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The framework of this paper is subjective time perception in the context of intertemporal 
choice, that is to say, the process of making decisions on dated outcomes (monetary or not) 
by an individual or a group of individuals. In this setting, the Discounted Utility model and, 
more specifically, the exponential discounting have been the paradigmatic methodology used 
to measure the preferences on delayed outcomes. However, this model can only be applied 
to consistent choices in which individuals do not change their preferences when the involved 
rewards are delayed the same time interval. Unfortunately, this is not the case of several decision 
scenarios where time is viewed as a subjective variable. The objective of this paper is to formally 
analyze the consistency of intertemporal choices governed by a discount function, derived from 
the exponential, where time has been distorted according to certain psychological traits of the 
subjects involved in the decision-making. More specifically, the different types of decreasing 
impatience will be characterized by focusing on the distortion derived from the subjective 
perspective of time. The findings of this research are very relevant in order to explain the 
time-related behavior of decision-makers in some noteworthy fields such as finance, psychology, 
marketing or sociology.

1. Introduction

Intertemporal choice refers to the process whereby an individual or a group of individuals (e.g., an organization) have to select 
one among a set of dated outcomes. The simplest case is when the subject has to choose one of two dated rewards, and the most 
complex situation is when the individual must decide about his/her preferred sequence of rewards [1,2]. Typically, a problem in 
intertemporal choice considers an immediate or short-term advantage and a long-term disadvantage in a specific choice option, or 
vice versa. Because the consequences of a decision are not only rewards (in the traditional sense), this choice does not necessarily 
have to involve money or some material or economic consequence, but it may refer to non-monetary decisions such as health-related 
outcomes, substance abuse and others [3,4].

From an economic point of view, intertemporal choice may be analyzed by using either preferences or a discount function able 
to value the different offered options. The bridge between both perspectives can be found in [5]: If order, monotonicity, continuity, 
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Fig. 1. Structure of the paper.

impatience,1 and separability2 hold, and the set of rewards 𝑋 is an interval, then there are continuous real-valued functions 𝑢 on 𝑋
and 𝐹 on the time interval 𝑇 such that

(𝑥, 𝑠) ⪰ (𝑦, 𝑡) if, and only if, 𝑢(𝑥)𝐹 (𝑠) ≥ 𝑢(𝑦)𝐹 (𝑡). (1)

Additionally, 𝑢(0) = 0 and 𝑢 is increasing, whilst 𝐹 is decreasing and positive. Focusing on function 𝐹 , Samuelson [7] proposed 
the exponential discounting (𝐹 (𝑡) = exp{−𝑘𝑡}, 𝑘 > 0) as the criterion to value dated outcomes in his well-known Discounted Utility 
(DU) model. This discount function is characterized by a constant discount rate:

𝛿(𝑡) = 𝑘, (2)

which leads to consistency in the decisions governed by this financial pattern. However, this model (stationary and consistent) is not 
able to explain several paradoxes or anomalies shown in intertemporal choice (see, e.g., [6]: delay effect, interval effect, magnitude 
effect, direction effect, sign effect, sequence effect, date-delay effect and frame effect) and, consequently, this justifies the need to 
take into account other decision models.

In this paper, we will use these two perspectives when relating consistent (resp. inconsistent) preferences with additive (resp. 
non-additive) discount functions. However, we will focus on inconsistent preferences [8] and, more specifically, on those decisions 
guided by a criterion of strongly or moderately decreasing impatience. Thus, the main objective of this paper is to characterize the 
aforementioned types of decreasing impatience by using discount functions which result from distorting time in the exponential 
model.

This paper is structured as follows (see Fig. 1). Section 2 introduces the mathematical concept of time distortion and the implica-

tions of distorting time in the exponential discount function. The algebraic structure of the family distortions is presented in Section 3. 
Section 4 analyzes the different possibilities to model both consistent and inconsistent preferences as conditions equivalent, among 
others, to additivity and non-additivity, respectively, of the underlying discount function. Focusing on stationary discount functions, 
Section 5 deals with the concept of decreasing impatience and its main modalities: the so-called strongly and moderately decreasing 
impatience. In this way, stationary discount functions are presented as the exponential discounting where time has been previously 
distorted. Finally, Section 6 discusses the results obtained in this research, whilst Section 7 summarizes and concludes.

2. Distorting time in intertemporal choice

In the context of intertemporal choice, the impatience is given by the instantaneous discount rate of the discount function which 
describes the preferences of individuals:

1 Impatience or pure time preference means that “a given amount of utility is preferred the earlier it arrives”. More specifically, that “someone who currently 
expects to experience equal utility at two future times, will want to increase the earlier utility by one unit, in exchange for a decrease in the later utility of more than 
one unit” [6]. Mathematically, (𝑥, 𝑠) ≻ (𝑥, 𝑡), provided that 𝑠 < 𝑡 and 𝑥 > 0.

2 Separability means that the preference of a dated outcome, 𝐹 (𝑥, 𝑡), can be represented as a separable discount utility, 𝐹 (𝑥, 𝑡) = 𝑢(𝑥)𝐹 (𝑡), where money is evaluated 
2

with the increasing function 𝑢 (utility function) and time is projected with the decreasing function 𝐹 (unitary discount function).
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𝛿(𝑡) ∶= −d ln𝐹 (𝑡)
d𝑡

, (3)

that is to say, by the derivative of the natural logarithm of the discount function. On the other hand, inconsistency, that is to say, 
varying impatience, can be explained starting from the different perception of calendar time by people. The relative perception 
of time could be mathematically described by the concept of distortion. Therefore, the objective of this paper is to explain certain 
variations of impatience (inconsistency) by distorting the variable “time” in the expression of the well-known exponential discounting 
because, in the same way as [9], “we assume that the “true” internal discounting process is exponential”. At this point, we have to 
clarify that this is a model assumption rather than a firm theory about choice or human behavior.

