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Abstract 72 

Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. 73 
Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal 74 
alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. 75 
However, recent analyses of both single cell-derived colonies of hematopoietic cells and population 76 
sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. 77 
To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole 78 
genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic 79 
mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-80 
LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic 81 
mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, 82 
the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and 83 
epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a 84 
genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After 85 
fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg 86 
(TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated 87 
mutation pathway (SRGAP2C).  We performed a secondary analysis excluding individuals with mCAs, 88 
finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of 89 
SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of 90 
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mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, 91 
finding that the expression levels of 404 genes are associated with GEM. Finally, we performed 92 
phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased 93 
white blood cell count and increased risk for incident peripheral artery disease, but is not significantly 94 
associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying 95 
mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, 96 
genomic, and phenotypic correlates of CH-LPMneg.  97 

  98 
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Introduction 99 

As we age, our cells accumulate mutations. The vast majority of these mutations are 100 
inconsequential because they do not alter cell fitness. However, a small proportion of these mutations, 101 
termed drivers, can cause expansions of cell lineages they reside in. Recently, the age-related acquisition 102 
of leukemogenic point mutations (LPM) in whole blood, termed clonal hematopoiesis of indeterminate 103 
potential (CHIP), has been described as a prevalent aging-related phenomenon1–4. CHIP has previously 104 
been associated with increased risk for hematologic malignancy, cardiovascular disease, and increased 105 
mortality4–6. However, CHIP is a highly specific clonal phenomena defined as the presence of a driver 106 
mutation in 74 genes that have previously been associated with hematologic malignancy7, which is a 107 
small proportion of the entire spectrum of somatic variation. Non-CHIP somatic variation in blood, which 108 
we term CH-LPMneg, has previously been shown to be a prevalent phenomenon, including mosaic 109 
chromosomal alterations (mCAs)8–10, X-chromosome inactivation skewing11, and even clonal expansions 110 
without known drivers11,12. However, the germline determinants and clinical consequences of CH-111 
LPMneg remain uncharacterized.  112 

We previously used the count of high variant-allele fraction (VAF) passenger mutations in 5,071 113 
CHIP carriers in TOPMed to identify the genetic determinants of clonal expansion, an approach termed 114 
PACER13, which uses age at blood-draw and passenger burden to infer the date at which a driver 115 
mutation was acquired. However, PACER is only defined for donors with a single driver mutation. Here, 116 
we seek to extend our inference of the sample level mutation burden for donors that may have no 117 
known driver point mutations. Non-CHIP clonal phenomena, which we refer to as CH-LPMneg, including 118 
mCAs, LOY, X-chromosome inactivation, and clonal expansions without known drivers have been 119 
previously associated with infection14, hematologic malginancy11, and heart failure15, highlighting the 120 
value of quantifying CH-LPMneg.  121 

The accurate detection of somatic mutations in CHIP non-carriers from a single whole-blood 122 
draw is likely to be more challenging than the identification in CHIP carriers because the passenger 123 
count no longer tracks the history of a single expanded clone. We reasoned that improved estimation of 124 
the somatic mutation rate would facilitate more accurate passenger burden inference in this more 125 
challenging setting. Previous reports have identified chromatin state as among the primary 126 
determinants of mutation rate. Indeed, Shuster-Bockler and Lehner16 reported that variation in 127 
chromatin organization explains 55% of the variation in mutation rate. Thus, external epigenomic 128 
annotations are informative for estimating the likelihood that a candidate somatic variant call is a true 129 
mutation by altering the prior probability that a given variant call is accurate.  130 

We and others have previously reported that CHIP and other clonal phenomena have germline 131 
genetic determinants9,11,13,17–20. CHIP has been previously associated with two primary pathways 132 
influencing HSC self-renewal and DNA damage pathways. Similarly, GWAS of mCAs have similarly 133 
reported associations with HSC self-renewal and DNA repair related loci21–23. A recent analysis that 134 
defined CH based on the dichotomization of low-VAF mutation burden, termed barcode-CH24, observed 135 
several hits linked to both mCAs and CHIP. These analyses have demonstrated that germline variation is 136 
associated with acquired genetic variation and have demonstrated the utility of such analyses for 137 
discovering critical regulators of clonal expansion rate, including TCL1A.  138 

Here, using 51,399 donors from NHLBI TOPMed consortium25 without CHIP, we developed a 139 
mutation burden estimator, the Genomic and Epigenomic Mutation (GEM) rate (Figure 1). We then used 140 
this estimator as a phenotype to discover the genetic determinants of CH-LPMneg. In contrast to 141 
barcode-CH, this is a continuous phenotype that excludes individuals with CHIP mutations. This analysis 142 
revealed multiple novel loci, including the previously underappreciated role of NRIP1, a highly conserved 143 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


transcriptional co-activator, in modulating mutation burden. We performed a sensitivity analysis, 144 
excluding all individuals with mCAs, finding that the bulk of our genetic discovery was unchanged, 145 
suggesting that CH-LPMneg signals are not merely mediated through mCAs. Fine-mapping of the TCL1A 146 
locus revealed a more complex cis-regulatory architecture than observed in CHIP. Functional 147 
characterization of SMC4 and NRIP1 with colony forming unit (CFU) assays revealed convergent effects 148 
on HSC self-renewal as the primary mechanism of these genes. Sex-stratified analyses of GEM revealed 149 
that the TRIM59-KPNA4-SMC4 locus, which has previously been associated with CHIP and MPNs17,26,27 is 150 
a female-specific signal, and a novel male-specific signal near MSRA. Principal component analysis of 151 
mutation burden revealed a sex specific mutation pathway. GWAS of this sex-specific mutation pathway 152 
identified a novel locus near SRGA2PC. Through transcriptomic analyses of blood and non-blood tissues, 153 
we identified the genomic consequences of elevated mutation burden in whole blood, which include the 154 
systematic down-regulation of the interferon-alpha pathway across hematopoietic lineages. Finally, we 155 
show that GEM is useful for predicting risk of incident peripheral artery disease, and associates with 156 
altered blood cell indices. Overall, we demonstrate a novel computational approach for quantifying 157 
mutation burden, which enabled the discovery of novel genetic determinants of CH-LPMneg.  158 

Figure 1: Study design schematic, describing the development of GEM, the use of GEM to discover the genetic determinants of 159 
mutation burden in blood, and the use of GEM to identify the transcriptomic and clinical correlates of mutation burden in blood. 160 

 161 

Results 162 

Using 51,399 WGS samples from NHLBI TOPMed (Supplementary Tables 1-2), we first called 163 
candidate somatic variants using Mutect2 as previously described17. We then performed stringent 164 
filtering, including filtering known germline variants and likely sequencing artifacts (Methods). As 165 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


distinguishing somatic variants from germline variants in single-tissue variant calling is challenging, we 166 
then took careful measures to determine the optimal alt-allele threshold. We observed that excluding 167 
variants with higher alt-alleles substantially improved the association of the burden of such mutations 168 
with chronological age, suggesting that a stricter alt-allele threshold than we previously applied in the 169 
PACER pipeline is useful for excluding germline variation.  170 

Genomic and Epigenomic Annotations Inform Mutation Rate 171 
 172 

Next, as chromatin state is among the primary mediators of mutation rate16, we sought to 173 
determine the association between mutation burden and several genomic and epigenomic annotations. 174 
We used chromHMM28 annotations in CD34+ cells from the Roadmap Epigenomic29 resource as a 175 
measure of chromatin state in HSCs, which previous analyses have reported as the causal cell type in 176 
clonal phenomena27. We calculated the mutation burden stratified by chromatin annotation and 177 
examined the association with age, reasoning that the strength of association between mutation burden 178 
and chronological age would reflect the proportion of artifactual mutations. We observed that 179 
mutations in quiescent chromatin (Figure 2A) are much more strongly associated with age than 180 
mutations in transcriptionally active chromatin, recapitulating the role of chromatin in modifying 181 
mutation rate.  182 

As mutations that are functional and are not mutated at the stem cell level undergo extensive 183 
negative selection30,31, we then asked whether mutation burden stratified by functional consequence on 184 
protein coding sequence modified the association with chronological age. We observed that mutation 185 
burden of missense and UTR variants was much more weakly associated with chronological age than 186 
mutation burden from intronic and intergenic mutations (Figure 2B), lending credence to our hypothesis 187 
that functional consequence is informative for refining mutation burden estimates. We performed a 188 
similar analysis with stratified CADD scores, finding that the mutations in the highest quintile of CADD 189 
scores were the most weakly associated with age (Figure 2C), again suggesting that deleterious 190 
mutations are depleted of association with age and likely enriched for false positives. We performed an 191 
analyses stratified by both CADD quantile and chromHMM annotation, finding that the two were not 192 
redundant (Extended Data Figure 1). Collectively, these analyses suggest that variant deleteriousness 193 
and chromatin annotations are useful for the construction of a mutation derived molecular clock.  194 

