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Fleming”, Vari, Greece
The mammalian intestine is a self-renewing tissue that ensures nutrient

absorption while acting as a barrier against environmental insults. This is

achieved by mature intestinal epithelial cells, the renewing capacity of

intestinal stem cells at the base of the crypts, the development of immune

tolerance, and the regulatory functions of stromal cells. Upon intestinal injury

or inflammation, this tightly regulated mucosal homeostasis is disrupted and is

followed by a series of events that lead to tissue repair and the restoration of

organ function. It is now well established that fibroblasts play significant roles

both in the maintenance of epithelial and immune homeostasis in the intestine

and the response to tissue damage mainly through the secretion of a variety of

soluble mediators and ligands and the remodeling of the extracellular matrix. In

addition, recent advances in single-cell transcriptomics have revealed an

unexpected heterogeneity of fibroblasts that comprise distinct cell subsets in

normal and inflammatory conditions, indicative of diverse functions. However,

there is still little consensus on the number, terminology, and functional

properties of these subsets. Moreover, it is still unclear how individual

fibroblast subsets can regulate intestinal repair processes and what is their

impact on the pathogenesis of inflammatory bowel disease. In this mini-review,

we aim to provide a concise overview of recent advances in the field, that we

believe will help clarify current concepts on fibroblast heterogeneity and

functions and advance our understanding of the contribution of fibroblasts in

intestinal damage and repair.

KEYWORDS

mesenchymal cells, heterogeneity, epithelial homeostasis, tissue injury, regeneration,
immune responses
1 Introduction

The mammalian intestine is responsible for nutrient and water absorption, but is also

constantly exposed to environmental factors, including commensal and pathogenic

microbes, food products and toxins. It has thus developed intricate cellular and

molecular mechanisms to ensure tissue homeostasis and normal organ function.
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Among them is the organization in villi and crypts, which are

lined by a single epithelial layer that self-renews every 5-7 days.

This is mediated by intestinal stem cells (ISCs) at the bottom of

the crypts, which differentiate into functionally distinct epithelial

populations that move towards the top, where they will be

eventually shed. This process is maintained by both intrinsic

and extrinsic mechanisms, including paracrine signals from

neighboring stromal cells (1). Besides epithelial homeostasis,

the development of immune tolerance and a symbiotic

relationship with the microbiota is of paramount importance

for host health and is mediated by resident immune cells and

specialized lymphoid structures (2). Finally, a broad blood and

lymphatic vessel network ensures blood and oxygen transfer to

the intestine, as well as transport of nutrients and the removal of

interstitial fluid (3, 4).

During the last decade, the role of mesenchymal cells in the

maintenance of intestinal homeostasis has gained momentum

(5). Smooth muscle cells constitute the muscularis, and lamina

propria fibroblasts produce and remodel the extracellular matrix

(ECM) to support intestinal structure and integrity. Fibroblasts

also play significant roles in epithelial stem cell maintenance and

differentiation, immune homeostasis, and endothelial cell

functions (6, 7). Recent data have revealed novel fibroblast-

specific mechanisms and an unanticipated heterogeneity, which

is dependent on the distinct expression profile and location of

each subset (5). In this mini review, we will provide a concise

overview of recent findings on fibroblast heterogeneity and

functions in intestinal homeostasis, damage, and regeneration.
2 Main text

2.1 Fibroblast heterogeneity and
functions in intestinal homeostasis

Recent advances in single cell transcriptomics, lineage

tracing approaches, and genetic targeting have revealed the

extent and functional significance of intestinal fibroblast

heterogeneity. However, there is still little consensus on the

number of fibroblast subpopulations, their terminology, and

functions. Comparative analysis of single cell RNA sequencing

studies of the mouse intestine based on marker gene expression

points to the presence of three main functionally distinct

fibroblast subsets, similar to the ones described by McCarthy

et al., which re-analyzed results from four such studies on a

common computational platform (5) (Table 1; Figure 1). These

subsets include:

CD81+ fibroblasts (10), also called trophocytes (5), crypt-

bottom fibroblasts (CBFs) (11), MAP3K2-regulated intestinal

stromal cells (MRISCs) (17) or pi16+ fibroblasts (15). They are

located within the submucosa, near vascular structures and

below crypts, and are the primary cellular source of WNTs
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(e.g. Wnt2 and Wnt2b), the BMP antagonist Gremlin 1, and R-

spondins (8–10, 15, 17). They mainly function to maintain

intestinal stem cell identity and proliferation. In vitro, CD81+

trophocytes provide support for intestinal organoid expansion

and in vivo ablation of Grem1+ cells results in extensive intestinal

stem cell loss (8). In addition, they express the atypical

chemokine receptor Ackr4, which marks a distinct fibroblast

population that regulates endothelial cells functions (24).