The manuscript places itself in the Perceived-time-based tradition. In effect, taking into account the particular case of a separable 
discount function 𝐹 (𝑥, 𝑡) ∶= 𝑢(𝑥)𝐹 (𝑡) (as derived in Section 1), consumers’ decision could be biased either by considering the objective 
time interval (𝑡) and assigning different weights to outcomes (Perceived-Value–Based Accounts), or by substituting the objective time 
by subjective time and keeping invariable the utility function (Perceived-Time–Based Accounts) [9–11]. Observe that this last approach 
is equivalent to assume that people consider different discount rates. For example, when analyzing the psychological determinants 
of hyperbolic discounting:

𝐹 (𝑡) = 1
1 + 𝑘𝑡

, 𝑘 > 0, (4)

the Perceived-Value–Based Accounts focus on “why individuals discount the value of outcomes per se at a different rate”. Observe 
that this approach is consistent with the so-called magnitude effect, i.e., the discount rate is higher for smaller amounts.

However, this paper will be centered on the Perceived-Time–Based Accounts, that is to say, the effect of anticipatory time (derived 
from experienced time) in the specific expression of 𝐹 (𝑡). According to Block [12], psychological time can be considered either as 
succession, as duration or as temporal perspective. In this paper, we will consider time as duration. In this way, Fraisse [13,14], cited 
by [12], proposed that “direct time judgments [are] founded immediately on the changes we experience and later on the changes we 
remember” (p. 234). Observe that this approach gives rise to the so-called inconsistency in intertemporal choice and, in particular, to 
the well-known delay effect, i.e., the discount rate is larger the longer the delay.3

Cajueiro [15] and Takahashi [16] distorted time in the hyperbolic discount function, giving rise to the so-called 𝑞-exponential 
discounting. Several analyses in the field of econophysics have shown the relationship between the roles of psychophysical effects 
of time perception and the anomalies in intertemporal choice. On the other hand, Jin [17] introduced a discussion of the current 
influence of time perception on intertemporal choice by exploring different representations. In particular, Lu and Li [18] studied the 
psychophysics presented in the consumer’s preferences. Recent studies by [19] used Tsallis’ statistics-based econophysics to show that 
the 𝑞-exponential discount function may continuously parameterize a subject’s consistency in intertemporal choice. This result was 
generalized by [20] to any discount function, based on the deformed algebra developed in the Tsallis’ nonextensive thermostatistics. 
Later, Cruz Rambaud and Ventre [21] and Cruz Rambaud et al. [22] distorted time by means of the Stevens’ “power” law in a 
subadditive discount function in order to obtain inverse-S discounting curves. In this context, Webb [23] provided a novel model to 
study the inverse-S discounting behavior. Indeed, the analysis of time with delay functions will help us to better understand those 
mechanisms of intertemporal choice centered on time such as distorting time or several types of decreasing impatience.

The general principle of mapping a physical dimension (of which duration would be an instance) onto an internal scale through 
a law which can be expressed as an equation, particularly non-linear ones, is studied since the beginnings of psychophysics, notably 
in the field of psychophysical scaling. In order to generalize this approach, the following definition provides a general description of 
the concept of time distortion (for a summary of this psychological concept, see [24] who show behavioral data and their modeling 
thereof). In this way, the term “distortion” will be used in a very general sense, also encompassing a perfectly linear or even 
proportional mapping of the objective into the subjective realm as a special case.

Definition 1. A time distortion is a continuous real-valued function, 𝑔(𝑡), defined in an interval [0, 𝑡0) (𝑡0 can be +∞), satisfying the 
following conditions:

1. 𝑔(0) = 0.

2. 𝑔(𝑡) is strictly increasing.

An alternative choice might have been to present the definition of what should happen at 0 as a limit:

lim
𝑡→0

𝑔(𝑡) = 0

and keep 𝑡 strictly positive rather than including 0 in the domain. The main time distortions in the existing literature on the topic of 
intertemporal choice are the following functions:

• The so-called Weber-Fechner law [25], defined as 𝑔(𝑡) = 𝛼 ln(1 + 𝛽𝑡), where 𝛼 > 0 and 𝛽 > 0. In this case, 𝑔′(𝑡) = 𝛼𝛽

1+𝛽𝑡
, from which 

𝑔′(0) = 𝛼𝛽. The idea of showing the tangent at 0 is to indicate whether the function is below or above the 𝑔0(𝑡) = 𝑡 reference 

3 In any case, we can analyze the joint perceived value of individuals by considering a general, stationary discount function 𝐹 (𝑥, 𝑡) o, even a dynamic discounting 
3

model 𝐹 (𝑥, 𝑑, 𝑡). See Section 3.
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Fig. 2. Weber-Fechner law (𝛼𝛽 ≤ 1).

Fig. 3. Weber-Fechner law (𝛼𝛽 > 1).

in order to examine whether there is a range 0 < 𝑡 < 𝑡0 in which 𝑔(𝑡) < 𝑡) and another in 𝑡 > 𝑡0 in which 𝑔(𝑡) > 𝑡, and determine 
the value of 𝑡0. Therefore, this time distortion can describe either a situation in which the perceived time is always below the 
calendar time and the gap between them is increasing more than proportionally (Fig. 24), or the same former situation but with 
an initial interval where the perceived time is higher (see Fig. 3).

• The well-known Stevens’ “power” law [26], defined as 𝑔(𝑡) = 𝛼𝑡𝛽 , where 𝛼 > 0 and 𝛽 > 0. In this case, 𝑔′(𝑡) = 𝛼𝛽𝑡𝛽−1, from which

𝑔′(0) =
⎧⎪⎨⎪⎩

0, if 𝛽 > 1
𝛼, if 𝛽 = 1
∞, if 0 < 𝛽 < 1

(5)

The internal representation of duration, being mental, has no real unit. Only when this internal representation is mapped back 
to the physical world, in timing tasks, numerical estimation, reproduction, comparison, etc., of durations, can a measurement be 
made. Therefore, the comparison between the graphs of function 𝑔(𝑡) versus a 𝑔0(𝑡) = 𝑡 diagonal line does not make much sense 
as 𝑔(𝑡) and 𝑔0(𝑡) are not commensurable. What does make sense is the comparison of the behavior of 𝑔(𝑡) versus a linear or, more 
accurately, a proportional model, in which time passed on the internal magnitude scale is proportional to duration in seconds, 
hours, months, or whatever unit is being used. However and for the sake of simplicity, when comparing 𝑔(𝑡) and 𝛼𝑡, for a certain 
𝛼 > 0, we assume that a previous, suitable change of variable allows comparing 𝑔(𝑡) and 𝑡.
Therefore, the above-defined time distortion can describe either a situation in which the perceived time is always below (resp. 
under) the calendar time and the gap between them is proportionally increasing (Fig. 5, resp. Fig. 6) or the same former situation 
but with an initial interval where the perceived time is lower (resp. higher) and the gap existing between both times is increasing 
more than proportionally (Fig. 4, resp. Fig. 7).