We then developed a weakly-supervised probabilistic graphical modeling approach that 195 
incorporates genomic and epigenomic annotations to distinguish somatic mutations from artifacts, a 196 
method we term GEM (genomic and epigenomic mutation rate). Weakly-supervised probabilistic 197 
graphical modeling approaches have been previously used to identify functional rare-variants32, 198 
demonstrating the utility of such approaches towards annotation of genetic variation. We first 199 
comprehensively annotated all candidate somatic variants based on their chromHMM28 annotations, 200 
their functional consequence, CADD33, their population allele frequency in TOPMed, surrounding 201 
sequence context, among others (Methods). GEM uses chronological age as an external annotation to 202 
identify which candidate somatic mutations were functional based on their annotations (Figure 2D). 203 
GEM enables the classification of candidate somatic mutations as either truly somatic or artifacts, thus 204 
increasing power in downstream analyses by facilitating the depletion of likely artifactual variants.  205 

Figure 2: Development of GEM | A, The Spearman correlation between mutation burden and chronological age stratified by 206 
chromHMM annotations in CD34+ cells. B, The Spearman correlation between mutation burden and chronological age stratified 207 
by functional consequence as annotated by the variant effect predictor (VEP). C, The Spearman correlation between mutation 208 
burden and chronological age, stratified by quintiles of CADD scores. D, Plate annotation for the GEM statistical model. 𝜃0 and 209 
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are intercepts; 𝜃1reflects the association between log2 transformed value of ∑𝑧𝑖𝑗 and chronological age 𝑌𝑖; 𝑧𝑖𝑗   denotes the 210 
probability that the 𝑗𝑡ℎ mutation in the 𝑖𝑡ℎ individual is a true somatic mutation. X is a matrix of annotations.  211 

 212 

The Genetic Determinants of Mutation Burden 213 
 214 

Next, as clonal phenomena have been shown to have germline genetic determinants, we 215 
performed a GWAS with GEM as the phenotype in 51,399 carriers of diverse ancestry. We computed 216 
summary statistics using SAIGE34. We detected six genome-wide significant loci, including TERT, TCL1A, 217 
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TRIM59-SMC4-KPNA4, NRIP1, SCARB1, and PRMD16 (Figure 3A), and an overall h2
SNP of 9.3%. We then 218 

performed a similar analysis based on the burden of mutations in quiescent chromatin and 219 
heterochromatin, which resulted in reduced power at TCL1A (GEM minimum pvalue of 6 x 10-57 vs 220 
mutation burden minimum pvalue of 6 x 10-50), demonstrating the value of the GEM over simply using 221 
mutation burden stratified by chromatin context (Extended Data Figure 2). TERT, TCL1A, TRIM59-SMC4-222 
KPNA4 have been previously associated with CHIP17,18,35and barcode-CH24, while NRIP1 and PRDM16, 223 
TERT, and TCL1A have all been associated with mCAs21–23 and barcode-CH24. SCARB1 has not been 224 
previously reported with a related phenotype. To nominate causal SNPs and genes, we fine-mapped 225 
each locus using SuSIE36 and cross-referenced the credible sets with the Open Targets V2G estimates37 226 
and cell-type specific enhancers-gene pairs from the activity by contact model38. These signals 227 
collectively highlight the convergence of germline variation influencing CHIP, mCAs, and clonal 228 
hematopoiesis without known drivers. 229 

We then asked whether the association between these GWAS loci and GEM was mediated 230 
through an association with mCAs. Using a recently developed atlas of mCAs in TOPMed20, we excluded 231 
all mCAs or LOX carriers (n = 13,399) and performed another GWAS as a sensitivity analysis. After 232 
filtering to variants that were genome-wide significant in either GWAS, we observed that the effect sizes 233 
were remarkably concordant (R2 = 0.997, Extended Data Figure 3), suggesting that the GWAS of GEM is 234 
not merely mediated by the effect of mCAs/LOX.  235 

The lead variant at TCL1A was rs2887399, which we previously discovered as among the primary 236 
mediators of clonal expansion in CHIP carriers39, and has been previously reported in GWAS of LOY21,22. 237 
Fine-mapping36 revealed five credible sets, each with a single causal variant (rs11846938, rs112548922, 238 
rs1080435, rs1957937, and rs73350164, all PIP > .98). V2G37 identified TCL1A as the mostly likely causal 239 
gene at each of the five causal SNPs. rs11846938 is 10bp from and in very high LD with rs2887399 (EUR 240 
R2 = 0.88, AFR R2 = 0.92), and both reside in the core promoter of TCL1A. Given high LD between 241 
rs2887399 and rs11846938, and the functional evidence we previously observed for the effect of 242 
rs2887399, we refer to this signal as “rs2887399/rs11846938.” rs112548922 is 9kb upstream of TCL1A, 243 
suggesting that cis-regulatory elements besides the core promoter are implicated in altered mutation 244 
burden. We previously described a CHIP-mutation specific mechanism, whereby mutations in 245 
TET2/ASXL1/SF3B1 are associated with the aberrant chromatin opening of the TCL1A promoter in HSCs, 246 
but not DNMT3A mutations. This led us to hypothesize that rs2887399 is chromatin accessibility-QTL 247 
(caQTL) that is a TET2/ASLX1/SF3B1 mutation (and possibly LOY) specific and thus the risk allele is more 248 
likely to lead to the aberrant activation of proto-oncogene TCL1A only when a mutation sufficient for 249 
chromatin modification at the TCL1A promoter has been acquired. Indeed, rs2887399 has been since 250 
reported as a caQTL40 in lymphoblastoid cell lines (LCL). We previously showed that TCL1A expression is 251 
sufficient for promoting clonal expansion and altering stress response in HSCs39 and is a key regulator of 252 
clonal expansion in CHIP clones. The discovery of additional casual variants at the TCL1A locus highlights 253 
the utility of applying GEM to samples unascertained for specific genetic lesions, providing increased 254 
power for genetic discovery and indicates that the context specific up-regulation of TCL1A is a broader 255 
phenomenon than previously appreciated, and likely occurs in HSCs without mCAs, LOY, or CHIP, 256 
possibly mediated through stochastic epigenetic phenomena that result in increased accessibility at cis-257 
regulatory elements of TCL1A.  258 
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Figure 3: The genetic determinants of GEM. A, The GWAS of GEM. Summary statistics were estimated with SAIGE. B, Fine-259 
mapping of the TCL1A locus. Note rs11846938 is 10bp from rs2887399. Fine-mapping was performed with SuSIE. 260 

 261 
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The lead variant at NRIP1 is rs2229742, a common (MAF = 6%) missense variant (p.Arg448Gly) 262 
predicted to be deleterious by SIFT41. NRIP1 has previously been discovered in the context of mCAs14 263 
and barcode-CH24 but has not been discovered in CH-LPMneg. Fine-mapping of the locus identified one 264 
credible set containing three variants (rs2229742, rs2823020, rs2823025). The C allele of rs2229742 is 265 
associated with increased GEM burden (beta = 0.08 standard deviations, 72% PIP, pvalue = 7.6x10-13). 266 
NRIP1 is a highly conserved (pLI42 = 0.99) transcription co-regulator that is highly expressed in HSCs43 and 267 
has been previously reported as a positive regulator of stemness in HSCs44. rs2229742 is strongly 268 
associated with multiple blood cell index GWAS 45 indicating that altered protein sequence of NRIP1 269 
results in altered HSC function. NRIP1 ablation has previously been shown to extend lifespan in murine 270 
models46, indicating a role in aging related phenotypes, although this is reported to be likely mediated 271 
through the interaction between NRIP1 and estrogen signaling rather than modulation of HSC function. 272 
As the C allele is associated with increased GEM, this suggests that the C allele may either increase 273 
function of the NRIP1 product or increase the abundance of NRIP1 through indirect mechanisms, 274 
perhaps through increased translation efficiency. To elucidate the consequences of altered amino acid 275 
sequence in NRIP1, we cross-referenced a recently released catalogue of trans-pQTLs from plasma47. 276 
rs2229742 is a trans-pQTL for both SDC4 (beta = 0.09, pvalue = 3.8 x 10-13) and PGLYPR2 (beta = 0.07, 277 
pvalue = 8.7 x 10-14). SDC4 is a syndecan, which are cell-surface proteins that can interact with a broad 278 
range of ligands. The mouse-genome informatics resource48 reported that SDC4 ablation in mice led to 279 
several altered hematopoietic phenotypes. PGLYRP2 is a peptidoglycan recognition protein that has 280 
been implicated in interferon regulation and innate immune response49.  281 

Previous GWAS of clonal phenomena, including CHIP and MPNs have reported the TRIM59-282 
SMC4-KPNA4 locus, though none have conclusively identified the causal gene. Fine-mapping this locus 283 
identified a credible set containing 19 variants. The three variants with the highest PIP were rs11718121 284 
(PIP = 9.2%), rs1451760 (PIP = 8.8%), and rs6790951 (PIP = 8.2%). V2G estimated that SMC4 was the 285 
mostly likely causal gene for each of these three variants, and alt-alleles at the three variants were 286 
associated with increased expression of SMC4 in eQTLGen in whole blood50 and increased expression of 287 
SMC4 in lipopolysaccharide stimulated monocytes51. The interval spanned by the credible set contains a 288 
predicted SMC4 enhancer in CD34+ cells by the ABC model. SMC4 is a sub-unit of the condensin 289 
complex, which is involved in chromosome assembly and segregation during mitosis. Collectively, fine-290 
mapping, V2G estimates, and the ABC model nominate SMC4 as the mostly likely causal gene in the 291 
locus, highlighting the role of SMC related proteins in modulated mutation burden.  292 

