
sensors

Article

Improved RRT-Connect Algorithm Based on Triangular
Inequality for Robot Path Planning

Jin-Gu Kang 1 , Dong-Woo Lim 1, Yong-Sik Choi 2, Woo-Jin Jang 1 and Jin-Woo Jung 1,*

����������
�������

Citation: Kang, J.-G.; Lim, D.-W.;

Choi, Y.-S.; Jang, W.-J.; Jung, J.-W.

Improved RRT-Connect Algorithm

Based on Triangular Inequality for

Robot Path Planning. Sensors 2021,

21, 333. https://doi.org/10.3390/

s21020333

Received: 18 November 2020

Accepted: 30 December 2020

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea;
kanggu12@dongguk.edu (J.-G.K.); aehddn@gmail.com (D.-W.L.); skwndbth159@dongguk.edu (W.-J.J.)

2 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea; sik2230@dongguk.edu
* Correspondence: jwjung@dongguk.edu; Tel.: +82-2-2260-3812

Abstract: This paper proposed a triangular inequality-based rewiring method for the rapidly explor-
ing random tree (RRT)-Connect robot path-planning algorithm that guarantees the planning time
compared to the RRT algorithm, to bring it closer to the optimum. To check the proposed algorithm’s
performance, this paper compared the RRT and RRT-Connect algorithms in various environments
through simulation. From these experimental results, the proposed algorithm shows both quicker
planning time and shorter path length than the RRT algorithm and shorter path length than the
RRT-Connect algorithm with a similar number of samples and planning time.

Keywords: RRT-Connect; triangular inequality; rewiring; optimality; robot path planning

1. Introduction

With the recent Fourth Industrial Revolution, interest in mobile robots has increased
in various fields such as robotics, smart factories, and autonomous driving [1]. Classi-
cal mobile robot path-planning algorithms can be classified into three broad categories [2].
The first is the road map approach algorithm [3], which is easy to implement by designing
a map that represents a path that can be moved and plan through it. The second is cell
decomposition algorithm [4], which creates a path by dividing the configuration space
into cells and connecting each cell using a graph. The last is the artificial potential field
algorithm [5], which creates an artificial potential field and directs the robot to the goal
according to the flow of potential power.

‘Optimality’ means always ensuring the optimal path. ‘Clearance’ indicates a lower
probability of collision between obstacles and the robot. ‘Completeness’ means that if a path
exists, it can always be found. Optimality, clearance, and completeness are considered
important in these classical algorithms and have been the main focus of study [6]. Partic-
ularly if completeness is not guaranteed by the robot path-planning algorithm, there is
a problem that the path may not be found in finite time. This is a fatal problem in robot
path planning.

Recently, sampling-based path-planning algorithms [7–12] such as rapidly exploring
random tree (RRT) [13], which is quicker and less computationally intensive than clas-
sical algorithms, have been attracting attention. The main purpose of sampling-based
algorithms is to find a path that can reach the goal as quickly as possible using randomly
extracted sample points (random sampling). Unlike classical algorithms, sampling-based
algorithms have difficulty fully reflecting the optimality and completeness. Therefore,
most sampling-based algorithms claim ‘Probabilistic completeness’, which explains that
they can be probabilistically close to complete when random sampling is repeated in-
finitely [14]. This means that it is difficult to guarantee the ‘Planning time’ (first path
finding time), which refers to how quickly the path can be planned from the start point to
the goal point, and the ‘Convergence rate’, which means iterative sampling to bring the
path closer to the optimum after the first path has been found. If the situation does not

Sensors 2021, 21, 333. https://doi.org/10.3390/s21020333 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4262-7840
https://doi.org/10.3390/s21020333
https://doi.org/10.3390/s21020333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020333
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/333?type=check_update&version=2

Sensors 2021, 21, 333 2 of 32

allow enough time to plan the path, it can create a path that is more different from the
optimal path. Even so, the sampling-based algorithm is mainly used in dynamic environ-
ments because it enables quicker path planning with very little planning time compared to
classical algorithms.

To overcome these limitations of planning time and convergence rate, many studies
are being conducted to expand the RRT algorithm. The RRT-Connect [15] algorithm finds
a connected path more quickly than the RRT algorithm by setting the start point and
goal point as the roots of separate trees and expanding both trees alternately. In addition,
there are algorithms that optimize paths based on the principle of triangular inequality,
such as RRT*-Smart algorithm [16] and Quick-RRT* algorithm [17], to derive a path that
is close to the optimal. Many algorithms [18–21] that extend the RRT algorithm have
been studied.

The above algorithms show more efficient performance by improving the RRT algo-
rithm to overcome the limitations of sampling-based methods but they are still not perfect.
Their limitations include being unable to derive the optimal length and there is room for
improvement in terms of the number of operations and time. For example, the RRT* algo-
rithm has rewiring(search for the parent node as a via point nearby a newly inserted node,
where the addition of path length from the start point to the via point and path length from
the via point to the newly inserted node in the tree is the optimized, and change the neigh-
boring nodes to optimize the path length) and neighbor search (search for nodes nearby the
node to be newly inserted in the tree) processes to obtain shorter path lengths than the RRT
algorithm [18]. However, there is an efficiency trade-off in this process. In other words,
while the convergence rate has improved, the planning time has significantly increased [22].
Therefore, the RRT* algorithm cannot be said to be better than the RRT algorithm in all
performance metrics and it can be said that the RRT* algorithm gets closer to the optimum
at the expense of planning time.

To overcome the limitation of getting closer to the optimum at the expense of planning
time, this paper proposes a triangular inequality-based RRT-Connect algorithm that finds
an ancestor node as a via point, where the addition of path length from the start point to
the via point and path length from the via point to the newly inserted node is the most
optimized, based on the principle of triangular inequality and RRT-Connect. The pro-
posed algorithm shortens the planning time while also pursuing optimization through
rewiring. In addition, we will verify the efficiency by comparing the RRT and RRT-Connect
algorithms from previous studies through simulation experiments. As a result, this paper
shows that the proposed algorithm has a shorter path length than the RRT and RRT-Connect
algorithms without sacrificing other performance measures such as the number of samples
or planning time.

The scope of the research we will cover is how much more quickly it can find the path
and how much shorter the path is. This is because in a dynamic environment, it is more
important to find a navigable path. In a dynamic environment, there may not be enough
time for convergence. In other words, the purpose of our proposed algorithm is to improve
the RRT-Connect algorithm so that it can find a shorter path over the same planning time
(computation time before convergence or computation time for first path finding).

Figure 1 shows an overview of the three main algorithms covered in this paper: RRT,
RRT-Connect, and the proposed algorithm. In this figure, the start qstart and goal points
are qgoal, respectively. The RRT algorithm in Figure 1a shows that the path is expanded
in a tree structure and the RRT-Connect algorithm in Figure 1b shows that the trees that
are expanded at the start and goal points attract and connect each other. The proposed
algorithm in Figure 1c shows that the RRT-Connect algorithm was rewired into a triangular
inequality during path planning.

Sensors 2021, 21, 333 3 of 32

Figure 1. Overview of the algorithms in this paper: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

In this paper, Section 2 introduces the RRT algorithm, Section 3 introduces the RRT-
Connect algorithm, and the triangular inequality-based RRT-Connect algorithm is pro-
posed in Section 4. In detail, Section 4.1 shows the pseudocode of the proposed rewiring
method through the principle of triangular inequality, which can be applied to the RRT-
Connect algorithm, Section 4.2 shows the mathematical modeling of the proposed algo-
rithm, Sections 4.3 and 4.4 show the pseudocode of each method of the RRT-Connect algo-
rithm applying the proposed rewiring method, and Section 4.5 shows the path-planning
process for the proposed algorithm that applies the proposed rewire method to the RRT-
Connect algorithm. Section 5 shows the experimental environment and results to check the
performance of the proposed algorithm and Section 6 presents the conclusion.

2. Rapidly Exploring Random Tree (RRT) Algorithm

Rapidly exploring Random Tree (RRT) algorithm [13] is the most representative
sampling-based path-planning algorithm. The RRT algorithm plans a path by gradually
expanding a tree with a root node at the start point using random sampling. It is designed
to handle non-holonomic constraints and high degrees of freedom [12].

When a random sample is generated in the configuration space, it tries to connect at a
point separated by a preset step length from the node nearest to the random sample among
nodes constituting the tree with the step length. If tree connections are possible, nodes are
added to create an extended tree.

As mentioned in the introduction, this sampling-based path-planning algorithm uses
randomly generated sample points to find a path that can reach the goal as quickly as
possible, so it is difficult to sufficiently reflect the optimality and completeness.

Figure 2 shows the path-planning process of the RRT algorithm. Figure 2a shows
that qnew is created at the node position qnear of the tree T nearest to the random sample
position qrand. Figure 2b shows the resultant path R among several candidate paths to the
start position qstart and the goal position qgoal.

Sensors 2021, 21, 333 4 of 32

Figure 2. RRT algorithm: (a) Process when qnew is created; (b) After the random sampling has ended.

3. RRT-Connect Algorithm

Path planning through the RRT algorithm may have a disadvantage in that since
random samples appear with the same probability in all regions, the tree easily extends
even in a direction irrespective of the goal, resulting in a long planning time and inefficiency.
The RRT-Connect algorithm [15] proposed later has two new ideas as the method to
compensate for the disadvantage of the RRT algorithm.

The first is that the start and goal points are each inserted as root nodes and extended
in each direction alternately. The two trees extending from the start point and the goal
point expand as if attracting one another (which prevents the tree and is a disadvantage of
the RRT algorithm) is in a direction irrespective of the goal. This enhances the disadvantage
of the planning time required to search for a path. The second is the concept of ‘Extend’,
which continues extending to the other side of the tree if there are no collisions with
obstacles when the tree extends. Through this, unlike the RRT algorithm that extends the
maximum extension length when the sample is generated and is inserted into the tree, the
tree continues to expand in the direction of the goal if there is no collision with an obstacle,
so the path can be planned more quickly.

Path planning through the RRT-Connect algorithm can find a path quicker than the
RRT algorithm, but the ‘Extend’ method does not work properly in complex environments
with narrow paths and many obstacles and it can be difficult. In addition, the path planned
using the RRT-Connect algorithm is far from the optimal length, so it does not properly
reflect optimality.

3.1. Pseudocode of the RRT-Connect Algorithm

This section shows the pseudocode of the RRT-Connect algorithm used in the experi-
ment in this paper that was designed based on [15] in which the RRT-Connect algorithm
was proposed. The RRT-Connect algorithm can be represented by a main algorithm (A1)
and two main methods (A2 and 3).