• Other time distortions such as 𝑔(𝑡) = 𝛼𝑡2 + 𝛽𝑡, where 𝛼 > 0 and 𝛽 > 0. In this case, 𝑔′(𝑡) = 2𝛼𝑡 + 𝛽, from which 𝑔′(0) = 𝛽. Therefore, 
this time distortion can describe either a situation in which the perceived time is always under the calendar time and the gap 

4 In what follows, the ordinate of each graph will represent the values of the functions displayed in such graphs. For the sake of simplicity, these labels have been 
4

omitted.
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Fig. 4. Stevens’ power law (𝛽 > 1).

Fig. 5. Stevens’ power law (𝛽 = 1, 0 < 𝛼 < 1).

Fig. 6. Stevens’ power law (𝛽 = 1, 𝛼 > 1).

between them is increasing more than proportionally (Fig. 8), or the same former situation but with an initial interval where 
the perceived time is lower (Fig. 9).

As indicated, in this paper, starting from the exponential discount function, defined by 𝐹 (𝑡) = exp{−𝑘𝑡}, with 𝑘 > 0, we are going 
to distort time by means of a given function 𝑔(𝑡) such that the intertemporal choice is now described by 𝐺(𝑡) ∶= exp{−𝑘𝑔(𝑡)}, with 
𝑘 > 0 [39]. Easy calculations show that the instantaneous discount rate of 𝐺 and its derivative are given by (see Equation (2)):
5

𝛿𝐺(𝑡) = 𝑘𝑔′(𝑡) (6)



Heliyon 9 (2023) e21077S. Cruz Rambaud and J. Sánchez García

Fig. 7. Stevens’ power law (0 < 𝛽 < 1).

Fig. 8. 𝑔(𝑡) = 𝛼𝑡2 + 𝛽𝑡 (𝛽 ≥ 1).

Fig. 9. 𝑔(𝑡) = 𝛼𝑡2 + 𝛽𝑡 (0 < 𝛽 < 1).

and

𝛿′
𝐺
(𝑡) = 𝑘𝑔′′(𝑡). (7)

With respect to the new discount function 𝐺(𝑡), the decision-maker perceives time above the calendar time (resp. under the calendar 
time) if 𝑔(𝑥) > 𝑥 (resp. 𝑔(𝑥) < 𝑥). Additionally, if 𝑔(𝑥) is convex (resp. concave), then the intertemporal choice is inconsistent and shows 
6

increasing (resp. decreasing) impatience. Specifically,
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• In Fig. 4, the intertemporal choice exhibits increasing impatience, and time is perceived under (resp. above) the calendar time 
from 0 to 𝑡0 (resp. from 𝑡0 to ∞).

• In Fig. 5, the intertemporal choice exhibits constant impatience, and time is always perceived under the calendar time.

• In Fig. 6, the intertemporal choice exhibits constant impatience, and time is always perceived above the calendar time.

• In Fig. 7, the intertemporal exhibits decreasing impatience, and time is perceived above (resp. under) the calendar time from 0 
to 𝑡0 (resp. from 𝑡0 to ∞).

3. Algebraic structure of the set of distortions

The set of all possible time distortions, denoted by , with respect to the composition of functions (◦), that is to say, the couple 
(, ◦), is a monoid since, given two arbitrary time distortions 𝑔1 and 𝑔2, the composition 𝑔1◦𝑔2 is a new time distortion, and the 
identity function (no distortion of calendar time) is the null element. The algebraic structure of monoid is very easy and intuitive 
since it can be viewed as the process of building words by the single juxtaposition of letters being the empty word the null element.

Based on this basic idea, the composition of two time distortions has the following psychological interpretation. The result of 
distorting time by an individual may be the final output of distorting time due to several reasons (personal traits, addictions, etc.) 
[27] which, depending on the specific moment, arise in a certain order like the juxtaposition of letters which compose a word. 
For example, in case of a poly-addiction (multiple addictions at once), if the individual is smoker (addiction #1) and drugs addict 
(addiction #2), when smoking is the primary need, he/she will distort time according to certain functions 𝑔1 and 𝑔2 (applied in this 
order). However, if the primary necessity is drugs consumption, he/she will distort time according to 𝑔2 and 𝑔1 (in this order). This 
will depend on what drug is available, what is affordable or what is easier to get for the person who is interested in.

Moreover, the degree of time distortion could be modulated by taking suitable multiples of the distortions describing subjective 
time, giving rise to the family of distortions 𝑔𝛼 ∶= 𝛼(𝑔1◦𝑔2) + (1 − 𝛼)(𝑔2◦𝑔1), where 0 ≤ 𝛼 ≤ 1. In general, given 𝑛 traits or addictions 
#1, #2, … , #𝑛, the potential distortions may be described by the following alpha-weighted summation over 𝑆𝑛 :

𝑔𝛼 ∶=
∑

(𝑖1 ,𝑖2 ,…,𝑖𝑛)∈𝑆𝑛

𝛼(𝑖1 ,𝑖2 ,…,𝑖𝑛)(𝑔𝑖1
◦𝑔𝑖2

◦⋯◦𝑔𝑖𝑛
), (8)

where (𝑖1, 𝑖2, … , 𝑖𝑛) denotes any permutation of (1, 2, … , 𝑛), 𝑆𝑛 is the group of permutation of the 𝑛 first positive integers, and

∑
(𝑖1 ,𝑖2 ,…,𝑖𝑛)∈𝑆𝑛

𝛼(𝑖1 ,𝑖2 ,…,𝑖𝑛) = 1.