Fine-mapping of the SCARB1 locus identified one credible set with a single SNP, rs11057853, a 293 
common (MAF = 46%) variant intronic to SCARB1. V2G estimated that SCARB1 was the most likely causal 294 
gene for rs11057853, supported by both its presence within the SCARB1 gene body and its role as an 295 
eQTL for SCARB1 in blood50. The C allele was associated with reduced GEM (beta = -0.03 GEM standard 296 
deviations) and reduced expression of SCARB1 (beta = -0.23, pvalue = 5.5 x 10-175), suggesting that 297 
SCARB1 may be protective against CH-LPMneg. SCARB1 is a receptor for HDL and rare variant burden 298 
tests of SCARB1 in UK Biobank have identified several associations with lipid traits52. Previous reports 299 
have described a possible role for SCARB1 in mediating the metabolic adaptation of long-term HSCs 300 
using murine models53.   301 

We then asked whether rare variants are associated with GEM. We performed a genome-wide 302 
RVAS using STAAR54, including all missense and loss of function (LOF) variants within protein-coding 303 
genes. We identified 33 and 18 hits at pvalue thresholds of 5 x 10-6 and 5 x 10-7 (Supplementary table 3). 304 
The strongest hit was CELF2 (pvalue = 3.4 x 10-28), where coding variants were associated with a higher 305 
GEM value among carriers (mean of 0.38, 95% CI: [0.36, 0.40]) than non-carriers (mean of 0.00, 95% CI: 306 
[-0.01, 0.01]). CELF2 is a highly constrained (pLI42 = 1.00) RNA binding protein and is highly expressed in 307 
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neutrophils37.  A recent report described the role of CELF2 as a suppressor of the AKT/PI3K signaling 308 
pathway55 in lung carcinoma, which is presumably the signaling pathway mediating the effect of TCL1A.  309 

We performed an non-coding RVAS using SCANG56,  a dynamic window approach for identifying 310 
sets of SNPs that associate with phenotypes. We applied to SCANG to 100kb regions flanking 1,688 311 
genes that Open Targets37 has identified as previously associated with cancer (Supplementary table 4). 312 
We identified 52 and 6 hits at pvalue thresholds of 5 x 10-6 and 5 x 10-7 (Supplementary table 5). We 313 
observed a locus on chr14 flanking the MARK3 gene which was strongly associated with mutation 314 
burden (2.5 x 10-8). To identify the likely causal variants within this window, we then performed a joint 315 
analysis of all rare variants that were included. This analysis highlighted three variants as significantly 316 
associated including rs190231639, a rare (MAF = 0.04%) variant intronic to COA8. To identify the likely 317 
causal gene in this gene dense locus, we cross-referenced the V2G results from Open Targets, which 318 
nominated COA8, KLC1, XRCC3, and ZFYVE21 as equivalently likely causal genes. XRCC3 is involved in the 319 
homologous recombination repair pathway of double-stranded DNA, though we are unable to 320 
conclusively identify it as the causal gene. Collectively, we identify diverse signals among the rare 321 
variants implicating DNA repair and post-translational modifications as key molecular processes 322 
contributing to GEM variation.  323 

Mutation Burden Is Indirectly Regulated by the Size of the HSC Pool 324 
 325 

We then asked whether SMC4 and NRIP1 contributed to mutation burden by altering HSC self-326 
renewal. To test this hypothesis, we separately knocked down SMC4 and NRIP1 in CD34+ bone-marrow 327 
derived human HSCs with shRNAs and performed a colony forming unit (CFU) assay. Relative to a non-328 
targeting shRNA control, both SMC4 and NRIP1 knockdown cells were more likely to lose stemness in 329 
culture (1.6% and 2.5% fewer CD34+CD38- cells, pvalues = 2.0 x 10-3, 1.7 x 10-3, Figure 4A-B) and the cells 330 
formed fewer burst-forming unity colonies (22.0 and 22.8 fewer colonies, pvalues = 2.4 x 10-3, 1.9 x 10-3, 331 
Figure 4C-D). These results are consistent with a role of both SMC4 and NRIP1 as positive regulators of 332 
CD34+ HSC self-renewal, and led us to propose the following mechanisms for their roles as indirect 333 
regulators of mutation burden: Either SMC4/NRIP1 may regulate the fitness of HSC in response to 334 
noxious stimuli such as the infection inherent to the shRNA knockdown assay, or SMC4/NRIP1 directly 335 
regulates the size of the HSC pool; a larger active HSC pool increases the likelihood that at least one HSC 336 
obtains a fitness advantage through either a genetic lesion or stochastic epigenetic phenomena, leading 337 
to a clonal expansion, which will increase the passenger count burden. Similar models have been 338 
previously been proposed in the context of myeloproliferative neoplasms27.  339 

We then sought to explore the causal relationship between HSC pool size and GEM through 340 
simulation using a stochastic process that describes realistic HSC population (Methods). We simulated 341 
several HSCs which acquire passenger mutations at a constant rate per cell through a Poisson point 342 
process. We simulated the size of individual HSC clone populations using a Poisson birth-death process, 343 
where a single parameter 𝑠 governs the relative likelihood of an HSC self-renewing into two identical 344 
HSCs as opposed to dividing into two differentiated cell types. At a rate of 1 driver mutation per 10,000 345 
HSCs per year, we simulated modest increases to 𝑠 in each HSC to model modest increases in cell fitness 346 
that some clones may acquire. We stratified these simulations across varying initial sizes of the HSC 347 
pool, finding that larger pools were much more likely to contain at least one clone with a substantial 348 
increase in fitness (Extended Data Figure 4) and many more high-VAF passengers (Extended Data Figure 349 
5). Importantly, the burden of high VAF passengers increased as the number of increases to 𝑠 increased. 350 
Taken together, this model provides a formal exposition for why GEM may be associated with both the 351 
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overall HSC pool and the likelihood of at least one clone obtaining a substantial increase in self-renewal 352 
capacity.  353 

 354 

Figure 4: The functional consequence of SMC4 and NRIP1 on HSCs. A, SMC4 and NRIP1 were knocked-down with shRNA and the 355 
proportion of CD34+ cells was quantified with FACs. Quantities were compared referent to a non-targeting control. B, proportion 356 
of CD34+CD38- was quantified with FACS. C, Number of colonies formed in a colony-forming unit (CFU) assay. D, Number of 357 
colonies in a burst-forming unit assay.  358 

 359 

Regional Mutation Burden and the Genetic Determinants of Sex Specific Mutation Pathways 360 
 361 

We then sought to perform more granular analyses of mutation burden, examining 362 
heterogeneity by sex and position in the genome. As the importance of mutation burden may vary 363 
based on genome position, we estimated the mutation burden in 49 non-overlapping intervals 364 
approximately 5 x 107 bases in length. We then estimated the association between age and mutation 365 
count stratified by interval, indicating heterogeneous associations across the intervals (Extended Data 366 
Figure 6).  To characterize the underlying structure, we then performed PCA on these mutation counts. 367 
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We observed that PC1 was strongly associated with overall mutation burden and explained 60% of the 368 
variance, revealing a single general factor associated with mutation burden genome-wide. We observed 369 
that the loadings of PC2 were enriched for mutations appearing chromosome-X, suggesting a sex-370 
specific mutation pathway. We observed that PC2 is significantly associated with genotype inferred sex 371 
(R2 = 7.3%, pvalue < 2.2 x 10-16), highlighting a sex-specific contribution to somatic variation in whole 372 
blood.  373 

We then asked whether this sex-specific mutation factor had distinct germline determinants 374 
from GEM. We observed that a single locus on chromosome 1 near SRGAP2C was associated with PC2.  375 
The lead variant at this locus is rs61804016, a common variant 62kb away from the transcription start 376 
sites of SRGAP2C that has been previously reported as an eQTL in whole blood for SRGAP2C, NBPF8, 377 
NBPF26, PFN1P2, and SRGAP2C. However, in monocytes and T-cells, rs61804016 is only an eQTL for 378 
SRGAP2C57. The eQTL associations and proximity to the TSS of SRGAP2C suggest that SRGAP2C is the 379 
most likely causal gene in the locus. SRGAP2C is a GTPase activating protein that is expressed in 380 
hematopoietic progenitor cells43. We then cross-referenced phewas58 results in UK Biobank59 and 381 
Finngenn 60. The C allele of rs61804016 is nominally associated with increased risk for breast cancer 382 
(odds-ratios of 1.08, 1.07, pvalues of 1.2 x 10-5, 3.2 x 10-6), further supporting the sex-specific nature of 383 
PC2. SRGAP2C is on chromosome 1, suggesting sex-specific regulation of an autosomal gene in the 384 
genesis of sex-specific mutation burden. No SNP near SRGAP2C was associated at genome-wide 385 
significance with the GEM phenotype. These analyses highlight the value of subtyping in mutation 386 
burden estimation by revealing sex-specific factors.  387 