Algorithm 1 shows the pseudocode of RRT-Connect algorithm. Both of the two initial
trees Ta and Tb have qstart and qgoal as root nodes and these two trees randomly sample N
times and aim to reach each other during their expansion. Unlike RRT, the RRT-Connect
algorithm is divided into two methods: ‘Extend’ and ‘Connect’. The ‘Extend’ method
(A2) creates qnew from qrand in Ta and extends from Tb to the qnew direction of Ta, and the
‘Connect’ method (A3) determines whether the two trees Ta and Tb have reached each
other; if they do, merge them into one tree to obtain a path Preach between the root nodes
qstart and qgoal of the two trees.

Sensors 2021, 21, 333 5 of 32

Algorithm 1 Pseudocode of the RRT-Connect Algorithm

Input:
qstart ← Start Point Position
qgoal ← Goal Point Position
λ← Step Length
C← Position Set of All Boundary Points in All Obstacles
N← Number of Random Samples
Output:
R← Result of Path R
Initialize:
Ta ← Null Tree
Tb ← Null Tree
dshorter ← 0
Begin RRT-Connect Procedure
1 Ta ← Insert Root Node<qstart> to Ta
2 Tb ← Insert Root Node<qgoal> to Tb
3 While 1← n to N do
4 Generate n-th Random Sample
5 qrand ← Position of n-th Random Sample
6 If Not Extend(Ta, Tb, qnewB ← Null, qrand, λ, C) then
7 If Connect(Preach ← Null Path, Ta, Tb, qnewB, λ) then
8 dreach ← Distance of Preach
9 If dshorter = 0 or dshorter > dreach then
10 R← Preach
11 dshorter ← dreach
12 Swap(Ta, Tb)
End RRT-Connect Procedure

When a path is created by the ‘Connect’ method, the distance dreach is calculated for
the path Preach from qstart to qgoal. At this time, if dreach is smaller than dshorter (the shortest
path length until now) or Preach is the first path found (i.e., dshorter = 0), the resultant path R
becomes Preach, and dshorter becomes dreach. At the end of the next N sampling, R becomes
the final planned path. If the number of random sampling remains, the above process is
repeated.

3.2. Pseudocode of the Extend Method from the RRT-Connect Algorithm

This section introduces the ‘Extend’ method used in pseudocode (A1) of the RRT-
Connect algorithm in Section 3.1.

Algorithm 2 shows the pseudocode of the ‘Extend’ method in the RRT-Connect
algorithm. The isInside function determines whether qrand is inside a circle (or n-sphere)
with the node position qnear of the tree Ta nearest the qrand position as the center and λ as
the radius. If it is not located inside (False), qnewA becomes the intersection of the circle
(or n-sphere) with qnear as the center and λ as the radius, and the line segment connecting
qrand and qnear. If it is determined that there is no obstacle between qnewA and qnear by the
isTrapped function (False), qnewA is inserted into the tree as a child node of qnear of Ta. If there
is an obstacle (True), the ‘Extend’ method returns True (ftrap) and terminates. Otherwise,
it proceeds with the remaining process and returns False (ftrap) when the process ends.

This is the process of making Ta and Tb reach each other: First, the node Tb nearest
to qnewA becomes the new qnear. At this time, using the isInside function, it is determined
whether qnewA is inside a circle (or n-sphere) with qnear as the center and λ as the radius,
and if it is located inside (True), qnewB becomes qnear and is located inside. If not (False),
qnewB becomes the intersection of the circle (or n-sphere) with qnear as the center and λ as
the radius and the line segment connecting qnewA and qnear. If qnewB is created, then the
following process is repeated until it can determine whether there is an obstacle between
qnewB and qnear by the isTrapped function and if there is the obstacle between them (True) or
if qnewB reaches qnewA by the isInside function.

Sensors 2021, 21, 333 6 of 32

Algorithm 2 Pseudocode of the original ‘Extend’ method from the RRT-Connect Algorithm

Input:
Ta ← Tree Ta from RRT-Connect
Tb ← Tree Tb from RRT-Connect
qnewB ← Position qnewB from RRT-Connect
qrand ← Position qrand from RRT-Connect
λ← Step Length λ from RRT-Connect
C← Position Set C from RRT-Connect
Output:
ftrap ← Result of Boolean ftrap
Ta ← Result of Tree Ta //Return by Reference
Tb ← Result of Tree Tb //Return by Reference
qnewB ← Result of Position qnewB //Return by Reference
Initialize:
ftrap ← False
Begin Extend Procedure from RRT-Connect
1 qnear ← Find Position of Nearest Node in Ta from qrand
2 If Not isInside(qnear, qrand, λ) then

3
qnewA ← Position of the Intersection Point between the Line Segment connecting qrand and

qnear and a Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
4 Else
5 qnewA ← qrand
6 If isTrapped(qnewA, qnear, C) then
7 ftrap ← True
8 Else
9 Ta ← Insert Node<qnewA> and Edge<qnewA, qnear> to Ta
10 qnear ← Find Position of Nearest Node in Tb from qnewA
11 If isInside(qnear, qnewA, λ) then
12 qnewB ← qnear
13 Else

14
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and qnear,

and Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
15 While Not isTrapped(qnewB, qnear, C) do
16 Tb ← Insert Node<qnewB> and Edge<qnewB, qnear> to Tb
17 If Not isInside(qnewA, qnewB, λ) then
18 qnear ← qnewB

19
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and

qnear, and Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
20 Else
21 Break
End Extend Procedure from RRT-Connect

If there is no obstacle between qnewB and qnear (False), insert qnewB into Tb as a child
node of qnear. At this time, if the isInside function determines that qnewB has not reached the
λ radius with qnewA as the center (False), qnear becomes qnewB and a new qnewB will created
from this qnear.

Figure 3 shows the ‘Extend’ method in the RRT-Connect algorithm. In detail, it shows
that the first qnewA is created, and qnewB is created with radius of length λ in the direction of
qnewA from the qnear position in the figure. Clearly, Tb extends in the Ta direction for reach.

3.3. Pseudocode of the Connect Method from the RRT-Connect Algorithm

This section introduces the ‘Connect’ method used in pseudocode (A1) of the RRT-
Connect algorithm in Section 3.1.

Algorithm 3 shows the pseudocode of the ‘Connect’ method in the RRT-Connect
algorithm. Here, Ta, Tb, and qnewB are from the ‘Extend’ method (A2).

Sensors 2021, 21, 333 7 of 32

Figure 3. The ‘Extend’ method from RRT-Connect algorithm.

Algorithm 3 Pseudocode of the Original ‘Connect’ Method from the RRT-Connect Algorithm

Input:
Preach ← Path Preach from RRT-Connect
Ta ← Tree Ta from RRT-Connect
Tb ← Tree Tb from RRT-Connect
qnewB ← Position qnewB from RRT-Connect
λ← Step Length λ from RRT-Connect
Output:
freach ← Result of Boolean freach
Preach ← Result of Path Pmerged //Return by Reference
Initialize:
freach ← False
Begin Connect Procedure from RRT-Connect
1 If isInside(qnewA, qnewB, λ) then
2 Pa ← Path from Root Node [qstart] to Last Inserted Node [qnewA] in Ta
3 Pb ← Path from qnewB to Root Node [qgoal] in Tb
4 Pconnect ← Path from Last Inserted Node [qnewA] in Ta to qnewB in Tb
5 Pmerged ←Merge Path Pa to Pb via Pconnect
6 freach ← True
End Connect Procedure from RRT-Connect

The tree merging process is as follows: create a path Pa from the root node (qstart) of
Ta to the last inserted node (qnewA), and a path Pb from qnewB of Tb to the root node (qgoal).
Then, create a path Pconnect from qnewB of Pb to the last inserted node (qnewA) of Ta and merge
in the order of Pa, Pconnect, and Pb, thereby completing planning the path Pmerged from qstart
to qgoal. After this, it returns True (ftrap), and the ‘Connect’ method ends.

Figure 4 shows the ‘Connect’ method in the RRT-Connect algorithm. If the qnewB of Tb
is extended in the direction of the qnewA by the ‘Extend’ method shown in Figure 3, the point
where the two trees merge (when qnewB has expanded in the direction of qnewA where Ta
enters the λ radius centered at qnewA) with each other is the part marked as ‘Connect’.
As a result, the path Pa becomes from the position qstart to the position qnewA in Ta, the path
Pconnect goes from position qnewA to position qnewB and the path Pb goes from position qnewB
to position qgoal in Tb. The merged path Pmerged goes from qstart to qgoal.

Figure 4. The ‘Connect’ method from the RRT-Connect algorithm.

Sensors 2021, 21, 333 8 of 32

4. Proposed Triangular Inequality-Based RRT-Connect Algorithm

The proposed triangular inequality-based RRT-Connect algorithm is a rewire based on
the principle of triangular inequality between nodes on a path planned in the RRT-Connect
algorithm, so it is closer to the optimal compared to the RRT-Connect. This is like the
RRT*-Smart algorithm [16] and Quick-RRT* [17] algorithms, which shorten their paths
using the triangular inequality principle for the RRT algorithm. In this paper, the rewire
part based on the triangular inequality principle is called the ‘Triangular-Rewiring’ method.

The proposed triangular inequality-based RRT-Connect algorithm requires the follow-
ing assumptions:

1. There is only one start point and one goal point even though the goal point may be
changed incrementally as time goes on.

2. The robot is capable of omnidirectional motion.

Therefore, this chapter introduces the proposed ‘Triangular-Rewiring’ method for
the RRT-Connect algorithm, and performs mathematical modeling to confirm the validity
that the proposed ‘Triangular-Rewiring’ method is always shorter when applied to the
RRT-Connect algorithm. After checking through, we will propose how to apply the
‘Triangular-Rewiring’ method to the RRT-Connect algorithm.

The method of applying the RRT-Connect algorithm of the proposed ‘Triangular-
Rewiring’ method is proposed when a new node is inserted into the tree in the ‘Extend’
method (A2) and ‘Connect’ method (A3), the main methods of the RRT-Connect algorithm
introduced in Chapter 3. It is inserted after rewiring (or after determining) through the
‘Triangular-Rewiring’ method. That is, this chapter introduces the ‘Extend’ and ‘Connect’
methods to which the proposed ‘Triangular-Rewiring’ method is applied.

4.1. Pseudocode of the Proposed Triangular-Rewiring Method for the Improved
RRT-Connect Algorithm

This section introduces the ‘Triangular-Rewiring’ method for the proposed triangular
inequality-based RRT-Connect algorithm.

Algorithm 4 shows the pseudocode of the ‘Triangular-Rewiring’ method applicable
in the ‘Extend’ (A2) and ‘Connect’ (A3) methods of the RRT-Connect algorithm. When in-
serting a new node and edge in Ta or Tb in the ‘Extend’ method (A5), when a tree Tmerged
(Pmerged) in which Ta and Tb trees are merged in the ‘Connect’ method is created (A6),
rewiring is performed on the tree T.