The following paragraphs will provide a mathematical interpretation of this construction. To do this, we first need the concept of 
derivation relative to a function [28]. Let 𝑣(𝑡, ℎ) be a real function of two variables 𝑡 and ℎ such that, for every 𝑠:

lim
ℎ→0

𝑣(𝑠, ℎ) = 𝑠.

Let 𝑓 (𝑡) be a real function differentiable at 𝑡 = 𝑠. The derivative of 𝑓 relative to 𝑣, at 𝑡 = 𝑠, denoted by 𝐷𝑣(𝑓 )(𝑠), is defined as the 
following limit:

𝐷𝑣(𝑓 )(𝑠) ∶= lim
ℎ→0

𝑓 [𝑣(𝑠, ℎ)] − 𝑓 (𝑠)
ℎ

. (9)

In the particular case in which 𝑠 = 𝑔(𝑡) and 𝑣(𝑠, ℎ) = 𝑔(𝑡) + 𝑔′(𝑡)ℎ, where 𝑔(𝑡) is a differentiable real function, one has:

𝐷𝑔(𝑓 )(𝑠) ∶= lim
ℎ→0

𝑓 [𝑔(𝑡) + 𝑔′(𝑡)ℎ] − 𝑓 [𝑔(𝑡)]
ℎ

= 𝑓 ′[𝑔(𝑡)]𝑔′(𝑡). (10)

Taking into account that 𝑣(𝑠, ℎ) ≈ 𝑔(𝑡 + ℎ), the former derivative is obviously (𝑓◦𝑔)′(𝑡). Summarizing,

𝐷𝑔(𝑓 ) = (𝑓◦𝑔)′. (11)

This view of the derivative of function composition is very important because 𝐷𝑔(𝑓 ) means the variation of 𝑓 in the direction 
provided by 𝑔, that is to say, 𝑔′. Thus, going back to the object of this paper, the dominant trait or addiction (#1) distorts time in 
the direction pointed by the secondary trait or addiction (#2), that is to say, (𝑔1◦𝑔2)′. Obviously, this is a local approach because, at 
a given instant, the addiction #1 could be dominant in a beginning but this situation could change in favor of #2, in which case we 
will be interested in the composition (𝑔2◦𝑔1)′ (observe here that the function composition is not commutative). In other words, the 
poly-addict will jump back-and-forth from one drug to the next.

According to Monterosso and Ainslie [29], the reason whereby an addiction occurs in the first place is still unclear. On the other 
hand, addicts show an undeniable inability to escape from frequent alternation of contradictory preferences about their addictive 
activity. Moreover, Roelofsma and Read [30] claim that “decision makers appear to have as many discount rates as choice situations 
into which they can be placed”. In this context, the relative importance of each cause will determine the specific deformations and 
the order of their composition (recall again that the composition of functions is not commutative). Summarizing, if an individual is 
male and drugs addict, he will deform time according to 𝑔1◦𝑔2 or 𝑔2◦𝑔1, depending on the relative importance of causes 1 and 2 
for this individual. Rachlin [31] and Xu et al. [32] used a parameter 𝑠 to represent the subjective time in the following discounting 
7

expression (see also [33]):
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Fig. 10. Composition Stevens with Weber-Fechner.

𝑉 = 𝑅

1 + 𝑘𝑡𝑠
, 𝑘 > 0, (12)

where 𝑉 is the subjective value of a reward 𝑅, available at a delay 𝑡. There are other generalizations of the hyperbolic discount-

ing function. In effect, the one proposed by Loewenstein and Prelec [34], which exponentiates the entire denominator, has many 
properties in common with the expression in (12), especially when considering the limiting cases. One important difference between 
Loewenstein and Prelec’s and Rachlin’s discount functions is that the first one is the result of distorting time in the exponential 
model by means of the Weber-Fechner law, whilst the second one results from plugging a “power” law into hyperbolic discounting. 
In this case, at 𝑠 = 1, then 𝑡𝑠 = 𝑡 and subjective time coincides with calendar time; for 0 < 𝑠 < 1, 𝑡𝑠 is concave and the subjective time 
marginally decreases as 𝑡 increases; finally, for 𝑠 > 1, 𝑡𝑠 is convex and subjective time positively accelerates as 𝑡 increases.

Observe that, moreover, this discount function is the result of considering the composition of a Weber-Fechner and a Stephens’ 
“power” law, as subjective times, in the exponential discounting.

In general, the composition of two time distortions 𝑔1 and 𝑔2 can give rise to a new distortion with more “alternances” in its 
convexity and its relative position with respect to calendar time, specifically when one of the composed distortions is convex and the 
other is concave (or reciprocally). This is not the case when the two distortions are convex (or concave) because the composition of 
two increasing, convex (or concave) function is convex (resp. concave).5

Obviously, if the composition changes its convexity, this is because there exists at least a 𝑡0 (inflection point) such that 
(𝑔1◦𝑔2)′′(𝑡0) = 0.

Example 1. The composition of the Weber-Fechner law, 𝑔1(𝑡) = 𝛼 ln(1 + 𝛽𝑡), and the Stevens’ “power” law, 𝑔2(𝑡) = 𝛾𝑡𝛿 , results in:

• (𝑔1◦𝑔2)′′(𝑡) = 𝛼𝛽𝛾𝛿𝑡𝛿−2 𝛿−1−𝛽𝛿𝑡𝛿

(1+𝛽𝛾𝑡𝛿 )2 . Therefore, a possible value 𝑡0 must satisfy 𝛿 − 1 − 𝛽𝛾𝑡𝛿 = 0, from which:

– If 0 < 𝛿 < 1, then the composite function is strictly concave and the equation 𝛿 − 1 = 𝛽𝛾𝑡𝛿 which has no solution.

– If 𝛿 > 1, then 𝑡0 =
(

𝛿−1
𝛽𝛾

)1∕𝛿
.