Given findings of sex-specific mutation pathways, we then performed sex-stratified GWAS of 388 
GEM (Figure 5), which revealed two sex specific signals. At the SMC4 locus, rs11718121 was associated 389 
with increased mutation count in females (beta = 0.043, pvalue  = 5.1 x 10-9) but much more weakly 390 
associated in males (beta = 0.019, pvalue= 0.038). At a locus not identified in the standard analysis, near 391 
MSRA, rs117344298 was associated with decreased mutation count in males (beta = -0.17, pvalue = 2.4 392 
x 10-8), but unassociated in females (beta = -0.013, pvalue = 0.58). Other signals were largely shared 393 
between males and females. Cross-referencing of sex-biased eQTLs reported in GTEx61 found that MSRA 394 
had nominally significant sex-biased eQTLs in tibial nerve tissue and Brain cortex, but not in whole 395 
blood. SMC4 did not have sex-biased eQTLs, which may be the result of limited power to detect such 396 
effects.  397 

 398 

 399 

 400 

 401 

  402 
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Figure 5: The sex specific genetic determinants of mutation burden. A, Regressions were performed for each quantile-403 
transformed somatic principal component (sPC) on study and sex as covariates. The partial variance explained by sex is 404 
displayed on the y-axis. B, Circular Manhattan plot. The outer-most ring is the GWAS of GEM on all individuals, the middle ring is 405 
the GWAS of GEM on males, and the inner-most ring is the GWAS of GEM in females. Inset, a scatter plot of the two sex-specific 406 
GWAS plotting all SNPs with pvalues < 1 x 10-8 in either GWAS. Asymptotic confidence intervals are plotted with a width 407 
corresponding to genome-wide significance.  408 

 409 
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The Transcriptomic Correlates of High Mutation Burden 410 
 411 

Next, we asked whether GEM associated with altered gene expression across five tissue types 412 
available in TOPMed, including whole blood, PBMC, monocytes, T cells, and nasal epithelial cells. We 413 
performed a search for GEM-gene associations by regressing the inverse normal transformed expression 414 
values of each gene (n = 17,741) on the inverse normalized GEM estimates, including age, genotype 415 
inferred sex, 15 genotype PCs, 20 expression PCs, and cohort indicators as covariates. To increase 416 
power, we then used mashr 62 to apply shrinkage across the 88,705 GEM-gene associations. We 417 
identified 404 GEM-gene associations at a local false sign rate (lfsr)63 < 0.05 (Supplementary Table 6). 418 
Within whole blood, we observed the up-regulation of RUFY4 with increased GEM. RUFY4 is highly 419 
expressed in dendritic cells37 and is involved in response to the anti-inflammatory cytokine IL-449 (Figure 420 
6A). We also observed the down-regulation of LGSN, which although annotated for its role in 421 
differentiation cells in the lens, is highly expressed in HSCs and was recently reported as a candidate 422 
causal gene in asthma64.  423 

To characterize the gene programs associated with GEM, we performed pathway enrichment 424 
analyses using KEGG65 as a reference. We observed a striking down-regulation of genes involved in 425 
interferon signaling (Fig. 6B). Interferon-alpha is a cytokine with anti-proliferative properties that was 426 
previously considered as a candidate therapeutic for AML66. Interferon-alpha is thought to reduce clonal 427 
expansion through direct and indirect mechanisms, including inducing apoptosis and activating the 428 
adaptive immune system. We then performed a tissue specific pathway analysis among the 404 GEM-429 
genes, which similarly identified interferon alpha/beta signaling as greater than 3x fold enriched in each 430 
of the five tissue types. We also identified enrichment of the VEGFA-VEGFR2 pathway that is largely 431 
specific to T cells (Fig. 6B). Deletion of VEGFA in CD8+ T cells has previously been shown to reduce 432 
effector function67,68. Collectively, these results highlight the importance of anti-proliferative cytokines 433 
to inhibiting clonal expansion and suggest that transcriptomic responses to mutation burden in 434 
disparate tissues (nasal epithelial and blood samples) are more similar than anticipated.  435 

Next, we asked whether specific loci that either define CHIP, or have been discovered in GWAS 436 
of CHIP or mCAs (Supplementary Tables 7-8), implicate genes whose expression levels are also 437 
associated with GEM. Among loci identified in either CHIP or mCA GWAS, we observed that expression 438 
of TCL1A and MSI2 are positively associated with GEM (Fig. 6C-D). The association between TCL1A and 439 
GEM is consistent with TCL1A expression as a key mechanism in modulating mutation burden and clonal 440 
expansion in whole blood. Among CHIP mutations (Supplementary Table 9), we observed that IDH2 441 
expression is negatively associated with GEM (Extended Data Figure 7), which corroborates its 442 
protective effects against clonal expansion. We then asked whether within blood, there were specific 443 
genes with heterogeneous effects. We found that although effect sizes generally were highly 444 
concordant, TCL1A had a much stronger association with GEM in T cells than in monocytes (Extended 445 
Data Figure 8), highlighting the need the tissue and cell-specific transcriptomic analyses when 446 
performing searches in blood for the transcriptomic correlates of mutation burden.   447 

 448 

  449 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: The transcriptomic correlates of GEM. A, Association analyses were performed between GEM and gene expression in 450 
whole blood, including age, sex, genotype PCs 1-5, and expression PCs 1-20 as covariates. B, Enrichment analyses were 451 
performed using pathfindR and KEGG pathways as reference. C, Association statistics among CHIP GWAS genes. D, Association 452 
statistics among mCA GWAS genes.  453 

 454 
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The Clinical Correlates of GEM 455 
 456 

Because clonal hematopoiesis phenomena have been previously associated with cardiovascular 457 
disease4,6,15, we asked whether GEM associates with vascular and heart disease phenotypes in TOPMed. 458 
We first asked whether GEM was associated with coronary artery disease (CAD). We restricted our 459 
analyses to those NHLBI TOPMed cohorts with harmonized longitudinal assessment of CAD events; this 460 
enabled separate analyses of the association between GEM and incident CAD phenotypes (i.e., CAD 461 
events that occurred after the blood draw from which GEM was assessed) and the association between 462 
GEM and prevalent CAD (i.e., CAD events prior to the GEM blood draw). Within four NHLBI cohorts 463 
(WHI, FHS, CHS, COPDGene), we performed a Cox-proportional hazards regression analyses for incident 464 
CAD events after excluding individuals with prevalent CAD disease, including GEM, age at baseline, 465 
smoking history, body-mass index (BMI), sex, and germline genotype PCs as covariates. We observed 466 
that GEM was not associated with incident CAD events (meta-analysis hazard ratio: 1.00, 95% CI: [0.97, 467 
1.04], pvalue = 0.84, Figure 7A).  468 

We performed similar analyses with incident ischemic stroke. After meta-analyzing results from 469 
three cohorts (WHI, CHS, ARIC), we observed that there was substantial heterogeneity (I2 = 86%) in 470 
results, with a positive association observed in WHI (hazard ratio of 1.19, 95% CI: [1.12, 1.26], pvalue = 471 
2.8 x 10-8) and null or negative effects observed in ARIC and CHS (Extended Data Figure 9). Meta-analysis 472 
resulted in no association between incident stroke and GEM (hazard ratio of 1.03, 95% CI: [0.88, 1.22]), 473 
Figure 7A). Given the differences in the distribution of sex across the three cohorts, we then performed 474 
a female only analysis in CHS and ARIC, finding no evidence for a sex-specific effect after meta-analyzing 475 
with WHI (hazard ratio of 1.05, 95% CI: [0.87, 1.26], Extended Data Figure 10). We then asked whether 476 
GEM is associated with incident peripheral artery disease (PAD). After meta-analysis, we observed that 477 
GEM was associated with increased risk (hazard ratio 1.15, 95% CI: [1.05, 1.26], pvalue = 3 x 10-3, Figure 478 
7A) for incident PAD events.  479 

Because evidence within the clonal hematopoiesis literature (Heyde et al.69) suggests that prior 480 
CAD events are causal contributors to the up-regulation of HSC proliferation, we then asked whether 481 
prior CAD was associated with GEM. In a meta-analysis across five NHLBI cohorts (WHI, FHS, CHS, COPD, 482 
ARIC), we observed that prior CAD was suggestively associated with a modest increase in GEM (effect of 483 
prior CAD on standardized GEM: 0.12, 95% CI: [-0.03, 0.28], pvalue = 0.13, Extended Data Figure 11).  484 