In the ‘Extend’ and ‘Connect’ methods, qnew (or qnewA or qnewB) is inserted as a qchild
and qnear is inserted as a candidate for the node’s parent node. From qparent, the node’s
parent node (a second ancestor node candidate based on qchild) is called qancestor. Next,
it is determined whether an obstacle exists between qancestor and qchild (using the isTrapped
function). If there is an obstacle (True), the ‘Triangular-Rewiring’ process is skipped and
qchild is inserted into the child node of qparent in T such that the contents of the ‘Extend’ and
‘Connect’ methods from the RRT-Connect algorithm are the same. If there is no obstacle
(False), the ‘Triangular-Rewiring’ process proceeds.

The ‘Triangular-Rewiring’ process is as follows: Delete node where position qparent
and the edges between qchild and qancestor nodes connected to qparent. In other words, it dis-
connects the existing qparent and qchild and prepares to connect qchild to qancestor, the candidate
parent node of qchild. Again, qparent becomes its parent node qancestor and qancestor becomes the
parent node of qancestor. Then, as previously done, determine whether an obstacle exists be-
tween qancestor and qchild (using the isTrapped function). This iterative process continues until
no qancestor exists (when no parent node exists for the previous qancestor, i.e., when qancestor is
qstart) or an obstacle exists between qchild and qancestor. Then, in tree T, the last created qparent
is inserted as the parent node of qchild.

Sensors 2021, 21, 333 9 of 32

Algorithm 4 Pseudocode of the Proposed ‘Triangular-Rewiring’ Method for the RRT-Connect
Algorithm

Input:
qchild ← Position {qnew/qnewA/qnewB} from {Extend/Connect}
qparent ← Position qnear from {Extend/Connect}
T← Tree {Tmerged/Ta/Tb} from {Extend/Connect}
C← Position Set C from {Extend/Connect}
Output:
{Tmerged/Ta/Tb}← Result of T
Begin triangularRewiring Procedure from Extend, Connect
1 qancestor ← Position of Parent Node of qparent in T
2 If Not isTrapped(qancestor, qchild, C) then
3 T← Delete Node<qparent>, Edge<qparent, qchild> and Edge<qparent, qancestor> from T
4 qparent ← qancestor
5 qancestor ← Position of Parent Node of qancestor in T
6 While Not qancestor = Null do
7 If Not isTrapped(qancestor, qchild, C) then
8 T← Delete Node<qparent> and Edge<qparent, qancestor> from T
9 qparent ← qancestor
10 qancestor ← Position of Parent Node of qancestor in T
11 Else
12 Break
13 T← Insert Edge<qparent, qchild> to T
14 Else
15 T← Insert Node<qchild> and Edge<qchild, qparent> to T
End triangularRewiring Procedure from Extend, Connect

4.2. Mathematical Modeling of the Proposed Triangular Inequality-Based RRT-Connect Algorithm

This section introduces the mathematical modeling of the proposed triangular inequality-
based RRT-Connect algorithm. The results show that the proposed algorithm is more
efficient in terms of path length than the RRT-Connect algorithm. For reference, this mathe-
matical modeling is based on a two-dimensional Euclidean space.

Equations (1) and (2) define the path length dn(qi) between an arbitrary node qi and
its parent node in the RRT algorithm

D(qi, ξ(qi)) =

√
(ξ(qi)·x− qi·x)2 + (ξ(qi)·y− qi·y)2, (1)

∴ dn(qi) = D
(

ξn(qi), ξn+1(qi)
)

(2)

Here, qi refers to the i-th inserted arbitrary node and takes the x and y coordinate
values of the node as an element. The ξ function receives an arbitrary node as a variable
and returns the parent node of this node. Equation (1) obtains the distance between an
arbitrary node qi and its parent node, which can be summarized as a function dn as in
Equation (2). Here, n is the distance between the ancestor node and its parent node,
based on an arbitrary node. That is, the ξ function to the power of n (n ≥ 0) can be

represented as ξn(qi) :=

n(︷ ︸︸ ︷
ξ ◦ ξ ◦ . . . ◦ ξ

)
(qi); when n is 0, ξ0(qi) := qi holds.

In addition, consider starting with an arbitrary node qi and going back to the parent
node to find the distance between the n-th ancestor node and the (n + 1)-th ancestor node;
this can be represented as D

(
ξn(qi), ξn+1(qi)

)
.

Equations (3) and (4) show the path length DR from the start position qstart to the goal
position qgoal by the RRT algorithm

ξδ+1
(

qgoal

)
= qstart, (3)

Sensors 2021, 21, 333 10 of 32

∴ DR =
δ

∑
n=0

dn

(
qgoal

)
(4)

Equation (3) shows when the (δ + 1)-th ancestor node from qgoal is qstart, where δ is

the upper limit of
δ

∑
n=0

dn

(
qgoal

)
for obtaining the path length DR in Equation (4). In other

words, Equation (4) is the sum of the distances from qgoal to the first ancestor node (parent
node) of qgoal and the distance from the first ancestor node (parent node) of qgoal to the
second ancestor of qgoal, . . . , and (δ − 1)-th ancestor node to the δ-th ancestor node (qstart).

Figure 5 shows an abstract process of the ‘Triangular-Rewiring’ method. As shown in
Figure 5a, if the parent node of qchild is qparent, the parent node of qparent is qancestor, and qancestor
is the second ancestor of qchild, this can be represented as Equation (5):

qancestor = ξ
(
qparent

)
= ξ2(qchild) (5)

Figure 5. Abstract process of the ‘Triangular-Rewiring’ method: (a) Example tree; (b) After rewiring between qchild and
qancestor; (c) At this time, α is the distance between qchild and qparent, β is the distance between qparent and qancestor, and γ is the
distance between qchild and qancestor.

If the distances between the edges connecting each node are the α between qchild
and qparent, the β between qparent and qancestor, and the γ between qchild and qancestor is as
shown in Figure 5c, this can be represented as Equation (6) using the principle of the
triangular inequality

α + β ≥ γ (6)

Equations (7) and (8) show the distance relationship between the ancestor nodes
of qchild

(qchild, ξ(qchild)) = α, D
(

ξ(qchild), ξ2(qchild)
)
= β, D

(
qchild, ξ2(qchild)

)
= γ, (7)

∴ D(qchild, ξ(qchild)) + D
(

ξ(qchild), ξ2(qchild)
)
≥ D

(
qchild, ξ2(qchild)

)
(8)

Equation (7) can be summarized as Equation (8) by substituting Equation (5), which rep-
resents the relationship between the n-th ancestor nodes of qchild, with the distance as Equa-
tion (1) in Equation (6), which represents the distance between each node as a triangular
inequality.

Equations (9)–(15) show that the path of the RRT algorithm applying the ‘Triangular-
Rewiring’ method is always shorter or equal to that planned by the original RRT algorithm.
Equation (9) shows the sequence index kj to compare the distance u when applying the
‘Triangular-Rewiring’ method with distance d when this method is not applied

k j = τj + k′ j, k′ j =
{

0, j = 0
k j−1 + 1, j ≥ 1

(9)

Here, j is a sequence index for u. That is, kj can be considered a sequence index for d.
Currently, τj is the number of times that rewiring occurs in the j-th.

If this is summarized by Equation (1) for a distance based on an arbitrary node qi, it is
as Equation (10). For example, as shown in Figure 5, if j is 0 and 1 a rewire occurs (τ0 = 1),

Sensors 2021, 21, 333 11 of 32

it can be represented in combination with the distance relationship of Equation (8) for qchild,
as in Equation (11)

ukj(qi) = D
(

ξk′ j(qi), ξkj+1(qi)
)

, (10)

d0(qchild) + d1(qchild) =
1

∑
n=0

dn(qchild) ≥ uk0=1(qchild) (11)

The result of Equation (11) can be generalized as shown in Equation (12)

∴
kj

∑
n=0

dn(qi) ≥ ukj(qi) (12)

For d based on an arbitrary node qi, the path length
kj

∑
n=j

dn from the j-th to kj-th

arbitrary sequence index is always longer or equal to the distance ukj
of the kj-th sequence

index. That is, in an arbitrary path, it can be confirmed that the distance u rewired by the
‘Triangular-Rewiring’ method is at least equal (if the distances of d and u are the same, the
rewired line segments are on a straight line) or always shorter than d when not rewired.

Figure 6 shows the ‘Triangular-Rewiring’ process for the path from qstart to qgoal based
on Equations (5)–(12) (at this time, it is assumed that the node of the path shown in the
figure is not positioned in a straight line). As shown in Figure 6b, a total of two rewires
occurred (τ0 = 2) between q0 and q3 (ξ3(q0)), and a total of one rewire occurred (τ3 = 1)
between q5 (ξ5(q0)) and q7 (ξ7(q0)). In that case, as shown in Figure 6e, k0 is 2, k1 is 3, k2 is
4, and k3 is 6 according to Equation (9).

Figure 6. Detailed process of the ‘Triangular-Rewiring’ method: (a) Each node q for index i (at this time, qstart is same as
q7 and qgoal is same as q0); (b) Represent each node using the n-th ancestor ξn of q0; (c) Each distance dn between the n-th
and (n + 1)-th ancestor nodes of q0; (d) When the ‘Triangular-Rewiring’ method is applied and rewired by distance uk j

;
(e) Represent as the value of kj; (f) Represent each node by the n-th ancestor ξn of q0 after method is applied.

Comparing Figure 6c,e, according to Equation (7), the rewired distance u2(q0) is

shorter than the path length
2
∑

n=0
dn(q0) from d0 to d2 and the rewired distance u6(q0) is

Sensors 2021, 21, 333 12 of 32

shorter than the path length
6
∑

n=5
dn(q0) from d5 to d6. That is, when comparing before

applying the ‘Triangular-Rewiring’ method in Figure 6a and after applied this method in
Figure 6f, the path afterward looks shorter.

Equations (13) and (14) show the path length DR when the ‘Triangular-Rewiring’
method is not applied and the path length UR when the method has been applied for an
arbitrary path (start position: qstart, goal position: qgoal), as shown in Figure 6

kϕ = δ, (13)

DR =
δ

∑
n=0

dn

(
qgoal

)
=

ϕ

∑
j=0

kj

∑
n=k′ j

dn

(
qgoal

)
, UR =

ϕ

∑
j=0

ukj

(
qgoal

)
(14)

Equation (13) shows the upper limit when the index n of d is δ in Equation (3); when
this is substituted into the sequence index kj, if kj is δ, j becomes ϕ. In that case, as in

Equation (14), DR is used to compare the
δ

∑
n=0

dn

(
qgoal

)
shown in Equation (4) with UR,

reflecting the sequence kj. It can be represented as
ϕ

∑
j=0

kj

∑
n=k′ j

dn

(
qgoal

)
, and UR can be

represented as
ϕ

∑
j=0

ukj

(
qgoal

)
.