• (𝑔2◦𝑔1)′′(𝑡) = 𝛼𝛽2𝛾𝛿 ln𝛿−2(1 + 𝛽𝑡) 𝛿−1−ln(1+𝛽𝑡)
(1+𝛽𝑡)2 . Therefore, a possible value 𝑡0 must satisfy 𝛿 − 1 − ln(1 + 𝛽𝑡) = 0, from which:

– If 0 < 𝛿 < 1, then 𝛿 − 1 = ln(1 + 𝛽𝑡) which has no solution.

– If 𝛿 > 1, then 𝑡0 =
exp{𝛿−1}−1

𝛽
.

More specifically, the composition of the Weber-Fechner law, where 𝛼 = 2 and 𝛽 = 0.4, with the Stevens’ “power” law, with 𝛾 = 1
and 𝛿 = 2, in the two orders, gives the time distortions shown in Figs. 10 (𝑡0 = 1.5811) and 11 (𝑡0 = 4.2957).

In general, given the relevance of points at which the second derivative vanishes, we can enunciate Theorem 1.

Theorem 1. Let 𝑃 (𝑡) = − (ln𝐹 )′′(𝑡)
(ln𝐹 )′(𝑡) be the Prelec’s index corresponding to 𝐹 [35] and 𝐹𝑖 ∶= exp{−𝑘𝑔𝑖(𝑡)}, 𝑘 > 0, where 𝑔𝑖 (𝑖 = 1, 2) is a time 

distortion. The following conditions are equivalent:

(i) (𝑔1◦𝑔2)′′(𝑡0) = 0.

(ii) 𝑃1(𝑔2(𝑡0))𝑔′2(𝑡0) = −𝑃2(𝑡0).

5 In effect, given two deformations of time, 𝑔1 and 𝑔2 , one has:

• (𝑔1◦𝑔2)′(𝑡) = 𝑔′1[𝑔2(𝑡)]𝑔
′
2(𝑡).
8

• (𝑔1◦𝑔2)′′(𝑡) = 𝑔′′1 [𝑔2(𝑡)][𝑔
′
2(𝑡)]

2 + 𝑔′1[𝑔2(𝑡)]𝑔
′′
2 (𝑡).
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Fig. 11. Composition Weber-Fechner with Stevens.

(iii) 𝐷(𝐷𝑔2
𝑔1)(𝑡0) = 0, where 𝐷 is the usual derivative and 𝐷𝑔2

𝑔1 is the derivative of 𝑔1 according to 𝑔2.

Proof. (i) ⇔ (ii). In effect, by the formula of the second derivative of a composition of two function, one has:

(𝑔1◦𝑔2)′′(𝑡) = 𝑔′′1 [𝑔2(𝑡)][𝑔
′
2(𝑡)]

2 + 𝑔′1[𝑔2(𝑡)]𝑔
′′
2 (𝑡).

Therefore, (𝑔1◦𝑔2)′′(𝑡0) = 0 is equivalent to:

−
𝑔′′1 [𝑔2(𝑡0)]
𝑔′1[𝑔2(𝑡0)]

=
𝑔′′2 (𝑡0)
[𝑔′2(𝑡0)]

2 ,

or

𝑃1(𝑔2(𝑡0))𝑔′2(𝑡0) = −𝑃2(𝑡0).

(i) ⇔ (iii). It is immediate by taking into account that:

𝐷(𝐷𝑔2
𝑔1)(𝑡0) =𝐷[(𝑔1◦𝑔2)′] = (𝑔1◦𝑔2)′′.

This concludes the proof. □

4. Consistency, transitivity and additivity in intertemporal choice

In this section, we are going to more accurately present some concepts and properties which characterize the intertemporal choice 
by using both preferences and discount functions. In effect, let 𝑋 = [0, +∞) be the set of all non-negative rewards, 𝐷 ⊆ ℝ the set of 
potential benchmarks (instants at which the decision is made) and 𝑇 = [0, +∞] the set of all possible time intervals. Observe that we 
are considering a dynamic context in which the preference depends on the benchmark. Therefore, Definition 2 provides the most 
general setting in which the preferences of an individual (governed by his/her subjective perception of time) depend on the moment 
at which the decision is made.

Definition 2. A positive and continuous real-valued function

𝐹 ∶𝑋 ×𝐷 × 𝑇 →𝑋

such that

(𝑥,𝑑, 𝑡)↦ 𝐹 (𝑥,𝑑, 𝑡)

is said to be a dynamic discount function if 𝐹 is strictly increasing with respect to 𝑥, strictly decreasing with respect to 𝑡, and satisfies

1. 𝐹 (0, 𝑑, 𝑡) = 0, for every 𝑑 ∈𝐷 and every 𝑡 ∈ 𝑇 .

2. 𝐹 (𝑥, 𝑑, 0) = 𝑥, for every 𝑥 ∈𝑋 and every 𝑑 ∈𝐷.

𝐹 (𝑥, 𝑑, 𝑡) represents the amount equivalent at 𝑑 of $𝑥 available at 𝑑 + 𝑡.
9

Definition 3 is the stationary version of Definition 2, because the decision-making does not depend on the point of reference.
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Definition 3. A positive and continuous real-valued function

𝐹 ∶𝑋 × 𝑇 →𝑋

such that

(𝑥, 𝑡)↦ 𝐹 (𝑥, 𝑡)

is said to be a stationary discount function if 𝐹 is strictly increasing with respect to 𝑥, strictly decreasing with respect to 𝑡, and satisfies

1. 𝐹 (0, 𝑡) = 0, for every 𝑡 ∈ 𝑇 .

2. 𝐹 (𝑥, 0) = 𝑥, for every 𝑥 ∈𝑋.

𝐹 (𝑥, 𝑡) represents the amount equivalent at 0 of $𝑥 available at 𝑡.
Finally, Definition 4 sets the structure of the discount function to be employed in this paper, where time and amount behave as 

separated variables in the expression of the discount function.