To reconcile these disparate phenotypic associations, we performed analyses between GEM and 485 
biomarkers, including complete blood cell counts (CBC) measurements and inflammation 486 
measurements. We observed that GEM was positively associated with increased white blood cell count 487 
after adjustment for age and smoking status at baseline (Fig. 7B). These results indicate that GEM is 488 
associated with altered hematopoiesis. In contrast, after meta-analysis, we observed no association with 489 
CRP (Figure 7B). This suggests that the association between GEM and PAD is not mediated through 490 
systemic inflammatory markers like CRP, but we note that markers of systemic inflammation like CRP 491 
may not be sufficiently sensitive to capture the association between inflammation and HSC activity 492 
within the bone-marrow microenvironment.  493 
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Figure 7: The phenotype correlates of GEM. A, Cox proportional-hazard regressions were performed, regressing incident events 495 
on a spline of age, sex, smoking status, and germline PCs. Individuals with prevalent disease were excluded. CAD = coronary 496 
artery disease, PAD = peripheral artery disease, CABG = coronary artery bypass graft, MI = myocardial infarction. CAD events 497 
were defined as at least one of an MI, CABG, angina, or angioplasty during the follow-up period. A random effects meta-analysis 498 
was performed. GEM was inverse normal transformed. Sex was excluded from the WHI regression, and smoking was excluded 499 
from the COPD regression. B, A linear regression of the inverse normal transformed biomarker, including a spline of age, sex, 500 
smoking status, and germline PCs as covariates. GEM was inverse normal transformed. Sex was excluded from the WHI 501 
regression, and smoking was excluding from the COPD regression.  502 

 503 
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Conclusion 505 

Using 51,399 diverse TOPMed whole genomes, we derived a semi-supervised model of mutation 506 
rate, GEM, that increases power for discovery of germline determinants of mutation burden by better 507 
distinguishing somatic mutations from sequencing artifacts. Using GEM to identify the germline 508 
determinants of CH-LPMneg, we observed the convergence of common variant loci influencing multiple 509 
types of clonal phenomena, including CHIP and mCAs, demonstrating that genetic predisposition to 510 
mutation burden is shared across several different clonal contexts. We observed that altered protein 511 
sequence of NRIP1 was strongly associated with increased mutation rate, which along with its 512 
documented role in GWAS of blood cell indices, collectively implicate NRIP1 as an important regulator of 513 
aberrant hematopoiesis. We also observed that TCL1A, which we previously identified as a critical 514 
moderator of clonal expansion in CHIP carriers, is also associated with mutation burden in samples 515 
ascertained for not having CHIP, which may reflect its contribution towards clonal expansion in other 516 
kinds of clonal phenomena. Using a sex specific mutation pathway revealed by PCA analysis, we 517 
identified a breast-cancer locus, SRGAP2C, that associates with GEM.  518 

We anticipate that our approach, which identifies distinct underlying mutation pathways 519 
through PCA analysis can be extended to identify other factors that may contribute to specific mutation 520 
pathways. Overall, our approach identifies several loci that have been previously discovered in other 521 
analyses of clonal hematopoiesis phenomena, suggesting that studying clonal hematopoiesis without 522 
known drivers represents an under-appreciated model for discovering the germline determinants of 523 
mosaicism in blood. Importantly, analysis of mutation burden without a known CHIP genetic lesion 524 
greatly expands the sample size available to perform these analyses; our analysis here is an order of 525 
magnitude larger than the number of CHIP carriers discovered in our previous analyses of TOPMed 526 
analyses13,17.  527 

We performed the first multi-tissue analysis of the transcriptomic consequences of mutation 528 
burden in whole blood. We observed the striking down-regulation of interferon signaling across five 529 
tissues, including four from blood and one from epithelial tissue. Collectively, this analysis highlighted 530 
the need for additional characterization of the in-vivo transcriptomic consequences of anti-proliferative 531 
cytokines on HSC growth. Interferon-alpha, among other cytokines with similar effects, may represent 532 
candidates for therapeutic intervention.  533 

We observed that mutation burden in whole blood was associated with altered blood cell 534 
indices and increased risk for peripheral artery disease. However, GEM was not associated with incident 535 
CAD events. This is consistent with the observation that the association between CH and CAD is highly 536 
heterogenous across different forms of clonal phenomena. Within CHIP, the largest phenotype analysis 537 
to date35 reported an association (1.31 hazard ratio) with TET2 CHIP but not DNMT3A CHIP. Several 538 
analyses within smaller cohorts have also reported associations between CHIP and CAD phenotypes4,6,70. 539 
CH mediated through mCAs have no reported association with CAD9, while both positive and negative 540 
reports exists regarding LOY and CAD related phenotypes15,23. A recent analysis that examined barcode-541 
CH24, which includes several different forms of CH, reported no association between barcode-CH and 542 
CAD, while finding an association between barcode-CH and PAD, concordant with our results. These 543 
observations reflect the need to examine the associations between CH and CAD stratified by the 544 
particular genetic lesion(s), size of clone, and potentially the rate at which a clone is expanding. Indeed, 545 
recent reports52,71 on the plasma proteomic associates of CH have found substantial heterogeneity 546 
across different CHIP mutations, highlighting the substantial heterogeneity observed at both 547 
epidemiologic and molecular levels.   548 
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Our approach is not without limitations. The precise estimation of mutations from whole blood 549 
remains challenging. Although this approach has been shown to be promising in large cohorts in the 550 
context of epidemiologic association analyses, more sensitive sequencing assays are needed for clinical 551 
application. Additionally, the genesis of several mutations remains unclear. Although clonal expansion 552 
without known drivers clearly occurs12, elucidating the underlying mechanism remains an open 553 
question.  554 

Overall, we develop a novel estimator of mutation burden that is not specific to CHIP carriers. 555 
We find that measuring mutation burden, even in individuals without known genetic lesions, is 556 
informative for aging related phenotypes. In contrast to surveillance for CHIP, which is relatively rare in 557 
individuals less than 80 years old, GEM can be used to monitor mutation burden in a larger proportion 558 
of adults. We anticipate that our approach will prove useful in non-blood tissues for the discovery of the 559 
germline basis of mutagenesis and will facilitate epidemiologic association analyses, ultimately 560 
elucidating the genesis and consequences of mutation burden.  561 
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Extended Data Figures 563 

Extended Data Figure 1: Spearman correlation between mutation burden and chronological age was 564 

calculated for each of the strata defined by chromHMM 15 state model in CD34+ cells and CADD derived 565 

quintiles. A CADD score of 5 indicates a score within the top 20% most deleterious variants.  566 

 567 

 568 

 569 

 570 

 571 
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Extended Data Figure 2: Scatter plot comparing the -log10 pvalues from GWAS where the phenotype was 572 

either GEM (x-axis) or the burden of mutations falling in either heterochromatin or quiescent chromatin 573 

in CD34+ cells. Genes are colored by the likely causal gene, which was manually curated. Variants shown 574 

have pvalue < 5 x 10-8 in at least one of the two GWAS. 575 

   576 
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Extended Data Figure 3: Scatter plot comparing the beta values from GWAS where the phenotype was 577 

either GEM on all individuals (x-axis, n= 51,399) or GEM on individuals that did not have an mCA (n = 578 

38,000). Genes are colored by the likely causal gene, which was manually curated. Variants shown have 579 

pvalue < 5 x 10-8 in at least one of the two GWAS. 580 

 581 

 582 

 583 

 584 

 585 
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Extended Data Figure 4: HSC stochastic process simulation, showing that the number of active HSCs has 587 

a large effect on the number of high-VAF mutations at the end of the simulation 588 

 589 

 590 

Extended Data Figure 5: HSC stochastic process simulation, showing that the number of active HSCs has 591 

a large effect on likelihood of obtaining at clone with high fitness 592 

 593 
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Extended Data Figure 6: Linear regressions were performed between the inverse normal transformed 594 

mutation burden in each genomic bin with chronological age on the y-axis. Each regression include a 595 

study indicator as a covariate.  596 

 597 

 598 
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Extended Data Figure 8: The association between GEM and gene expression in either monocytes or T 600 

cells. Effect sizes are estimated after application of mashr shrinkage, and the intervals denote 95% 601 

credible intervals.   602 

 603 

 604 

Extended Data Figure 8: The association between GEM and gene expression in whole blood among CHIP 605 

genes. Effect sizes are estimated after application of mashr shrinkage, and the intervals denote 95% 606 

credible intervals.   607 

 608 
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Extended Data Figure 9: Meta-analyses of Cox proportional hazards regression with time to ischemic 610 

stroke as the outcome. A spline of age, sex, smoking status, and germline PCs were included as 611 

covariates. Individuals with prevalent disease were excluded.  612 

 613 

Extended Data Figure 10: Female only meta-analyses of Cox proportional hazards regression with time to 614 
ischemic stroke as the outcome. A spline of age, sex, smoking status, and germline PCs were included as 615 
covariates. Individuals with prevalent disease were excluded. 616 

  617 
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Extended Data Figure 11: Meta-analyses of linear regressions with inverse normal transformed GEM as 618 

the outcome and an indicator for prevalent coronary artery disease events that occurred prior to the 619 

blood draw that GEM uses as the covariate of interest. A spline of age, sex, smoking status, and germline 620 