Equation (15) shows when the equation summarized in Equation (14) is substituted
into Equation (12)

∴ DR ≥ UR (15)

Finally, as can be confirmed using Equation (15), UR as a result of applying the
‘Triangular-Rewiring’ method to the distance of an arbitrary path (start position: qstart,
goal position: qgoal) is at least equal (If the distances of D and U are the same, when the
rewired line segments are on a straight line) to or always shorter than DR; as a result,
this method is not applied.

Equations (16)–(18) show the path length DA of the path from the start position
(root node) of Ta to the last (inserted node) position qnewA and the path length UA when the
‘Triangular-Rewiring’ method has been applied to the path. In addition, it shows that UA is
at least equal to or always shorter than DA:

ξδA+1(qnewA) = qstart, kϕA = δA, (16)

DA =
ϕA

∑
j=0

kj

∑
n=k′ j

dn(qnewA), UA =
ϕA

∑
j=0

ukj(qnewA), (17)

∴ DA ≥ UA (18)

Equations (19)–(21) show the path length DB of the path from the start position (root
node) of Tb to the last (inserted node) position qnewB and the path length UB when the
‘Triangular-Rewiring’ method has been applied to the path. In addition, it shows that UB is
at least equal to or always shorter than DB:

ξδB+1(qnewB) = qgoal , kϕB = δB, (19)

DB =
ϕB

∑
j=0

kj

∑
n=k′ j

dn(qnewB), UB =
ϕB

∑
j=0

ukj(qnewB), (20)

∴ DB ≥ UB (21)

Sensors 2021, 21, 333 13 of 32

Therefore, Equations (16) and (19) can be derived from Equations (3) and (13), Equa-
tions (17) and (20) from Equation (14), and Equations (18) and (21) from Equation (15).

As a result, Equations (22) and (23) show that RRT-Connect with the proposed
‘Triangular-Rewiring’ method is at least the same or better in terms of path length than the
RRT-Connect algorithm without the method

DR = DA +DB + D(qnewA, qnewB), UR ≤ UA +UB + D(qnewA, qnewB), (22)

∴ DR ≥ DA +DB ≥ UA +UB ≥ UR (23)

DR (Equation (4)), which refers to the path length of the RRT-Connect algorithm path
without the ‘Triangular-Rewiring’ method, is represented by the sum of the distance DA of
the partial path Pa (Equation (17)), the distance DB of the partial path Pb (Equation (20)),
and the distance D(qnewA, qnewB) between qnewA and qnewB as shown in Equation (22).

UR (Equation (14)), which refers to the path length of the RRT-Connect algorithm
path with the ‘Triangular-Rewiring’ method, is equal to or shorter than the sum of the
distance UA of the partial path Pa for the RRT-Connect (Equation (17)), the distance UB
of the partial path Pb (Equation (20)), and the distance D(qnewA, qnewB) between qnewA and
qnewB as shown in Equation (22).

Here, Equation (23) shows that UR is at least equal to or shorter than DR in the RRT
algorithm summarized in Equation (15), and it is used efficiently in the RRT-Connect algo-
rithm.

4.3. Pseudocode of Proposed Extend Method for the Improved RRT-Connect Algorithm

This section introduces the ‘Extend’ method in the proposed triangular inequality-
based RRT-Connect algorithm. This proposed ‘Extend’ method (A5) replaces the ‘Extend’
method (A3) in the pseudocode of the RRT-Connect algorithm (A2).

Algorithm 5 is the application of the ‘Triangular-Rewiring’ method (A4) to the original
‘Extend’ method (A2) of the RRT-Connect algorithm. Compared to the original ‘Extend’
method, the part where a node is newly inserted in the tree in lines 9 and 16 is inserted
through the ‘Triangular-Rewiring’ method. Other than that, the contents are the same as
the original ‘Extend’ method.

Figure 7 shows the application of the ‘Triangular-Rewiring’ method to Figure 3,
which shows the ‘Extend’ method of the RRT-Connect algorithm. In Ta, qnewA and qstart are
rewired and qnear and qgoal, and qnewB and qgoal are rewired sequentially in the process of
extending from Tb to Ta.

4.4. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm

This section introduces the ‘Connect’ method in the proposed triangular inequality-
based RRT-Connect algorithm. This proposed ‘Connect’ method (A6) replaces the ‘Connect’
method (A4) in the pseudocode of the RRT-Connect algorithm (A2).

Algorithm 6 is an application of the ‘Triangular-Rewiring’ method (A4) to the ‘Con-
nect’ method (A3) of the RRT-Connect algorithm. Compared to the original ‘Connect’
method, it has been changed to apply the method to the merged tree by considering the
‘Triangular-Rewiring’ method when merging the path, which is in lines 5–10. Other than
that, the contents are the same as the original ‘Connect’ method.

When paths Pa and Pb merge in a tree structure of line 5, nodes on the path are inserted
in the order of Pa, Pconnect, and Pb in the merged tree Tmerged. That is, in Tmerged, the root
node becomes qstart, and when the n-th inserted node at a certain point is qnewA, which is
the last inserted node of Ta, the (n + 1)-th inserted node becomes qnewB, which is the last
inserted node of Tb. In addition, the last inserted node of Tmerged becomes qgoal.

Sensors 2021, 21, 333 14 of 32

Algorithm 5 Pseudocode of the Proposed ‘Extend’ Method for the RRT-Connect Algorithm

Input:
Ta ← Tree Ta from RRT-Connect
Tb ← Tree Tb from RRT-Connect
qnewB ← Position qnewB from RRT-Connect
qrand ← Position qrand from RRT-Connect
λ← Step Length λ from RRT-Connect
C← Position Set C from RRT-Connect
Output:
ftrap ← Result of Boolean ftrap
Ta ← Result of Tree Ta //Return by Reference
Tb ← Result of Tree Tb //Return by Reference
qnewB ← Result of Position qnewB //Return by Reference
Initialize:
ftrap ← False
Begin Extend Procedure from RRT-Connect
1 qnear ← Find Position of Nearest Node in Ta from qrand
2 If Not isInside(qnear, qrand, λ) then

3
qnewA ← Position of Intersection Point between Line Segment connecting qrand and qnear,

and Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
4 Else
5 qnewA ← qrand
6 If isTrapped(qnewA, qnear, C) then
7 ftrap ← True
8 Else
9 Ta ← triangularRewiring(qnewA, qnear, Ta, C)
10 qnear ← Find Position of Nearest Node in Tb from qnewA
11 If isInside(qnear, qnewA, λ) then
12 qnewB ← qnear
13 Else

14
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and qnear,

and Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
15 While Not isTrapped(qnewB, qnear, C) do
16 Tb ← triangularRewiring(qnewB, qnear, Tb, C)
17 If Not isInside(qnewA, qnewB, λ) then
18 qnear ← qnewB

19
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and

qnear, and Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
20 Else
21 Break
End Extend Procedure from RRT-Connect

Figure 7. Proposed ‘Extend’ method for the RRT-Connect algorithm.

Sensors 2021, 21, 333 15 of 32

Algorithm 6 Pseudocode of the Proposed ‘Connect’ Method for the RRT-Connect Algorithm

Input:
Preach ← Path Preach from RRT-Connect
Ta ← Tree Ta from RRT-Connect
Tb ← Tree Tb from RRT-Connect
qnewB ← Position qnewB from RRT-Connect
λ← Step Length λ from RRT-Connect
Output:
freach ← Result of Boolean freach
Preach ← Result of Path Pmerged //Return by Reference
Initialize:
freach ← False
Begin Connect Procedure from RRT-Connect
1 If isInside(qnewA, qnewB, λ) then
2 Pa ← Path from Root Node [qstart] to Last Inserted Node [qnewA] in Ta
3 Pb ← Path from qnewB to Root Node [qgoal] in Tb
4 Pconnect ← Path from Last Inserted Node [qnewA] in Ta to qnewB in Tb

5
Tmerged ← Tree Structure with Merge Path Pa to Pb via Pconnect

//1st Insert: qstart, . . . , n-th Insert: qnewA, (n + 1)-th Insert: qnewB, . . . , Last Insert: qgoal to
Tmerged

6 For i← Inserted Index of qnewA in Tmerged to (Number of Node in Tmerged) – 1 do
7 qnew ← (i – 1)-th Inserted Node in Tmerged
8 qnear ← i-th Inserted Node in Tmerged
9 Tmerged ← triangularRewiring(qnew, qnear, Tmerged, C)
10 Pmerged ← Path from Root Node [qstart] to Last Inserted Node [qgoal] in Tmerged
11 freach ← True
End Connect Procedure from RRT-Connect

Then, the ‘Triangular-Rewiring’ method is applied to this Tmerged. Since it is applied
to the tree itself, it determines whether rewiring is possible for all nodes inserted in the
tree, and rewires and updates the tree if possible. However, since each node from Ta to Tb
is inserted into Tmerged, it is not necessary to rewire Ta for which the ‘Triangular-Rewiring’
process has already been performed. Therefore, the ‘Triangular-Rewiring’ process proceeds
in the direction of Tb from the qnewA sequence inserted in Tmerged. Here, if qnewA is the i-th
inserted node, the first node pair to be determined is the (i − 1)-th node qnew (as qchild) and
i-th node qnear (as qparent). When all nodes inserted in Tmerged have been determined, the tree
structure Tmerged is converted into the path Pmerged and the method terminates (True).

Figure 8 shows the ‘Triangular-Rewiring’ method applied to Figure 4, which shows the
‘Connect’ method of the RRT-Connect algorithm. When the paths Pa and Pb created from
the trees Ta and Tb are merged and the ‘Triangular-Rewiring’ method has been applied
(assuming there is no obstacle between qstart and qgoal), the result is Pmerged in which qstart
and qgoal are connected with a straight line.

Figure 8. Proposed ‘Connect’ method for the RRT-Connect algorithm.

Sensors 2021, 21, 333 16 of 32

4.5. Process of the Proposed Triangular Inequality-Based RRT-Connect Algorithm

Figure 9 in this section shows the path-planning process of the proposed algorithm by
applying the ‘Triangular-Rewiring’ method to the ‘Extend’ and ‘Connect’ methods of the
RRT-Connect algorithm.