Definition 4. A stationary (resp. dynamic) discount function 𝐹 (𝑥, 𝑡) (resp. 𝐹 (𝑥, 𝑑, 𝑡)) is said to be separable if 𝐹 (𝑥, 𝑡) = 𝑢(𝑥)𝐹 (𝑡) (resp. 
𝐹 (𝑥, 𝑑, 𝑡) = 𝑢(𝑥)𝐹 (𝑑, 𝑡)), where 𝑢 is a utility function, 𝐹 (resp. 𝐹 (𝑑, 𝑡)) is strictly decreasing (resp. strictly decreasing with respect to 𝑡), 
and 𝐹 (0) = 1 (resp. 𝐹 (𝑑, 0) = 1, for every 𝑑 ∈𝐷).

From now on, we will consider only separable, stationary (or dynamic) discount functions. In this case, we will refer to 𝐹 (𝑡)
(or 𝐹 (𝑑, 𝑡)) as the unitary discount function. However, before continuing with the presentation of this paper, we need the following 
definition.

Definition 5. An intertemporal choice with associated indifference relation ∼ is said to be transitive if, for every 𝑥, 𝑦, 𝑧 ∈𝑋 (𝑥 ≤ 𝑦 ≤ 𝑧) 
and every 𝑠, 𝑡, 𝑟 ∈ 𝑇 (𝑠 ≤ 𝑡 ≤ 𝑟), (𝑥, 𝑠) ∼ (𝑦, 𝑡) and (𝑦, 𝑡) ∼ (𝑧, 𝑟) implies (𝑥, 𝑠) ∼ (𝑧, 𝑟).

Basically, in the valuation process of an intertemporal choice, we can use either a fix point of reference or a variable benchmark. 
In the first case, the involved discount function is stationary whilst, in the second case, the discount function will be dynamic.

4.1. Case of a fix point of reference

In this case, if the fix point of reference is 𝑝, the intertemporal choice is valued with a given stationary discount function 𝐹𝑝, 
defined on the interval [𝑝, +∞). Therefore, if 𝑝 ≤ 𝑠 ≤ 𝑡 ≤ 𝑟, necessarily we must use the forward discount factors, derived from 𝐹𝑝. 
Thus, (𝑥, 𝑠) ∼𝑝 (𝑦, 𝑡) implies

𝑢(𝑥)
𝑢(𝑦)

=
𝐹𝑝(𝑡)
𝐹𝑝(𝑠)

, (13)

whilst (𝑦, 𝑡) ∼𝑝 (𝑧, 𝑟) implies

𝑢(𝑦)
𝑢(𝑧)

=
𝐹𝑝(𝑟)
𝐹𝑝(𝑡)

. (14)

By multiplying both sides of equations (13) and (14), one has:

𝑢(𝑥)
𝑢(𝑧)

=
𝐹𝑝(𝑟)
𝐹𝑝(𝑠)

(15)

from where (𝑥, 𝑠) ∼𝑝 (𝑧, 𝑟) and so the intertemporal choice is transitive.

4.2. Case of a variable benchmark

In this case, the intertemporal choice is valued with a dynamic discount function 𝐹 , defined on 𝐷 × 𝑇 . Thus, (𝑥, 𝑠) ∼ (𝑦, 𝑡) implies

𝑢(𝑥) = 𝑢(𝑦)𝐹 (𝑠, 𝑡− 𝑠), (16)

whilst (𝑦, 𝑡) ∼ (𝑧, 𝑟) implies

𝑢(𝑦) = 𝑢(𝑧)𝐹 (𝑡, 𝑟− 𝑡). (17)

By combining both equations (16) and (17), one has:

𝑢(𝑥) = 𝑢(𝑧)𝐹 (𝑠, 𝑡− 𝑠)𝐹 (𝑡, 𝑟− 𝑡). (18)
10

Definition 6 provides a condition equivalent to transitivity by using a discount function instead of preferences (see Proposition 1).
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Definition 6. A dynamic discount function 𝐹 is said to be additive if, for every 𝑝 ∈𝐷 and every 𝑎, 𝑏 ∈ 𝑇 , the following equation holds:

𝐹 (𝑝, 𝑎)𝐹 (𝑝+ 𝑎, 𝑏) = 𝐹 (𝑝, 𝑎+ 𝑏),

provided that 𝑝 + 𝑎 ∈𝐷.

Obviously, one has the following statement.

Proposition 1. An intertemporal choice with the indifference relation ∼ associated to the discount function 𝐹 is transitive if, and only if, 𝐹
is additive.

Proof. It is obvious by taking 𝑝 = 𝑠, 𝑎 = 𝑡 − 𝑠 and 𝑏 = 𝑟 − 𝑡, from which 𝑎 + 𝑏 = 𝑟 − 𝑠. □

Now, we will try to relate all these concepts. Obviously, a dynamic discount function 𝐹 gives rise to a family {𝐹𝑝}𝑝∈𝐷 of stationary 
discount functions, defined by 𝐹𝑝(⋅) = 𝐹 (𝑝, ⋅). Therefore, we can state Theorem 2 which means a bridge connecting the concepts of 
additivity, transitivity and consistency.

Theorem 2. For a dynamic discount function, 𝐹 , the following conditions are equivalent:

(i) 𝐹 is additive.

(ii) The intertemporal choice is transitive with respect to the indifference relation associated to 𝐹 .

(iii) The intertemporal choice is transitive with respect to the indifference relation associated to 𝐹𝑝, for every 𝑝 ∈𝐷.

Proof. (i) ⇒ (ii). It is obvious by taking into account Proposition 1.

(ii) ⇒ (iii). In effect, take into account that now 𝑢(𝑥)
𝑢(𝑧) =

𝐹𝑝(𝑟)
𝐹𝑝(𝑠)

is equivalent to 𝑢(𝑥)
𝑢(𝑧) = 𝐹 (𝑠, 𝑟).

(iii) ⇒ (i). In this case, 𝐹𝑝(𝑟)
𝐹𝑝(𝑠)

= 𝐹𝑞 (𝑟)
𝐹𝑞 (𝑠)

.

This concludes the proof of this theorem. □

The statements included in the former theorem can be particularized in the following corollary.

Corollary 1. For a stationary discount function, 𝐹 , the following conditions are equivalent:

(i) 𝐹 is additive.

(ii) The intertemporal choice is transitive with respect to the indifference relation associated to 𝐹 .