PCs were included as covariates.  621 

 622 

  623 
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Methods 624 

Germline and somatic variant calling 625 

TOPMed germline variant was performed as previously described25. Briefly, TOPMed BAM files were 626 

harmonized through the functionally equivalent pipeline72. Joint calling of germline SNPs and indels was 627 

performed with the Got-Cloud pipeline73.  Samples were aligned to GRCh38. TOPMed germline SNP and 628 

indel freeze 10 was used in this analysis.  629 

Putative somatic variants were first called with GATK Mutect274 in “tumor-only” mode with largely 630 

default settings. A “panel of normals” was included to exclude sequencing artifacts. Variant calling was 631 

performed on Google Cloud using Cromwell75. Only bi-allelic variants that passed Mutect2 filters were 632 

included in downstream analyses. CHIP calling was performed as previously described13,17; briefly, the 633 

Mutect2 output was cross-referencing with a list of predominately loss-of-function and missense 634 

mutations in a curated set of genes4,76.  635 

We first identified somatic mutations that occurred once across all individuals, as singleton passenger 636 

mutations have a stronger association with chronological age than non-CHIP recurrent somatic 637 

mutations77. On mutations on the X-chromosome, we halved the variant allele-fraction for all mutations. 638 

We then excluded several mutations based on the following filters: 639 

1. All mutations with a depth less than 25x or greater than 100x 640 

2. All mutations falling within low complexity sequence regions 641 

3. All mutations in segmental duplications 642 

4. All mutations falling within genomic regions with germline CNVs with at least 10% minor-allele 643 

frequency. Germline CNVs from the TOPMed germline structural variant call-set78 were used in 644 

this filter.  645 

5. All mutations falling within the contigs with sequence that differed between hg19 and hg38, as 646 

defined by the “Hg19 diff” track in the UCSC genome table browser.  647 

6. Any germline variant in TOPMed germline SNP and index freeze 10 (derived from 184,878 WGS) 648 

with a minor allele count of at least 10 and a variant allele fraction between .26 and .74 649 

7. Any mutation with fewer than 2 alt reads or greater than 6 alt reads. At 38x, this corresponds to 650 

a VAF interval of 5%-16% 651 

Annotation of somatic mutations 652 

Singleton mutations after the above filters were first annotated with the variant effect predictor79 (VEP) 653 

including the “—flag-pick”, “—check_existing”, “—canonical”, and “—flag_pick” flags. A CADD33 plugin 654 

was also included. CD34+ chromatin annotations were downloaded for sample BSS00233 from Roadmap 655 

epigenomics29. Mutations were also annotated with the correspond mutation type (e.g., C->T, G-T, etc.).  656 

The genomic and epigenomic mutation rate (GEM) 657 

GEM is a Bayesian graphical model with the following form. In the outlier layer, standardized 658 

chronological age (standardized with (age – 60) / 10) is the outcome variable, denoted as 𝑌𝑖. We note 659 

that GEM is a “weakly-supervised” model in the sense that while individual mutations are unlabeled, the 660 

entire training process is “supervised” by chronological age. 𝑌𝑖  conditional on the number of true 661 

mutations within an individual is assumed to follow a gaussian distribution. Each individual 𝑖 has a 662 

candidate set of mutations 𝑆𝑖 which were identified by the above filtering processes. Instead of using 663 

this raw count, we instead replace the count with the expectation of a Bernoulli random variable 664 
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𝑍𝑖,𝑗which denotes whether the 𝑗𝑡ℎ mutation in the 𝑖𝑡ℎ individual is a “true mutation” (i.e., takes a value 665 

of 1.0) or is an artifact (i.e., takes a value of 0). We include a non-linear transformation 𝑔 to the sum 666 

over the true mutation burden. In practice, 𝑔(𝑥) = 𝑙𝑜𝑔2(𝑥) worked well.  667 

𝑌𝑖~𝑁 (𝜃0 + 𝜃1 ∗ 𝑔 (∑ 𝑍𝑗  

𝑗∈𝑆𝑖

) ,  𝜎) 668 

The expectation of this random variable is specified through an inverse-logit transformation, i.e.,  669 

𝑍𝑗, 𝑙~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜃2 + 𝑿𝑗𝜷)) 670 

𝐸(𝑍𝑖.𝑗) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜃2 + 𝑿𝑗𝜷) 671 

Where 𝑿𝒋 represents a length 𝑝 vector of annotations for the 𝑗𝑡ℎ mutation and 𝜷 is a length 𝑝 random 672 

vector of weights. 𝜃2 is included as a bias or intercept term.  673 

The above assumptions express the likelihood of GEM. The prior of GEM is specified as follows: 674 

𝜷~𝑁𝑝(0, 𝐼) 675 

𝜎~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0.0, 1.0) 676 

𝜃1~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜖, 1.0) 677 

Where 𝜖 is in practice set to 5 x 10-3. Inference was performed by optimizing the maximum a-posteriori 678 

objective using an ADAM optimizer. GEM is implemented in the torch package in R.  679 

Within the matrix of mutation annotations 𝑿, we include the following annotations: 680 

1. VEP annotated variant impact 681 

2. VEP “somatic” annotation 682 

3. CADD_PHRED score 683 

4. The mutation type  684 

5. The variant allele fraction 685 

6. The chromatin state prediction 686 

GEM was trained on 2,000 randomly sampled individuals with 186,277 total candidate mutations among 687 

them.  688 

Genome-wide association studies with GEM 689 

In the context of genome-wide association studies (GWAS), the phenotype was defined as the expected 690 

burden of “true” mutations, i.e., ∑ 𝐸(𝑍𝑗) 𝑗∈𝑆𝑖
within the 𝑖𝑡ℎ individual. This phenotype was inverse 691 

normal transformed. GWAS summary statistics were estimated with SAIGE on all germline variants 692 

where the minor allele count was at least 400 (i.e., MAF ≥ 0.4%) among the analyzed samples. Germline 693 

principal components 1-10, somatic principal components 3-4, genotype inferred sex, a cohort indicator, 694 

chronological age, average sequencing depth per sample, and the residual between the raw and 695 

estimated true mutation burden were included as covariates. Somatic principal components 1-2 were 696 

excluded as they are strongly associated with total mutation burden and sex respectively. Somatic 697 
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mutations that had previously been identified as recurrent77 were excluded from the summary statistics. 698 

All germline variants with a milk-SVM threshold below -0.30 or an individual specific Hardy-Weinberg 699 

equilibrium -log10 pvalue above 5.0 were excluded. 700 

Rare-variant association studies with GEM 701 

Rare-variant association studies (RVAS) were performed with the same GEM derived phenotype as the 702 

GWAS. We performed a non-coding RVAS by examining rare-variants within 100kb of cancer associated 703 

genes as defined by Open Targets37 using SCANG56, which performs a scanning procedure for genome 704 

regions that contain a set of rare variants that associate with the phenotype. We similarly performed a 705 

genome-wide coding variant RVAS using STAAR, including any rare-variant annotated as having a 706 

“MODERATE” or “HIGH” impact on amino acid sequence by VEP.   707 

Simulation of mutation burden 708 

We assume an HSC can fall into one of three states: 709 

1. HSCs can divide into two HSCs (“self-renewal”) 710 

2. HSCs can divide into two differentiated cells 711 

3. HSCs can divide into one HSC and one differentiated cell 712 

For the purposes of simulating a stochastic process of HSC population size, we treat state 3 as irrelevant 713 

because it does not affect the total number of self-renewing HSCs. 714 

We define the HSC clone birth rate as:  𝜆𝑖(𝑡) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜔 ∗ 𝑋𝑖(𝑡) ∗ (1 + 𝑠𝑖(𝑡)) ∗ 𝑑𝑡) and the HSC 715 

clone death rate as 𝜓𝑖(𝑡) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜔 ∗ 𝑋𝑖(𝑡) ∗ (1 − 𝑠𝑖(𝑡)) ∗ 𝑑𝑡). 𝜔 is a parameter that controls the 716 

rate of births/deaths. 𝑑𝑡 defines the time interval over which this process is defined.  717 

The total size of the cells within the 𝑖𝑡ℎ clone at time 𝑡 as 𝑋𝑖(𝑡) = ∑ 𝜆𝑖𝑙≤𝑡 (𝑙) − 𝜓𝑖(𝑙). A single 718 

parameter 𝑠𝑖  determines the likelihood of a given HSC falling into state 1. or 2., and thus we refer to this 719 

parameter as the clone “fitness.”  720 

At any given time 𝑡, the VAF of the 𝑖𝑡ℎ clone is defined as 𝑉𝐴𝐹𝑖(𝑡) =
𝑋𝑖(𝑡)

∑ 𝑋𝑗𝑗 (𝑡)
 . We define the number of 721 

passenger mutations at time 𝑡 in the 𝑖𝑡ℎ clone as 𝐴𝑖(𝑡) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋𝑖(𝑡) ∗ 𝜇𝑝 ∗ 𝑑𝑡), where 𝜇𝑝 is a per-722 

cell passenger mutation rate. We define 𝐴𝐶𝑖(𝑡) as the count of “censored” passenger mutations at time 723 

