and
should include water quality control and climate change mitigation, as well as appropriate
local baselines for long term monitoring, as health indicators are geographically variable
and context dependent.

CONCLUSION
Our results add to the growing evidence that turbid zone reefs present unique functional
properties that challenge the current models explaining the global decline of coral reefs,
which are largely based on DOC, disease, algae, and microorganisms. Here, we show
that the growth of one of the main reef builders of the Abrolhos reefs, M. braziliensis,
was positively influenced by turbidity, which is greater nearshore. On the other hand,
filamentous cyanobacteria were the most aggressive coral competitors. The negative effect
of filamentous cyanobacteria was detected both in unprotected nearshore reefs and in no-
take offshore reefs with less turbidity. Besides this significant negative effect of filamentous
cyanobacteria detected from one decade of field records, we presented evidence of an
inhibitory effect of their exudates over ex hospite zooxanthellae (Symbiodinium) isolated
from local corals. We emphasize the importance of building local baselines for long-term
monitoring, as health indicators are geographically variable and context dependent.
Avoiding coral decline should go well beyond no-take zoning and includes a longer road
that passes through water quality control and climate change mitigation.
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