(iii) The intertemporal choice with the indifference relation associated to 𝐹 is consistent.

(iv) 𝐹 is the exponential discount function.

As formerly indicated, from now on, we will deal with discount functions derived from the exponential discounting where time 
has been distorted by a given function 𝑔(𝑡), that is to say, 𝐺(𝑡) ∶= exp{−𝑘𝑔(𝑡)}. Alternatively, we could start from any stationary 
or dynamic discount function and distort its variable “time” with a given discount rate. However, this general case will not be 
considered here. By Corollary 1, it is obvious that the intertemporal choice governed by 𝐺(𝑡) is consistent if, and only if, 𝑔(𝑡) = 𝑡, 
that is to say, the distorted time coincides with the calendar time.6 Therefore, in the next section, we will consider those discount 
functions 𝐺(𝑡), with 𝑔(𝑡) ≠ 𝑡, which, consequently, describe inconsistent intertemporal choices. However, for the sake of simplicity, 
we will only consider the case of inconsistency consisting in decreasing impatience.

5. An analysis of decreasing impatience with time distortions

Definition 7 describes the main situation of intransitive (inconsistent) intertemporal choice (see, e.g., [33]).

Definition 7. A decision-maker exhibiting preferences ⪯ has decreasing impatience if, for every 𝑠 < 𝑡, 𝑘 > 0 and 0 < 𝑥 < 𝑦, (𝑥, 𝑠) ∼ (𝑦, 𝑡)
implies (𝑥, 𝑠 + 𝑘) ⪯ (𝑦, 𝑡 + 𝑘).

In order to introduce the concepts of strongly and moderately decreasing impatience [36], we recall the following lemma.

6 To the extent that distorted time is a construct to be considered at a mental/subjective/internal representational scale, an expression 𝑔(𝑡) = 𝑎𝑡 (𝑎 > 0) is more 
reasonable than 𝑔(𝑡) = 𝑡 to represent “calendar time” because it allows for change of unit (to be attributed to the multiplicative constant). However, as formerly 
11

indicated, we will make a suitable change of variable in order to consider 𝑔(𝑡) = 𝑡 as the calendar time.
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Lemma 1 ([37]). A decision-making based on preferences ⪰ exhibits decreasing impatience if, and only if, for every (𝑥, 𝑠) and (𝑦, 𝑡) such that 
(𝑥, 𝑠) ∼ (𝑦, 𝑡) and 𝜏 > 0, there exists 𝜎 = 𝜎(𝑥, 𝑦, 𝑠, 𝑡, 𝜏) (0 < 𝜎 < 𝜏) such that (𝑥, 𝑠 + 𝜎) ∼ (𝑦, 𝑡 + 𝜏).

Definitions 8 and 9, and Propositions 2 and 3 display the main types of decreasing impatience [36] and their characterizations.

Definition 8. A decision-maker exhibiting decreasing impatience has strongly decreasing impatience if 𝑠𝜏 > 𝑡𝜎.

The elasticity 𝜖(𝑡) of a discount function 𝐹 (𝑡) is defined as [34]:

𝜖(𝑡) ∶= −𝑡𝛿(𝑡),

where 𝛿(𝑡) is the discount rate of 𝐹 (𝑡). With this definition, we can state the following proposition.

Proposition 2. A decision-maker exhibiting preferences ⪰ has strongly decreasing impatience if, and only if, the elasticity 𝜖(𝑡) ∶= −𝑡𝛿(𝑡) is 
increasing.

Definition 9. A decision-maker exhibiting decreasing impatience has moderately decreasing impatience if 𝑠𝜏 < 𝑡𝜎.

Proposition 3. A decision-maker exhibiting preferences ⪰ and decreasing impatience has moderately decreasing impatience if, and only if, 
𝜖(𝑡) is decreasing.

Now, we are going to characterize strongly decreasing impatience in order to facilitate generating subjective discount functions 
satisfying this property. In effect, let 𝐹 (𝑡) = exp{−𝑘𝑡}, with 𝑘 > 0, the exponential discount function. It is well known that the 
instantaneous discount rate of 𝐹 is constant and is given by 𝛿𝐹 (𝑧) = 𝑘. As indicated, our aim is to distort time with a function 𝑔(𝑡)
such that the intertemporal choice described by 𝐺(𝑡) ∶= exp{−𝑘𝑔(𝑡)} exhibits decreasing impatience, in which case:

𝛿𝐺(𝑧) = 𝑘𝑔′(𝑧)

and

𝛿′
𝐺
(𝑧) = 𝑘𝑔′′(𝑧).

Therefore, it can be claimed that the intertemporal choice exhibits decreasing (resp. increasing) impatience if, and only if, 𝑔(𝑧) is 
increasing and concave (resp. convex). Moreover, if the decreasing impatience has to be strong, then, by Proposition 2, the elasticity 
of 𝐺(𝑡) must be increasing, that is to say,

𝜖′
𝐺
(𝑧) = −𝛿𝐺(𝑧) − 𝑧𝛿′

𝐺
(𝑧) ≥ 0

or, equivalently,

𝛿𝐺(𝑧) + 𝑧𝛿′
𝐺
(𝑧) ≤ 0.

By substituting 𝛿𝐺(𝑧) and 𝛿′
𝐺
(𝑧), one has:

𝑔′(𝑧) + 𝑧𝑔′′(𝑧) ≤ 0,

that is to say,

1
𝑧
≤ − 𝑔′′(𝑧)

𝑔′(𝑧)
.

Taking into account that the two sides of the former inequality are positive, we can integrate them, between 1 and 𝑡, maintaining 
the same inequality:

𝑡

∫
1

1
𝑧
d𝑧 ≤ −

𝑡

∫
1

𝑔′′(𝑧)
𝑔′(𝑧)

d𝑧,

which leads to the natural logarithm of 𝑧 and 𝑔′(𝑧) in the left-hand and the right-hand side of the former inequality, respectively. 
Simple calculation results in:

𝑔′(𝑡) ≤ 𝑔′(1)
𝑡

.