Figure 9. Detailed process of the proposed algorithm: (a) Start position qstart from tree Ta and goal position qgoal from tree
Tb; (b) Create qnewA nearest to Ta from 1st random sampling position qrand and create qnewB from qgoal nearest to Tb; (c) Create
new qnewA from qnear nearest to Tb from the second random sampling position qrand and rewire between qnewA and qgoal

the ancestor of the qnewA; (d) Create a new qnewA from qnear nearest to Ta from the third random sampling position qrand

and rewire between qnewA and qstart with the ancestor of qnewA; (e) Create new qnewA from qnear nearest to Ta from the fifth
random sampling position qrand and connect between qnewA and qnewB nearest to Tb from qnewA; (f) Result of Path R from
qstart to qgoal.

Sensors 2021, 21, 333 17 of 32

Figure 9 shows planning a path from the start position qstart to the goal position qgoal
through the proposed algorithm, as shown in Figure 9a.

In Figure 9b, the first random sample is generated at position qrand and qnewA is
created at a position separated by the length of λ from qstart in the direction of the position,
and qnewA is extended once by the length of λ in the direction of qnewA from qgoal. At this
time, since there is no intermediate node between qnewA and qstart, the ‘Triangular-Rewiring’
process is skipped.

In Figure 9c, a second random sample is generated at the qrand position, and in the
direction of the position, qnewA is updated at a location separated by λ length from the
nearest node qnear in the tree and rewired between qnewA and qgoal. In this case, since the tree
on the opposite side collides with an obstacle to extend in the qnewA direction, the ‘Extend’
process is skipped. In addition, it is assumed that Swap occurs between Ta with initial qstart
as the root node and Tb with initial qgoal as the root node between each figure.

In Figure 9d, as shown in Figure 9c, a third random sample is created at the qrand
position and at a position separated by the length of λ in the position direction, at the node
qnear that is nearest among nodes in the tree in the position direction, It shows updating
qnewA to a position that is the length of λ and rewires it between qnewA and qstart. Here,
since it also collides with an obstacle to extend in the direction of qnewA from the tree on the
opposite side, the ‘Extend’ process is skipped.

In Figure 9e, the fifth random sample is generated at the qrand position and qnewA is
located at a position separated by the length of λ in the direction of the position, and qnewA
is also at a position separated by the length of λ from the nearest node qnear among nodes
in the tree toward the position. It is shown when updating that qnewA merges into one tree
through the ‘Connect’ process because qnewA is within range of the center of qnewB and the
radius of λ. It is assumed that the fourth random sample between Figure 9d,e is generated
inside the obstacle, so the qnewA generation process is skipped. Figure 9f shows the result
of path R created as a merged tree by ‘Connect’ as shown in Figure 9e.

5. Experimental Results

To verify the performance of the proposed triangular inequality-based RRT-Connect
algorithm in this paper, the RRT algorithm, the RRT-Connect algorithm, and the pro-
posed algorithm are compared in various environment maps shown in the experimental
environment through the simulator.

Each algorithm was implemented based on the pseudocode (A1–9) shown
Sections 3 and 4 (For the RRT algorithm, refer to the pseudocode (AA1) in Appendix A),
and the performance measures used for comparison of various algorithms are Number of
samples (samples), Path length (pixels), and Planning time (milliseconds). Each perfor-
mance measure is experimented with 50 trials from the same start point to the same goal
point until the first path has been found). Among the performance measures, as the number
of samples decreases, the cost of recalculation in a dynamic environment also decreases,
and the path length is a measure of the optimality of the path-planning algorithm. In
addition, the Step length (λ) is 30 pixels.

5.1. Experimental Environment

This section introduces the environment map used in the simulation and the simulator
used in the simulation with the computer’s performance.

Figure 10 shows the eight environmental maps used in this experiment. The green
circle (S) indicates the start point, the purple circle (G) indicates the goal point, and the black
polygon on the yellow (blue in the analysis of the experimental results) border indicates to
the obstacle. All maps are 600 (horizontal) * 600 (vertical) pixels.

Sensors 2021, 21, 333 18 of 32

Figure 10. Maps for the experiment: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4; (e) Map 5; (f) Map 6; (g) Map 7; (h) Map 8.

Many environmental maps were considered and used to verify the performance of
various path-planning algorithms including the RRT algorithm, [23–26]. Which environ-
ment map to use is important because the expected performance measure varies depending
on the obstacles’ placement and shape among other properties.

In this paper, to check the proposed algorithm’s performance, the eight maps shown in
Figure 10 were benchmarked in the experimental environment of the paper [27] proposed
by Jihee Han in 2017, and each map is expected to have the following features:

Map 1 in Figure 10a seems to be an environment in which it is easy to verify the com-
pleteness of the path-planning algorithm. Map 2 in Figure 10b seems to be an environment
in which it is also easy to verify the completeness of the path-planning algorithm, and the
environment is mainly used to show the solution for the Local Minima problem [28] in the
artificial potential field algorithm [26]. Map 3 in Figure 10c seems to be an environment in
which it is easy to verify the optimality and completeness of the path-planning algorithm
and is an environment that is unfavorable to random sampling path-planning algorithms
such as the RRT algorithm. Map 4 in Figure 10d seems to be an environment in which
it is easy to verify the optimality and the planning time for the path-planning algorithm,
and the cell decomposition algorithm, which increases the computation cost as the angle of
obstacle increases, is an unfavorable environment [29]. Map 5 in Figure 10e seems to be
an environment in which it is also easy to verify the optimality and planning time of the
path-planning algorithm; for the same reason as Map 4, the cell decomposition algorithm
is an unfavorable environment. Map 6 in Figure 10f seems to be an environment in which
it is easy to verify the optimality, completeness, and planning time of the path-planning al-
gorithm, and it is an environment for comprehensively evaluating the performance. Map 7
in Figure 10g seems to be an environment in which it is easy to verify the completeness
and optimality of the path-planning algorithm, and for the same reason as Map 2, it is the
environment used in the Artificial Potential Field algorithm. Lastly, Map 8 in Figure 10h
seems to be an environment in which it is easy to verify the completeness and planning time
of the path-planning algorithm and yet is unfavorable to random sampling path-planning
algorithms such as the RRT algorithm.

Sensors 2021, 21, 333 19 of 32

Since random sampling path-planning algorithms such as the RRT algorithm rely on
probabilistic completeness, the number of samples and the planning time are significantly
increased as long as there are narrow or fewer entrances for directions to the goal.

Table 1 shows the specifications of the computer used in the simulation. The simulator
was developed in C# language (Microsoft Visual Studio Community 2019 version 16.1.6;
Microsoft. NET Framework version 4.8.03752), and except for the visual part, only a single
thread was used for the calculation. Differences in planning time may occur depending on
the computer’s performance capability.

Table 1. Computer performance for simulation.

H/W Specification

CPU Intel Core i7-6700k 4.00 GHz (8 CPUs)
RAM 32,768 MB (32 GB DDR4)
VGA Nvidia GeForce GTX 1080 (VRAM 8 GB) SLI (x2)

5.2. Experimental Results and Analysis for Each Map

This section checks the experimental results (on average, the number of samples, path
length, and planning time) of each algorithm: RRT, RRT-Connect, the proposed algorithm
in the eight environment maps (Figure 10) presented in the experimental environment.
Each map shows a figure of the path-planning result (of one trial) for each algorithm
(Figures 11–18) and the experimental results for the performance measure are shown
numerically in a table (Tables 2–9). The figure for each algorithm is for one trial rather
than the average of repeated trials and it may differ from the performance measure both
visually and by the average numerical performance measure of the repeated trials shown
in the table. In particular, the number of samples differs greatly.

The values shown in Tables 2–9 can be expressed as Equations (24) and (25) as

Acmp(i) =
T

∑
k=0

acmpk (i)/T (24)

Here, Acmp(i) refers to the performance value of each algorithm shown in Tables 2–9,
cmp is the algorithm to be compared, i is the index of the environment map (X-axis in
Figures 19, 20 and 21b, k is the repeat index, and T is the number of repeats (acmpk(i) is the
value of the performance measure a for the k-th implementation of the cmp algorithm in
Map i). Fifty repetitions are performed for the experiment in this paper. That is, Equation A
shows the average value of the performance when it is repeated T times to check the
performance of a certain algorithm in Map i,

∴ xcmp(i) = Acmp(i)/ARRT(i) (25)

Here, xcmp(i) refers to the Y-axis in Figures 19, 20 and 21a and A is the value of the
corresponding performance measure of the algorithm to be compared (ARRT is the value
of the RRT algorithm).

In each path-planning result figure, the white circles indicate nodes on the path and
the yellow line segments indicate edges between nodes. The gray circles and segments are
paths (trees) that have been excluded during path planning. In each path-planning result
table, based on 100% of the RRT algorithm for each performance measure, the difference is
indicated along with the value of the corresponding performance measure unit.

Figure 11 shows the path-planning results of Map 1 among the environmental maps
for each algorithm. Visually, the number of samples looks similar to the RRT-Connect
algorithm in Figure 11b and the proposed algorithm in Figure 11c is comparable to the RRT
algorithm in Figure 11a, and the path length looks similar for all three algorithms.

Sensors 2021, 21, 333 20 of 32

Figure 11. Experimental result of Map 1: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 2 shows the path-planning results (after repeating the trial 50 times) in Map 1 for
each algorithm. The average number of samples is the smallest in RRT-Connect algorithm
at 60%, and the proposed algorithm is 68% compared to the RRT algorithm, which is 8%
less efficient than the RRT algorithm compared to the RRT-Connect algorithm. The average
path length is shortest for the proposed algorithm at 89% compared to the RRT algorithm,
with little difference in the RRT-Connect algorithm at 100%, and 11% less efficient than
the proposed algorithm. The average planning time is the shortest for the RRT-Connect
algorithm at 58% compared to the RRT algorithm, and the proposed algorithm is 83%
compared to the RRT algorithm, i.e., 15% less efficient than the RRT algorithm.

Table 2. Experimental result of Map 1 (the parentheses to the right of each value are relative ratios
based on RRT 100% (xcmp(1))).

Performance (Acmp(1)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 1216 (100) 729 (60) 823 (68)
Avg. path length (px) 1341 (100) 1343 (100) 1200 (89)

Avg. planning time (ms) 12 (100) 7 (58) 10 (83)

Figure 12 shows the path-planning results of Map 2 among the environmental maps
for each algorithm. Visually, the number of samples looks similar for the RRT-Connect
algorithm in Figure 12b and the proposed algorithm in Figure 12c compared to the RRT
algorithm in Figure 12a, and the path length looks shortest for the proposed algorithm.