𝑡 for the 𝑖𝑡ℎ clone, where the censoring occurs due to the limited sensitivity of ~38x sequencing 724 

coverage. This censoring is implemented by the following probability 𝑃(𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(38, 𝑉𝐴𝐹𝑖) > 2).  725 

Association between GEM and gene expression 726 

Separate association analyses were performed for each of the five tissue types available within TOPMed: 727 

whole blood, PBMCs, T cells, monocytes, and nasal epithelial tissue. We performed linear regression 728 

between the inverse normalized GEM estimate of the true mutation burden and inverse normalized 729 

gene expression in the tissue, where chronological age, sex, germline genotype PCs 1-15 and expression 730 

PCs 1-20 were included as covariates. In the whole blood analysis, we also included a cohort indicator as 731 

a covariate. Summary statistics from each analysis were then included a Bayesian multivariate analysis 732 

implemented in mashr 62. As a measure of “significance”, we used the mashr estimate of the local false-733 

sign rate (LFSR) < 0.05. Enrichment analyses were performed with the pathfindR80 package including all 734 

tested genes as the background set and Reactome81 as the reference database for gene sets.  735 
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 736 

Incident ischemic stroke analysis 737 

Ischemic stroke at most recent visit was chosen for the survival analysis event, and the time to event 738 

was defined as the difference in years between baseline and the most recent visit. The WHI, CHS, and 739 

ARIC cohorts were included. There was a total of 9,885 individuals included in this analysis from the WHI 740 

cohort. In WHI, 9,520 samples were included, there were 1,134 events. In CHS, 2,822 samples were 741 

included, and 199 had events. For ARIC, 3,475 samples were included with 231 events. Covariates 742 

included Ischemic case status at baseline, BMI measured at baseline, "ever smoker" status at baseline, a 743 

spline of age at blood draw, and genetic ancestry PCs 1-4.  744 

Incident coronary artery disease analysis 745 

Incident coronary artery disease at most recent visit was chosen for the survival analysis event, and the 746 

time to event was defined as the difference in years between baseline and the most recent visit. A 747 

composite coronary artery disease phenotype was defined as an event if at least one of the following 748 

occurred during the follow-up period: myocardial infarction, coronary artery bypass graft, angina, 749 

angioplasty, or death due to coronary heart disease. Individuals with prevalent disease based on this 750 

composite phenotype were excluded. The WHI, CHS, COPDGene, and FHS cohorts were included. In 751 

WHI, 9,039 samples were included, there were 1,787 events. In CHS, 2,456 samples were included, and 752 

933 had events. In FHS, 3,786 samples were included and 525 had events. For COPD, 4,987 samples 753 

were included with 133 events. Covariates included Ischemic case status at baseline, BMI measured at 754 

baseline, "ever smoker" status at baseline, a spline of age at blood draw, and genetic ancestry PCs 1-4.  755 

Lentiviral transduction of healthy CD34+ cells 756 

Lentiviral vectors expressing NRIP1 (V2LHS_172503, V2LHS_172504 and V2LHS_172507) or SMC4-757 

targeting shRNA (V2LHS_21882, V3LHS318029, V3LHS_318030) (Horizon) or non-silencing pGIPZ-puro 758 

lentiviral vector was  transfected  together  with  pCMV-dR8.9  and vesicular stomatitis virus G–expressing 759 

plasmids into HEK 293-FT cells using Lipofectamine 2000 (Thermo  Fisher  Scientific) for lentiviral  760 

supernatant production as previously described82. Primary CD34+ cells were obtained as excess material 761 

from harvests of normal donors for allogeneic bone marrow transplantation. Specimens were collected 762 

by the Johns Hopkins Kimmel Cancer Center Specimen Accessioning Core. Appropriate informed consent 763 

was obtained from all donors before specimen collection in accordance with the Declaration of Helsinki 764 

and under a research protocol approved by the Johns Hopkins Institutional Review Board.  CD34+ cell 765 

subsets were isolated using the CD34 MicroBead kit (Miltenyi Biotec) as previously described83. CD34+ 766 

cells were incubated with the viral supernatant and polybrene (8µg/ml; MilliporeSigma) for transduction 767 

in wells pre-coated with retronectin (20ng/ml; MilliporeSigma). After at least 48 hours, cells were treated 768 

with puromycin (0.5µg/ml; MilliporeSigma) for 4 days to select resistant cells.  769 

Apoptosis and differentiation assays 770 

Apoptosis was assessed by 7-AAD staining evaluated by flow cytometry (Thermo Fisher Scientific #00-771 

6993-50). Percentages of stem (CD34+CD38-) and progenitor cells (CD34+CD38+) were assessed by CD34 772 

(Thermo Fisher Scientific #11-0349-42) and CD38 (BioLegend #356641) staining evaluated by flow 773 

cytometry.  774 

 775 
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Clonogenicity assays 776 

CD34+ cells following puromycin treatment were collected, counted, and plated at a density of 2000 777 

cells/ml in methylcellulose-based media as previously described82. After 10 to 14 days of incubation at 778 

37°C in 5% CO2, the recovery of colony-forming units (burst forming unit-erythroid (BFU-E) and colony 779 

forming unit-granulocyte/monocyte (CFU-GM)) were determined by colony counting under bright-field 780 

microscopy. A cell aggregate composed of >50 cells was defined as a colony. 781 

Code and data availability 782 

Code for the Genomic and Epigenomic Mutation rate pipeline: https://github.com/weinstockj/GEM . 783 

Individual whole-genome sequence data for TOPMed whole genomes, individual-level harmonized 784 

phenotypes and the CHIP variant call sets used in this analysis are available through restricted access via 785 

the dbGaP TOPMed Exchange Area available to TOPMed investigators. 786 

Acknowledgements  787 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) program was 788 

supported by the National Heart, Lung and Blood Institute (NHLBI). See Supplementary Information 1 789 

for study omics support information. Centralized read mapping and genotype calling, along with variant 790 

quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-791 

117626-02S1; contract HHSN268201800002I). Phenotype harmonization, data management, sample-792 

identity quality control and general study coordination were provided by the TOPMed Data Coordinating 793 

Center (R01HL-120393; U01HL-120393; contract HHSN268201800001I). We thank the studies and 794 

participants who provided biological samples and data for TOPMed. The full study-specific 795 

acknowledgments are included in Supplementary Cohort Acknowledgements. The views expressed in 796 

this manuscript are those of the authors and do not necessarily represent the views of the National 797 

Heart, Lung, and Blood Institute; the National Institutes of Health; or the US Department of Health and 798 

Human Services. The authors wish to acknowledge the contributions of the consortium working on the 799 

development of the NHLBI BioData Catalyst ecosystem. 800 

Competing Interests Declaration 801 

L.M.R. is a consultant for the TOPMed Administrative Coordinating Center (through Westat). B.M.P. 802 

serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. 803 

J.Y. reports grant support from Bayer. M.C. reports grant support from Bayer and GSK, Consulting and 804 

speaking fees from Illumina and AstraZeneca. A.G.B. , P.N, and S.J. are cofounders, equity holders, and 805 

on the scientific advisory board of TenSixteen Bio. G.R.A. is an employee of Regeneron 806 

Pharmaceuticals and receives salary, stock and stock options as compensation.  807 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://github.com/weinstockj/GEM
https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 808 

Works Cited 809 

1. Jaiswal, S. et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes A BS TR AC T. 810 

NEJM.org. N Engl J Med 26, 2488–98 (2014). 811 

2. Genovese, G. et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. 812 

New England Journal of Medicine 371, 2477–2487 (2014). 813 

3. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and 814 

malignancies. Nature Medicine 20, 1472–1478 (2014). 815 

4. Jaiswal, S. et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. New 816 

England Journal of Medicine (2017) doi:10.1056/NEJMoa1701719. 817 

5. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nature 818 

Medicine 24, 1015–1023 (2018). 819 

6. Bick Alexander G. et al. Genetic Interleukin 6 Signaling Deficiency Attenuates Cardiovascular Risk in 820 

Clonal Hematopoiesis. Circulation 141, 124–131 (2020). 821 

7. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from 822 

myelodysplastic syndromes. Blood 126, 9–16 (2015). 823 

8. Loh, P.-R. et al. Insights about clonal hematopoiesis from 8,342 mosaic chromosomal alterations. 824 

Nature 559, 350–355 (2018). 825 

9. Loh, P.-R., Genovese, G. & McCarroll, S. A. Monogenic and polygenic inheritance become 826 

instruments for clonal selection. Nature 584, 136–141 (2020). 827 

10. Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 828 

584, 130–135 (2020). 829 

11. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the 830 

elderly. Blood 130, 742–752 (2017). 831 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


12. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 1–8 832 

(2022). 833 

13. Weinstock, J. S. et al. Aberrant activation of TCL1A promotes stem cell expansion in clonal 834 

haematopoiesis. Nature 616, 755–763 (2023). 835 

14. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse 836 

types of infection. Nat Med 27, 1012–1024 (2021). 837 

15. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure 838 

mortality. Science 377, 292–297 (2022). 839 

16. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation 840 

rates in human cancer cells. Nature 488, 504–507 (2012). 841 

17. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 842 

763–768 (2020). 843 

18. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yields new insights into the causes and 844 

consequences of clonal hematopoiesis. 2022.01.06.22268846 845 

https://www.medrxiv.org/content/10.1101/2022.01.06.22268846v1 (2022) 846 

doi:10.1101/2022.01.06.22268846. 847 

19. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–848 

427 (2014). 849 

20. Jakubek, Y. A. et al. Mosaic chromosomal alterations in blood across ancestries using whole-genome 850 

sequencing. Nat Genet 1–8 (2023) doi:10.1038/s41588-023-01553-1. 851 

21. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 852 

652–657 (2019). 853 

22. Zhou, W. et al. Mosaic loss of chromosome Y is associated with common variation near TCL1A. 854 

Nature Genetics 48, 563–568 (2016). 855 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


23. Terao, C. et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell 856 

differentiation. Nat Commun 10, 4719 (2019). 857 

24. Stacey, S. N. et al. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. 858 

Nat Genet 1–11 (2023) doi:10.1038/s41588-023-01555-z. 859 

25. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 860 

590, 290–299 (2021). 861 

26. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. 862 

Nature 1–9 (2022) doi:10.1038/s41586-022-05448-9. 863 

27. Bao, E. L. et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature 864 

586, 769–775 (2020). 865 

28. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. 866 

Nature Methods 9, 215–216 (2012). 867 

29. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. 868 

Nature 518, 317–330 (2015). 869 

30. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). 870 

31. Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes 871 

Project cohort including 602 trios. Cell 185, 3426-3440.e19 (2022). 872 

32. Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional rare genetic 873 

variation. Science (New York, N.Y.) 369, (2020). 874 

33. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the 875 

deleteriousness of variants throughout the human genome. Nucleic Acids Research 47, D886–D894 876 

(2019). 877 

34. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-878 

scale genetic association studies. Nature Genetics 50, 1335–1341 (2018). 879 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


35. Kessler, M. D. et al. Exome sequencing of 628,388 individuals identifies common and rare variant 880 

associations with clonal hematopoiesis phenotypes. 2021.12.29.21268342 881 

https://www.medrxiv.org/content/10.1101/2021.12.29.21268342v1 (2022) 882 

doi:10.1101/2021.12.29.21268342. 883 

36. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in 884 

regression, with application to genetic fine mapping. Journal of the Royal Statistical Society: Series B 885 

(Statistical Methodology) 82, 1273–1300 (2020). 886 

37. Carvalho-Silva, D. et al. Open Targets Platform: new developments and updates two years on. 887 

Nucleic Acids Res 47, D1056–D1065 (2019). 888 

38. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of 889 

CRISPR perturbations. Nature Genetics 51, 1664–1669 (2019). 890 

39. Weinstock, J. S. et al. Clonal hematopoiesis is driven by aberrant activation of TCL1A. 891 

2021.12.10.471810 Preprint at https://doi.org/10.1101/2021.12.10.471810 (2021). 892 

40. Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. 893 

Genome Res 22, 1790–1797 (2012). 894 

41. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat 895 

Protoc 11, 1–9 (2016). 896 

42. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 897 

humans. Nature 581, 434–443 (2020). 898 

43. Petryszak, R. et al. Expression Atlas update—an integrated database of gene and protein expression 899 

in humans, animals and plants. Nucleic Acids Res 44, D746–D752 (2016). 900 

44. Toren, A. et al. CD133‐Positive Hematopoietic Stem Cell “Stemness” Genes Contain Many Genes 901 

Mutated or Abnormally Expressed in Leukemia. Stem Cells 23, 1142–1153 (2005). 902 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


45. Chen, M.-H. et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 903 

5 Global Populations. Cell 182, 1198-1213.e14 (2020). 904 

46. Yuan, R. et al. Genetic coregulation of age of female sexual maturation and lifespan through 905 

circulating IGF1 among inbred mouse strains. Proceedings of the National Academy of Sciences 109, 906 

8224–8229 (2012). 907 

47. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 908 

622, 329–338 (2023). 909 

48. Blake, J. A. et al. Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative 910 

biology. Nucleic Acids Res 49, D981–D987 (2021). 911 

49. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000). 912 

50. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and 913 

polygenic scores that regulate blood gene expression. Nat Genet 53, 1300–1310 (2021). 914 

51. Fairfax, B. P. et al. Innate Immune Activity Conditions the Effect of Regulatory Variants upon 915 

Monocyte Gene Expression. Science 343, 1246949 (2014). 916 

52. Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 917 

622, 339–347 (2023). 918 

53. Ye, H. et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose 919 

Tissue Niche. Cell Stem Cell 19, 23–37 (2016). 920 

54. Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare variant 921 

association analysis of large whole-genome sequencing studies at scale. Nat Genet 52, 969–983 922 

(2020). 923 

55. Yeung, Y. T. et al. CELF2 suppresses non-small cell lung carcinoma growth by inhibiting the PREX2-924 

PTEN interaction. Carcinogenesis 41, 377–389 (2020). 925 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


56. Li, Z. et al. Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-926 

Genome Sequencing Studies. The American Journal of Human Genetics 104, 802–814 (2019). 927 

57. Chen, L. et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. 928 

Cell 167, 1398-1414.e24 (2016). 929 

58. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-930 

disease associations. Bioinformatics 26, 1205–1210 (2010). 931 

59. Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv 166298–932 

166298 (2017) doi:10.1101/166298. 933 

60. FinnGen. FinnGen. FinnGen Documentation of R3 release 934 

https://finngen.gitbook.io/documentation/. 935 

61. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 936 

(2020). 937 

62. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating 938 

and testing effects in genomic studies with multiple conditions. Nat Genet 51, 187–195 (2019). 939 

63. Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017). 940 

64. Valette, K. et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived 941 

from UK Biobank. Commun Biol 4, 700 (2021). 942 

65. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-943 

based analysis of pathways and genomes. Nucleic Acids Res 51, D587–D592 (2023). 944 

66. Anguille, S. et al. Interferon-α in acute myeloid leukemia: an old drug revisited. Leukemia 25, 739–945 

748 (2011). 946 

67. de Almeida, P. E. et al. Anti-VEGF Treatment Enhances CD8+ T-cell Antitumor Activity by Amplifying 947 

Hypoxia. Cancer Immunol Res 8, 806–818 (2020). 948 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


68. Palazon, A. et al. An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer 949 

Cell 32, 669-683.e5 (2017). 950 

69. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. 951 

Cell 184, 1348-1361.e22 (2021). 952 

70. Yu, B. et al. Association of Clonal Hematopoiesis With Incident Heart Failure. Journal of the 953 

American College of Cardiology 78, 42–52 (2021). 954 

71. Yu, Z. et al. Human Plasma Proteomic Profile of Clonal Hematopoiesis. 2023.07.25.550557 Preprint 955 

at https://doi.org/10.1101/2023.07.25.550557 (2023). 956 

72. Regier, A. A. et al. Functional equivalence of genome sequencing analysis pipelines enables 957 

harmonized variant calling across human genetics projects. Nature Communications 9, 1–8 (2018). 958 

73. Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for 959 

variant extraction and refinement from population-scale DNA sequence data. Genome Res 25, 918–960 

925 (2015). 961 

74. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous 962 

cancer samples. Nature Biotechnology 31, 213–219 (2013). 963 

75. Voss, K., Gentry, J. & Van der Auwera, G. Full-stack genomics pipelining with GATK4 + WDL + 964 

Cromwell. in (F1000 Research, 2017). doi:10.7490/f1000research.1114631.1. 965 

76. Beauchamp, E. M. et al. ZBTB33 Is Mutated in Clonal Hematopoiesis and Myelodysplastic 966 

Syndromes and Impacts RNA Splicing. Blood Cancer Discov (2021) doi:10.1158/2643-3230.BCD-20-967 

0224. 968 

77. Weinstock, J. S. et al. The genetic determinants of recurrent somatic mutations in 43,693 blood 969 

genomes. Science Advances 9, eabm4945 (2023). 970 

78. Jun, G. et al. Structural variation across 138,134 samples in the TOPMed consortium. bioRxiv 971 

2023.01.25.525428 (2023) doi:10.1101/2023.01.25.525428. 972 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/


79. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biology 17, 122 (2016). 973 

80. Ulgen, E., Ozisik, O. & Sezerman, O. U. pathfindR: An R Package for Comprehensive Identification of 974 

Enriched Pathways in Omics Data Through Active Subnetworks. Frontiers in Genetics 10, (2019). 975 

81. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Research 50, D687–976 

D692 (2022). 977 

82. Karantanos, T. et al. The role of the atypical chemokine receptor CCRL2 in myelodysplastic 978 

syndrome and secondary acute myeloid leukemia. Sci Adv 8, eabl8952 (2022). 979 

83. Karantanos, T. et al. CCRL2 affects the sensitivity of myelodysplastic syndrome and secondary acute 980 

myeloid leukemia cells to azacitidine. Haematologica 108, 1886–1899 (2023). 981 

 982 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.22.24312319doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312319
http://creativecommons.org/licenses/by-nc-nd/4.0/