Once again, the two sides of the former inequality are positive whereby we can integrate between 1 and 𝑡, leading to:
12

𝑔(𝑡) ≤ 𝑔(1) + 𝑔′(1) ln 𝑡.



Heliyon 9 (2023) e21077S. Cruz Rambaud and J. Sánchez García

Fig. 12. Plotting the functions involved in Example 2.

The reasoning for 0 < 𝑡 < 1 is analogous but, in this interval, it is necessary to integrate twice between 𝑡 and 1, leading to the same 
former inequality. Summarizing, we can claim the following statement which characterizes the time distortion of the exponential 
discounting when 𝐹 (𝑡) is required to show strongly decreasing impatience.

Theorem 3. A discount function 𝐹 (𝑡) describes an intertemporal choice exhibiting strongly decreasing impatience if, and only if,

𝑔(𝑡) ≤ 𝑔(1) + 𝑔′(1) ln 𝑡,

for every 𝑡 ∈ 𝑇 .

The discount function presented in Example 2 shows strongly decreasing impatience (see [37]). Observe that, in effect, it meets 
the criterion (necessary and sufficient condition) displayed in Theorem 3.

Example 2. The discount function 𝐹 (𝑡) ∶= exp{− arctan 𝑡} describes an intertemporal choice showing strongly decreasing impatience 
in the interval [1, +∞[ (see Fig. 12, where 𝑔0(𝑡) ∶= 𝑔(1) + 𝑔′(1) ln 𝑡).

Analogously, we can enunciate the following theorem.

Theorem 4. A discount function 𝐹 (𝑡) describes an intertemporal choice exhibiting moderately decreasing impatience if, and only if,

𝑔(𝑡) ≥ 𝑔(1) + 𝑔′(1) ln 𝑡,

for every 𝑡 ∈ 𝑇 .

Proof. The proof is analogous to that of Theorem 3 by changing the sign ≤ to ≥. □

The discount function presented in Example 3 shows moderately decreasing impatience (see [37]). Observe that, in effect, it 
meets the criterion (necessary and sufficient condition) displayed in Theorem 4.

Example 3. The discount function 𝐹 (𝑡) ∶= 1
1+𝑘𝑡

, 𝑘 > 0, describes an intertemporal choice showing moderately decreasing impatience 
(see Fig. 13, where again 𝑔0(𝑡) ∶= 𝑔(1) + 𝑔′(1) ln 𝑡).

6. Discussion

In the same way as our study, dos Santos and Martinez [38] understood inconsistency as the result of the time perception effect. 
These scholars, by using the special theory of relativity, address inconsistency as the result of a subjective time dilation and focus 
their study on a transformation of the time interval between the availability of two rewards. Also, Kim and Zauberman [9] considered 
the role of time perception in temporal discounting and demonstrate that human perception of anticipatory time (i.e., prospective 
duration of future time intervals which individuals have not experienced) is also nonlinearly scaled. More specifically, they found that 
participants’ degree of hyperbolic discounting is positively associated with the level of contraction and negatively associated with 
13

diminishing sensitivity. A similar result was reached by Bradford et al. [39] who found two behavioral parameters affecting future 
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Fig. 13. Plotting the functions involved in Example 3.

events. The first is some component of hyperbolic discounting and the second factor is that non-constant discounting may also be a 
reflection of subjective time perception. Agostino et al. [40] showed that, on average, individuals perceive long-range time intervals 
not in a biased manner, but rather in a linear pattern. However, any deviation from exponential discounting in intertemporal choice 
to the compressed nature of subjective time must consider subjective time on an individual-participant basis.

A similar model was proposed by Thomas and Brown [41] and Thomas and Weaver [42], given by the following functional 
equation:

𝜏(𝐼) = 𝜆𝑓 (𝑡, 𝐼) + (1 − 𝜆)𝑔⋆(𝐼),

where

• 𝜏 is the perceived duration of an interval containing certain information (𝐼);

• 𝑓 (𝑡, 𝐼) is a temporal information processor, or timer; and

• 𝑔⋆(𝐼) is non-temporal information processor.

The model by Thomas and Brown is also weighted and it is a distorted time approach, by using the terms of this manuscript, but 
it is not compound, and 𝑔⋆ is not even a function of duration.

Thus, the perceived duration is monotonically related to the weighted average of the amount of information encoded by the 
former two processors which function in parallel. In effect, according to Vasile [43], time perception could be analyzed in terms of 
neural mechanisms and networks, cognitive functions, consciousness (which implies cognition), and age. However, closely related 
to cognitions, emotions play an important role. On the other hand, Michon and Jackson [44] proposed that the principal attributes 
which determine the temporal information are the simultaneity and order of events. Lashley [45] argued the existence of “the logical 
and orderly arrangement of thought and action”, that is to say, the “immediate switching in the nervous mechanism, without explicit 
consideration of what is already going on within the system”.

7. Conclusion

This paper has dealt with those discount functions obtained by distorting the calendar time in the exponential discounting. The 
relevance of these discount functions derives from the widespread use of the exponential model which is the main reference of 
the Discounted Utility model, introduced by Samuelson [7]. Additionally, many individuals or groups of individuals perceive time 
differently from calendar time, making decisions in which the preferences are ruled by another discount function.

This way of obtaining discount functions starting from the exponential model has a noteworthy application in psychology because 
some personal traits, such as gender, ethnic, religion, health, etc., and the consumption of abuse substances, such as drugs, alcohol 
or tobacco, affect the perception of time and this leads to variations of impulsivity (impatience) and, consequently, to inconsistency 
in intertemporal choices.

The main contribution of this paper is the characterization of the time distortion which lead to moderately or strongly decreasing 
impatience as the main particular cases of inconsistency. The present manuscript is a theoretical work. Therefore, in a further 
research, we will administer a questionnaire to different groups of respondents in order to obtain an experimental time distortion 
�̂�(𝑡) with which derive an empirical discount function 𝐹 (𝑡) = exp{−𝑘�̂�(𝑡)}. In other words, the function fitting the data derived from 
this experiment will allow obtaining the underlying discount function to be used in the valuation of preferences. Thus, we will be 
14

capable of choosing between two dated rewards in the context of intertemporal choice.
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