Figure 12. Experimental results of Map 2: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Sensors 2021, 21, 333 21 of 32

Table 3 shows the path-planning result (after repeating the trials 50 times) in Map 2 for
each algorithm. The average number of samples is smallest in the RRT-Connect algorithm
at 37%, and the proposed algorithm is 42% compared to the RRT algorithm, which is 5% less
efficient than RRT algorithm compared to the RRT-Connect algorithm. The average path
length of the proposed algorithm is the shortest at 81% compared to the RRT algorithm,
while the RRT-Connect algorithm is 98%, which is 17% less efficient than the RRT algo-
rithm compared to the proposed algorithm. The average planning time for the proposed
algorithm and the RRT-Connect shows the same performance as the RRT algorithm.

Table 3. Experimental result of Map 2 (the parentheses to the right of each value are the relative
ratios based on RRT 100% (xcmp(2))).

Performance (Acmp(2)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 271 (100) 101 (37) 113 (42)
Avg. path length (px) 598 (100) 613 (98) 484 (81)

Avg. planning time (ms) 6 (100) 3 (50) 3 (50)

Figure 13 shows the path planning results of Map 3 among the environmental maps
for each algorithm. Visually, the number of samples looks similar for the RRT-Connect
algorithm in Figure 13b and the proposed algorithm in Figure 13c compared to the RRT
algorithm in Figure 13a, and the path length looks shortest for the proposed algorithm.

Figure 13. Experimental result of Map 3: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 4 shows the result (after repeating the trial 50 times) of path planning in Map 3 for
each algorithm. The average number of samples is smallest in the RRT-Connect algorithm
at 75%, and the proposed algorithm is 77% compared to the RRT algorithm, which is
2% less efficient than the RRT algorithm compared to the RRT-Connect algorithm. The
average path length of the proposed algorithm is the shortest at 77% compared to the RRT
algorithm and the RRT-Connect algorithm is 97%, which is 20% less efficient than the RRT
algorithm compared to the proposed algorithm. The average planning time is smallest
for the RRT-Connect algorithm at 35%, and the proposed algorithm is 36% compared to
the RRT algorithm, which is 1% less efficient than the RRT algorithm compared to the
RRT-Connect algorithm.

Sensors 2021, 21, 333 22 of 32

Table 4. Experimental result of Map 3 (the parentheses to the right of each value are the relative
ratios based on RRT 100% (xcmp(3))).

Performance (Acmp(3)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 6106 (100) 4574 (75) 4679 (77)
Avg. path length (px) 1934 (100) 1871 (97) 1489 (77)

Avg. planning time (ms) 866 (100) 299 (35) 313 (36)

Figure 14 shows the path planning results of Map 4 among the environmental maps
for each algorithm. Visually, the number of samples looks smallest for the RRT-Connect
algorithm in Figure 14b compared to the others and the path length looks shortest for the
proposed algorithm in Figure 14c.

Figure 14. Experimental result of Map 4: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 5 shows the result (after repeating the trial 50 times) of path planning in Map 4 for
each algorithm. The average number of samples is smallest in the RRT-Connect algorithm
at 10%, and the proposed algorithm is 11% compared to the RRT algorithm, which is 1%
less efficient than the RRT algorithm compared to the RRT-Connect algorithm. The average
path length of the proposed algorithm is the shortest at 75% compared to the RRT algorithm
and the RRT-Connect algorithm is 83%, which is 8% less efficient than the RRT algorithm
compared to the proposed algorithm. The average planning time is not different by 100%
compared to the RRT algorithm, and the proposed algorithm is 133% compared to the RRT
algorithm, i.e., 33% less efficient than the others.

Table 5. Experimental result of Map 4 (The parentheses to the right of each value are relative ratios
based on RRT 100% (xcmp(4))).

Performance (Acmp(4)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 290 (100) 28 (10) 32 (11)
Avg. path length (px) 711 (100) 588 (83) 534 (75)

Avg. planning time (ms) 3 (100) 3 (100) 4 (133)

Figure 15 shows the path planning results of Map 5 among the environmental maps
for each algorithm. Visually, the number of samples looks similar for the RRT-Connect
algorithm in Figure 15b and the proposed algorithm in Figure 15c compared to the RRT
algorithm in Figure 15a, and the path length looks similar for the RRT-Connect algorithm
and the proposed algorithm.

Sensors 2021, 21, 333 23 of 32

Figure 15. Experimental result of Map 5: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 6 shows the results (after repeating the trial 50 times) of path planning in Map 5
for each algorithm. The average number of samples is smallest in RRT-Connect algorithm at
18%, and the proposed algorithm is 20% compared to the RRT algorithm, which is 9% less
efficient than the RRT algorithm compared to the RRT-Connect algorithm. The average path
length of the proposed algorithm is the shortest at 84% compared to the RRT algorithm and
the RRT-Connect algorithm is 106%, which is 22% less efficient compared to the proposed
algorithm. The average planning time for the proposed algorithm and the RRT-Connect
algorithm is 15% over the RRT algorithm, showing the same performance.

Table 6. Experimental result of Map 5 (the parentheses to the right of each value are the relative
ratios based on RRT 100% (xcmp(5))).

Performance (Acmp(5)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 371 (100) 68 (18) 74 (20)
Avg. path length (px) 554 (100) 588 (106) 465 (84)

Avg. planning time (ms) 13 (100) 2 (15) 2 (15)

Figure 16 shows the path-planning results of Map 6 among the environmental maps
for each algorithm. Visually, the number of samples looks smallest for the proposed
algorithm in Figure 16c compared to others, and the path length looks shortest for the
proposed algorithm.

Figure 16. Experimental result of Map 6: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 7 shows the result (after repeating the trial 50 times) of path planning in Map 6
for each algorithm. The average number of samples is smallest in the proposed algorithm

Sensors 2021, 21, 333 24 of 32

at 26% and the RRT-Connect algorithm is 34% compared to the RRT algorithm, which is 8%
less efficient than RRT algorithm compared to the proposed algorithm. The average path
length of the proposed algorithm is the shortest at 75% compared to the RRT algorithm,
and the RRT-Connect algorithm is 88%, which is 13% less efficient than the proposed
algorithm. The average planning time is smallest in the proposed algorithm at 44%, and the
RRT-Connect is 67% compared to the RRT algorithm, which is 23% less efficient than the
RRT algorithm compared to the proposed algorithm.

Table 7. Experimental result of Map 6 (the parentheses to the right of each value are the relative
ratios based on RRT 100% (xcmp(6))).

Performance (Acmp(6)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 541 (100) 184 (34) 140 (26)
Avg. path length (px) 886 (100) 778 (88) 668 (75)

Avg. planning time (ms) 9 (100) 6 (67) 4 (44)

Figure 17 shows the path planning results of Map 7 among the environmental maps
for each algorithm. Visually, the number of samples looks smallest for the proposed
algorithm in Figure 17c compared to others, and the path length looks shortest for the
proposed algorithm.

Figure 17. Experimental result of Map 7: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 8 shows the result (after repeating the trial 50 times) of path planning in Map 7
for each algorithm. The average number of samples is smallest in RRT-Connect algorithm at
54%, and the proposed algorithm is 56% compared to the RRT algorithm, which is 2% less
efficient than RRT algorithm compared to the RRT-Connect algorithm. The average path
length of the proposed algorithm is shortest at 75% compared to the RRT algorithm and
the RRT-Connect algorithm is 96%, which is 21% less efficient compared to the proposed
algorithm. The average planning time is smallest in the proposed algorithm at 60%,
and RRT-Connect is 80% compared to the RRT algorithm, which makes it 20% less efficient
than the RRT algorithm compared to the proposed algorithm.

Table 8. Experimental result of Map 7 (the parentheses to the right of each value are relative ratios
based on RRT 100% (xcmp(7))).

Performance (Acmp(7)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 436 (100) 235 (54) 244 (56)
Avg. path length (px) 898 (100) 862 (96) 674 (75)

Avg. planning time (ms) 5 (100) 4 (80) 3 (60)

Sensors 2021, 21, 333 25 of 32

Figure 18 shows the path planning results of Map 8 among the environmental maps
for each algorithm. Visually, the number of samples looks similar for the RRT-Connect
algorithm in Figure 18b and the proposed algorithm in Figure 18c compared to the RRT
algorithm in Figure 18a, and the path length looks shortest for the proposed algorithm.

Figure 18. Experimental result of Map 8: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Table 9 shows the result (after repeating the trial 50 times) of path planning in Map 8
for each algorithm. The average number of samples is smallest in the proposed algorithm
at 17%, and the RRT-Connect algorithm is 18% compared to the RRT algorithm, which is
1% less efficient than RRT algorithm compared to the proposed algorithm. The average
path length of the proposed algorithm is the shortest at 84% compared to the RRT algo-
rithm, and the RRT-Connect algorithm is 98%, which is 14% less efficient compared to
the proposed algorithm. The average planning time of the proposed algorithm and the
RRT-Connect algorithm is 3% over the RRT algorithm, showing the same performance.

Table 9. Experimental result of Map 8 (The parentheses to the right of each value are the relative
ratios based on RRT 100% (xcmp(8))).

Performance (Acmp(8)) RRT RRT-Connect Proposed
Algorithm

Avg. num. of samples (samples) 17,033 (100) 3031 (18) 2954 (17)
Avg. path length (px) 1611 (100) 1576 (98) 1358 (84)

Avg. planning time (ms) 4501 (100) 119 (3) 125 (3)

5.3. Experimental Results and Analysis in Total

This section comprehensively presents the experimental results (on average, number of
samples, path length, and planning time) for each algorithm: RRT, RRT-Connect, and the
proposed triangular inequality-based RRT-Connect algorithm, in the eight environmental
maps (Figure 10) shown in Section 5.2.

Figures 19a–21a show the performances of the RRT-Connect algorithm and the pro-
posed algorithm when the RRT algorithm’s performance is set to 100% for each environment
map. The (b) of each figure shows the performance average of all environment maps for
each algorithm. The values shown in (a) of Figures 19–21 can be expressed as in Equations
(24) and (25) and the values shown in (b) can be expressed as Equation (26)

Xcmp =
M

∑
i=0

x(i)cmp/M (26)

Here, Xcmp refers to the Y-axis in (b) of Figures 19–21 and M is the number of envi-
ronment maps used in the experiment. The experiment in this paper includes eight maps.
That is, Equation (26) shows the average value of I for all maps in Equation (25).

Sensors 2021, 21, 333 26 of 32

Figure 19 shows the average number of samples [%] compared with the RRT algorithm
for Maps 1–8 (after repeating the trial 50 times) and the average number of samples [%]
compared with the average result of each algorithm for each map (after repeating the trials
50 times) when the result of RRT algorithm is considered 100%.

Figure 19. Experimental results in total for the average number of samples (for first path finding): (a) result of each map
compared with the RRT algorithm (xcmp(i)); (b) average result compared with the RRT algorithm (Xcmp).

As shown in Figure 19b, the average number of samples for all environment maps was
38% less in the RRT-Connect algorithm and 40% less in the proposed algorithm compared
to the RRT algorithm. The proposed algorithm is 2% less efficient than the RRT-Connect
algorithm.

Table 10 is the data table of Figure 19a. The proposed algorithm shows better perfor-
mance than the RRT-Connect algorithm for Maps 6 and 8 and the RRT-Connect algorithm
shows better performance than the proposed algorithm in Maps 1–5 and 7. However,
the difference is not significant for most of the maps, such as showing a 2% difference from
the map average. There are cases in which the proposed algorithm is 1–8% better than the
RRT-Connect algorithm and there are cases in which the RRT-Connect algorithm is 1–8%
better than the proposed algorithm.

Table 10. Experimental results in total for the average number of samples (for first path finding) [%].

Algorithm
(cmp)

Performance Ratio Based on RRT (xcmp(i)) Avg.
(Xcmp)Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RRT 100 100 100 100 100 100 100 100 100
RRT-

Connect 60 37 75 10 18 34 54 18 38

Proposed 68 42 77 11 20 26 56 17 40

Figure 20 shows the average path length [%] compared to the RRT algorithm for
Maps 1–8 (after repeating the trials 50 times), and the average path length (%) compared
with the average result of each algorithm for each map (again after repeating the trials 50
times) where the result of the RRT algorithm was considered as 100%.

As shown in Figure 20b, the average path length for all environment maps was 96%
less in the RRT-Connect algorithm and 80% less in the proposed algorithm compared to
the RRT algorithm. The proposed algorithm is 16% more efficient than the RRT-Connect al-
gorithm.

Sensors 2021, 21, 333 27 of 32

Figure 20. Experimental results in total for the average path length: (a) result of each map compared with the RRT algorithm
(xcmp(i)); (b) average result compared with the RRT algorithm (Xcmp).

Table 11 is the data table of Figure 20a. The proposed algorithm shows better perfor-
mance than the RRT-Connect algorithm for all maps. The proposed algorithm is 8–21%
better than the RRT-Connect algorithm.

Table 11. Experimental results in total on the average path length (%).

Algorithm
(cmp)

Performance Ratio Based on RRT (xcmp(i)) Avg.
(Xcmp)Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RRT 100 100 100 100 100 100 100 100 100
RRT-

Connect 100 98 97 83 106 88 96 98 96

Proposed 89 81 77 75 84 75 75 84 80

Figure 21 shows the average planning time [%] compared to the RRT algorithm for
each map (after repeating the trials 50 times), and the average planning time (%) compared
with the average result of each algorithm for each map (after repeating the trials 50 times)
when the result of RRT algorithm is considered 100%.

Figure 21. Experimental results in total on the average planning time: (a) result of each map compared with the RRT
algorithm (xcmp(i)); (b) average result compared to the RRT algorithm (Xcmp).

As shown in Figure 21b, the average planning time for all environment maps was 51%
less in the RRT-Connect algorithm and 53% less in the proposed algorithm compared to

Sensors 2021, 21, 333 28 of 32

the RRT algorithm. The proposed algorithm was 2% less efficient than the RRT-Connect al-
gorithm.

Table 12 is the data table of Figure 21a. The proposed algorithm shows the same or
better performance for Maps 2 and 5–8 than the RRT-Connect algorithm. It shows worse
performance for Maps 1, 3, and 4 than the RRT-Connect algorithm. However, most of
the maps show no significant difference, such as showing a 2% difference from the map
average. There are cases in which the proposed algorithm is 20–23% better than the RRT-
Connect algorithm and there are cases where the RRT-Connect algorithm is 1–33% better
than the proposed algorithm.

Table 12. Experimental results in total for the average planning time (%).

Algorithm
(cmp)

Performance Ratio Based on RRT (xcmp(i)) Avg.
(Xcmp)Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RRT 100 100 100 100 100 100 100 100 100
RRT-

Connect 58 50 35 100 15 67 80 3 51

Proposed 83 50 36 133 15 44 60 3 53

6. Conclusions

In this paper, we proposed a triangular inequality-based RRT-Connect algorithm
using triangular inequality principles to overcome the limitations in the optimality of the
RRT-Connect algorithm. We verified the validity of the ‘Triangular-Rewiring’ method
based on the triangular inequality principle and applied it to the RRT-Connect algorithm
to bring it closer to the optimum. In addition, to check performance indicators such as
the number of samples for finding the first path, path length, and planning time of the
proposed algorithm, we compared between the RRT and RRT-Connect algorithms across
a total of eight environments through simulation. On average, the proposed algorithm
showed 20% better efficiency than the RRT algorithm and 16% better efficiency than the
RRT-Connect algorithm in path length and 47% better efficiency than the RRT algorithm
in planning time but 2% worse efficiency than the RRT-Connect algorithm. In conclusion,
the proposed algorithm showed shorter paths than the RRT-Connect algorithm with a
similar number of samples and planning time.

However, one of the limitations of the proposed algorithm is the Kinodynamic plan-
ning problem [17]. When the intermediate node disappears by ‘Triangular-Rewiring’
method, a non-differentiable piecewise linear section with sharp corner may occurs,
which cause a problem related with the kinematic constraint of the robot.

Author Contributions: Idea and conceptualization: J.-G.K., D.-W.L., and J.-W.J.; Methodology: J.-
G.K., D.-W.L., and J.-W.J.; Software: J.-G.K., D.-W.L., and J.-W.J.; Experiment: J.-G.K., D.-W.L., W.-J.J.,
and J.-W.J.; Validation: J.-G.K., D.-W.L., Y.-S.C., and J.-W.J.; Investigation: J.-G.K.; D.-W.L., Y.-S.C.,
W.-J.J., and J.-W.J.; Resources: J.-G.K. and J.-W.J.; Writing: J.-G.K., D.-W.L., Y.-S.C., W.-J.J., and J.-W.J.;
Visualization: J.-G.K. and J.-W.J.; Project administration: J.-W.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (no. 2020R1F1A1074974); the KIAT (Korea Institute for
Advancement of Technology) grant funded by the Korea Government (MOTIE: Ministry of Trade
Industry and Energy) (no. N0001884, HRD program for Embedded Software R&D); the AURI (Korea
Association of University, Research institute and Industry) grant funded by the Korea Government
(MSS: Ministry of SMEs and Startups) (no. S2938281, HRD program for Enterprise linkages R&D);
and the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research
Center) support program (IITP-2020-2020-0-01789) supervised by the IITP (Institute for Information
& Communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Sensors 2021, 21, 333 29 of 32

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Details of the RRT Algorithm

This section shows the pseudocode of the RRT algorithm used in the experiment of
this paper, designed based on the paper [13] in which the RRT algorithm was proposed.
The RRT algorithm can be represented by one main algorithm (Algorithm A1: AA1) and
two additional functions (Algorithm A2: AA2 and Algorithm A3: AA3).

Appendix A.1. Pseudocode of the RRT Algorithm

This section shows the pseudocode of main algorithm (AA1) of the RRT algorithm
used in the experiment of this paper, designed based on the paper [13] in which the RRT
algorithm was proposed.

Algorithm A1 Pseudocode of the RRT Algorithm

Input:
qstart ← Position of Start Point
qgoal ← Position of Goal Point
λ← Step Length
C← Position Set of All Boundary Points in All Obstacles
N← Number of Random Samples
Output:
R← Result of Path R
Initialize:
T← Null Tree
dshorter ← 0
Begin RRT Procedure
1 T← Insert Root Node<qstart> to T
2 While 1← n to N do
3 Generaten-th Random Sample
4 qrand ← Position of n-th Random Sample
5 qnear ← Find Position of Nearest Node in T from qrand
6 If Not isInside(qnear, qrand, λ) then

7
qnew ← Position of Intersection Point between Line Segment connecting qrand and qnear,

and Circle with Radius λ centered at qnear //2D: Circle, 3D: Sphere, . . .
8 Else
9 qnew ← qrand
10 If Not isTrapped(qnew, qnear, C) then
11 T← Insert Node<qnew> and Edge<qnew, qnear> to T
12 If isInside(qnew, qgoal, λ) then
13 T← Insert Node<qgoal> and Edge<qnew, qgoal> to T
14 Preach ← Path from Last Inserted Node [qgoal] to Root Node [qstart] in T
15 dreach ← Distance of Preach
16 If dshorter = 0 or dshorter > dreach then
17 R← Preach
18 dshorter ← dreach
19 T← Delete Node<qgoal> and Edge<qnew, qgoal> from T
End RRT Procedure

The root node of the initial tree T has qstart, and this qstart is the start point. From this
qstart to the goal position qgoal, random sample is generated N times, as required until
the tree is expanded. qrand is position of generated random sample, in which the node
nearest to the tree T is qnear. At this time, the position qnew created later varies depending
on whether qrand is located inside a circle (or n-sphere), with qnear as the center and step
length λ as the radius. The function that determines this is isInside (AA2), and if qrand is
located inside the circle (or n-sphere) (True), qnew becomes qrand, and if it is not located
inside (False), qnew becomes the intersection point between the line segment connecting

Sensors 2021, 21, 333 30 of 32

qrand and qnear and the circle with λ centered at qnear. If there is no obstacle between qnew and
qnear (False), qnew is inserted into the tree as a child node of qnear of T. Currently, the function
that determines whether an obstacle exists between qnew and qnear is isTrapped (AA3) (in the
isTrapped function, C refers to the set of obstacles).

If qgoal is inside the radius of the λ with the newly inserted qnew as the center, it is
considered to have reached the goal point (by isInside function). If it is reached (True),
qgoal is inserted as a child node of node qnew of T.

For the tree T thus completed, the distance dreach is calculated for the path Preach to
qstart and qgoal. Currently, if dreach is smaller than the path length dshorter or reached first
(dshorter = 0), the result path R becomes Preach, and dshorter becomes dreach. At the end of the
next N sampling, R becomes the final planned path.

If the number of random samples remains, the above process is repeated. At this
time, qgoal and the edge connected to this node must be deleted from the tree, T. Otherwise,
the tree structure will break due to cyclic. As a result, when a graph structure is formed,
the cost of path search increases rapidly.

Appendix A.2. Pseudocode of the Functions Used in the RRT Algorithm

This section introduces additional functions used in pseudocode of the RRT algorithm
(AA1) in Section A.1. The isTrapped (AA2) function determines whether an obstacle collides,
and the isInside function (AA3) determines if the point exists inside the radius.

Algorithm A2 Pseudocode of the isInside Function from the RRT Algorithm

Input:
qcenter ← Position {qnear/qnew} from RRT
qtarget ← Position {qrand/qgoal} from RRT
λ← Step Length λ from RRT
Output:
f ← Result of Boolean f
Initialize:
f ← False
Begin isInside Procedure from RRT
1 d← Distance of qcenter to qtarget
2 If λ ≥ d then
3 f ← True
End isInside Procedure from RRT

Algorithm A2 shows the isInside function among RRT pseudocodes shown in AA1.
In the RRT algorithm, it is determined whether qrand exists inside a circle (or n-sphere) with
qnear as the center and λ as the radius, or qgoal exists inside a circle (or n-sphere) with qnew
as the center and λ as the radius.

In the isInside function, the position to be determined (qrand, qgoal, ...) is called qtarget,
and the center of radius (qnear, qnew, ...) is called qcenter. When the distance between qcenter
and qtarget is d, if this d is less than or equal to λ, it is determined that qtarget is the inside
position (True).

Algorithm A3 shows the isTrapped function among RRT algorithm pseudocodes shown
in Algorithm A1. In the RRT algorithm, it is used to determine whether an obstacle exists
between the line segment connecting qnew and qnear.

If the line segment connecting qnew and qnear is lq, and the set of positions formed by
the n-th obstacle in the set of obstacles C is c, then lc is the i-th and (i + 1)-th positions
inserted in c (and the last and first position). It is determined whether it intersects with
lq for all line segments lc in the set of positions of all obstacles, c, that C has. Currently,
if any intersect occurs, AA3 returns True and stops the procedure immediately. Otherwise,
it determines all the line segments that can be lc and returns False.

Sensors 2021, 21, 333 31 of 32

Algorithm A3 Pseudocode of the isTrapped Function from the RRT Algorithm

Input:
qnew ← Position qnew from RRT
qnear ← Position qnear from RRT
C← Position Set of All Boundary Points in All Obstacles C from RRT
Output:
f ← Result of Boolean f
Initialize:
n← 1
f ← True
Begin isTrapped Procedure from RRT
1 lq ← Line Segment connecting qnew and qnear
2 c← Position Set of All Boundary Points of n-th Inserted Obstacle in C
3 lc ← Line Segment connecting Last Inserted Position and 1st Inserted Position in c
4 i← 1
5 While Not Intersect between lq and lc do
6 lc ← Line Segment connecting i-th Inserted Position and (i + 1)-th Inserted Position in c
7 i← i + 1
8 If i = (Number of Position in c) – 1 then
9 If Intersect between lq and lc then
10 Break
11 n← n + 1
12 If n > (Number of Position Set in C) then
13 f ← False
14 Break
15 Else
16 c← Position Set of All Boundary Points of n-th Inserted Obstacle in C
17 lc ← Line Segment connecting Last Inserted Position and 1st Inserted Position in c
18 i← 1
End isTrapped Procedure from RRT

Appendix A.3. Basic Mathematical Modeling of the RRT Algorithm

This chapter introduces basic mathematical modeling in the RRT algorithm. The fol-
lowing Equations (A1)–(A5), show that the coordinate value of qnew is calculated from the
coordinate value of qrand in the RRT algorithm

d =

√
(qrand·x− qnear·x)2 + (qrand·y− qnear·y)2, (A1)

|qrand·x− qnear·x| : |qnew·x− qnear·x| = d : λ, (A2)

|qrand·y− qnear·y| : |qnew·y− qnear·y| = d : λ (A3)

Equations (A2) and (A3) shows the relationship between d and λ in Equation (A1)
through the similarity ratios from qnear to qrand and from qnear to qnew

∴ qnew·x =

{
qrand·x, d ≤ λ

|(λ|qrand·x− qnear·x|/d) + qnear·x|, d > λ
, (A4)

∴ qnew·y =

{
qrand·y, d ≤ λ

|(λ|qrand·y− qnear·y|/d) + qnear·y|, d > λ
(A5)

Through these equations, the x and y coordinate values of qnew can be derived as
shown in Equations (A4) and (A5). In this case, d ≤ λ refers to a case where qrand exists in
a position inside the λ radius.

Sensors 2021, 21, 333 32 of 32

References
1. Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, NY, USA, 2017.
2. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In Proceedings of the IEEE 4th

Student Conference on Research and Development, Selangor, Malaysia, 28–29 June 2006; pp. 183–188.
3. Roy, D. Visibility graph based spatial path planning of robots using configuration space algorithms. Int. J. Robot. Autom. 2009, 24,

1–9. [CrossRef]
4. Katevas, N.I.; Tzafestas, S.G.; Pnevmatikatos, C.G. The approximate cell decomposition with local node refinement global path

planning method: Path nodes refinement and curve parametric interpolation. J. Intell. Robot. Syst. 1998, 22, 289–314. [CrossRef]
5. Warren, C.W. Global Path Planning using Artificial Potential Fields. In Proceedings of the International Conference on Robotics

and Automation, Scottsdale, AZ, USA, 14–19 May 1989; Volume 1, pp. 316–321.
6. LaValle, S.M. Motion planning part II: Wild frontiers. IEEE Robot. Autom. Mag. 2011, 18, 108–118.
7. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 2016, 86,

13–28. [CrossRef]
8. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban

vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]
9. Karaman, S.; Frazzoli, E. Incremental sampling based algorithms for optimal motion planning. arXiv 2010, arXiv:1005.0416.
10. Brunner, M.; Bruggemann, B.; Schulz, D. Hierarchical Rough Terrain Motion Planning using an Optimal Sampling based

Method. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 5539–5544.

11. Adiyatov, O.; Varol, H.A. Rapidly-exploring Random Tree Based Memory Efficient Motion Planning. In Proceedings of the IEEE
International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013; pp. 354–359.

12. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
13. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Springer: London, UK, 1998.
14. Englot, B.; Hover, F.S. Sampling based coverage path planning for inspection of complex structures. In Proceedings of the ICAPS

2012, 22nd International Conference on Automated Planning and Scheduling, Atibaia, Sao Paulo, Brazil, 25–29 June 2012.
15. Kuffner, J.J., Jr.; LaValle, S.M. RRT-connect: An Efficient Approach to Single-query Path Planning. In Proceedings of the IEEE

International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001.
16. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. Rrt*-smart: Rapid Convergence Implementation of rrt* towards Optimal

Solution. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August
2012; pp. 1651–1656.

17. Jeong, I.-B.; Lee, S.-J.; Kim, J.-H. Quick-RRT*: Triangular inequality based implementation of RRT* with improved initial solution
and convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]

18. Karaman, S.; Frazzoli, E. Sampling based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
19. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling based Path Planning Focused via Direct Sampling

of an Admissible Ellipsoidal Heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

20. Klemm, S.; Oberländer, J.; Hermann, A.; Roennau, A.; Schamm, T.; Zollner, J.M.; Dillmann, R. RRT*-Connect: Faster, Asymptot-
ically Optimal Motion Planning. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Zhuhai,
China, 6–9 December 2015; pp. 1670–1677.

21. Choudhury, S.; Scherer, S.; Singh, S. RRT*-AR: Sampling based Alternate Routes Planning with Applications to Autonomous
Emergency Landing of a Helicopter. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, 6–10 May 2013; pp. 3947–3952.

22. Noreen, I.; Amna, K.; Zulfiqar, H. A comparison of RRT, RRT* and RRT*-smart path planning algorithms. Int. J. Comput. Sci.
Netw. Secur. 2016, 16, 20.

23. Da Silva Arantes, M.; Toledo, C.F.M.; Williams, B.C.; Ono, M. Collision-free encoding for chance-constrained nonconvex path
planning. IEEE Trans. Robot. 2019, 35, 433–448. [CrossRef]

24. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous environment using an en-
hanced genetic algorithm. Expert Syst. Appl. 2019, 115, 106–120. [CrossRef]

25. Sung, I.; Choi, B.; Nielsen, P. On the training of a neural network for online path planning with offline path planning algorithms.
Int. J. Inf. Manag. 2020, 102142. [CrossRef]

26. Jeon, G.-Y.; Jung, J.-W. Water sink model for robot motion planning. Sensors 2019, 19, 1269. [CrossRef] [PubMed]
27. Han, J. Mobile robot path planning with surrounding point set and path improvement. Appl. Soft Comput. 2017, 57, 35–47.

[CrossRef]
28. Yoon, H.U.; Lee, D.-W. Subplanner algorithm to escape from local minima for artificial potential function based robotic path

planning. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 263–275. [CrossRef]
29. Jung, J.-W.; So, B.-C.; Kang, J.-G.; Lim, D.-W.; Son, Y. Expanded Douglas–Peucker polygonal approximation and opposite angle

based exact cell decomposition for path planning with curvilinear obstacles. Appl. Sci. 2019, 9, 638. [CrossRef]

http://doi.org/10.2316/Journal.206.2009.1.206-2853
http://doi.org/10.1023/A:1008034314006
http://doi.org/10.1016/j.robot.2016.08.001
http://doi.org/10.1109/TIV.2016.2578706
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1016/j.eswa.2019.01.032
http://doi.org/10.1177/0278364911406761
http://doi.org/10.1109/TRO.2018.2878996
http://doi.org/10.1016/j.eswa.2018.08.008
http://doi.org/10.1016/j.ijinfomgt.2020.102142
http://doi.org/10.3390/s19061269
http://www.ncbi.nlm.nih.gov/pubmed/30871188
http://doi.org/10.1016/j.asoc.2017.03.035
http://doi.org/10.5391/IJFIS.2018.18.4.263
http://doi.org/10.3390/app9040638

	Introduction
	Rapidly Exploring Random Tree (RRT) Algorithm
	RRT-Connect Algorithm
	Pseudocode of the RRT-Connect Algorithm
	Pseudocode of the Extend Method from the RRT-Connect Algorithm
	Pseudocode of the Connect Method from the RRT-Connect Algorithm

	Proposed Triangular Inequality-Based RRT-Connect Algorithm
	Pseudocode of the Proposed Triangular-Rewiring Method for the Improved RRT-Connect Algorithm
	Mathematical Modeling of the Proposed Triangular Inequality-Based RRT-Connect Algorithm
	Pseudocode of Proposed Extend Method for the Improved RRT-Connect Algorithm
	Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm
	Process of the Proposed Triangular Inequality-Based RRT-Connect Algorithm

	Experimental Results
	Experimental Environment
	Experimental Results and Analysis for Each Map
	Experimental Results and Analysis in Total

	Conclusions
	Details of the RRT Algorithm
	Pseudocode of the RRT Algorithm
	Pseudocode of the Functions Used in the RRT Algorithm
	Basic Mathematical Modeling of the RRT Algorithm

	References