PDGFRahi
fibroblasts (10, 15), also called telocytes (8, 17),

crypt-top fibroblasts (CTFs) (11, 18) and Ednrbhi fibroblasts

(16). They are characterized by expression of high levels of

PDGFRa, BMPs, among which Bmp3 and Bmp7 are uniquely

expressed,Wnt5a, F3, Sox6, Foxl1, and low levels of Acta2 (8–12,

14–18). They are localized directly under the epithelial layer and

are concentrated at the top of crypts and villi (8, 10, 11, 13, 15,

25). They may also include subepithelial myofibroblasts, as they

express aSMA (5, 13). The expression of BMPs and their

location suggests an important function in epithelial cell

differentiation (26–28). Therefore, the relative location of

CD81+ and PDGFRahi
fibroblast subsets contributes to the

generation of a signaling gradient along the small intestinal

villous-crypt and colonic crypt top-bottom axis that facilitates

ISC maintenance and differentiation (5). Studies using

constitutive and conditional Foxl1-Cre strains and

immunoelectron microscopy have shown that Foxl1+ cells

form a subepithelial plexus along the entire villous/crypt axis

and exhibit unique structural characteristics, including long

processes called ‘telopodes’, thus leading to the term ‘telocytes’.

However, Foxl1+ cells also express stem cell trophic factors, such

as Wnt2b and Rspo3, as well as Sfrp1 and Grem1, which are

markers of CD81+ fibroblasts (29, 30). Foxl1+ cell depletion or

cell-specific deletion of WNT secretion leads to marked changes

in the epithelial architecture, including reduced villi length and

crypt depth, and a reduction in stem and progenitor cell

proliferation (29, 30). These results indicate that telocytes

targeted by the Foxl1-Cre mice could include both PDGFRahi

and pericryptal fibroblasts to some extent. Indeed, a recent study

differentiated between crypt and Lgr5+ villous tip telocytes

(VTTs), and ablation of the latter led to changes in epithelial

gene expression at the villus tip, but did not have the detrimental

effects of Foxl1+ cell depletion (31). We also recently showed that

Col6a1-Cre mice target the entirety of PDGFRahi
fibroblasts,

along with pericytes and a small number of PDGFRalo cells.

Depletion of this population in the middle/distal colon did not

disrupt intestinal morphology, but led to altered distribution of

proliferating epithelial cell and reduced enteroendocrine

numbers (25). The differences between these experiments most

probably reflect the exact specificities of each strain and should

be carefully considered.

PDGFRaloCD81- fibroblasts, which reside in the lamina

propria, around crypts and inside the villous core (9, 10). They

can be further divided into at least two subsets that express

Col15a1, Igfbp5/CD90 (small intestine/colon) and Fgfr2, Fbln,
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respectively (9, 10, 15). They secrete basement membrane

proteins and contribute to ECM production and remodeling

(15). They also maintain lacteal integrity and function through

YAP/TAZ-mediated VEGF-C secretion (9). Notably, CD90+

cells have been shown to support epithelial cell growth

through the production of class 3 semaphorins (32).
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Additional mesenchymal subsets include Pdgfra-NG2+Rgs5+

pericytes surrounding blood vessels and capillaries (33), smooth

muscle cells (SMCs) around blood vessels and lymphatic lacteals

and in the muscle layer, and myofibroblasts. Varying levels of

Acta2, Myh11 and Des can help with the distinction between

SMCs and myofibroblasts, but the two terms are sometimes used
TABLE 1 Comparison of fibroblast subsets from recent single cell RNA sequencing analyses.

Intestinal
region/
pathology

Analyzed
population

Populations/Subsets Ref

Mouse

SI - Healthy PDGFR1+ PDGFRahi telocytes Lo-1 FB Lo-2 FB (8)

SI - Healthy PDGFRB+ FB5 FB4 FB3/FB1 FB2/FB1 SMCs Mural
cells

(9)

SI - Healthy EpCAM-CD45-

Ter119-CD31-

BP3-

PDGFRahi PDGFRaloCD34hiCD81+ PDGFRalo

CD34lo

Igfbp5+

PDGFRalo

CD34lo

Fgfr2+

SMCs Pericytes
(10)

Colon - Healthy EpCAM-CD45- CTFs CBF2 CBF1 MFs/SMCs Pericytes
(11)

Colon - Healthy EpCAM-CD45- F3/F4 F1 F2 F4 SMCs Pericytes
1/2 (12)

Colon - Healthy EpCAM-CD45-

Ter119-
FB2 - MFs FB3 - Interstitial FB1 - MAFs FB2 - MFs

(13)

Colon - Healthy EpCAM-CD45-

Ter119-CD31-

BP3-

PDGFRahi PDGFRaloCD34+CD81+ PDGFRalo

CD34+

CD90+

PDGFRalo

CD34+

Fgfr2+

MFs SMCs Pericytes
(10)

Colon/SI - Healthy Datasets from
(10, 14)

PDGFRahi pi16+ Col15a1+ Fbln1+

(15)

Whole intestine Bapx1+ stromal
cells

Ednrb1hi Ackr4hi/Has1hi C1qtnt3hi/
Dkk2hi

Cxcl5+/
Dkk2hi

Cxcl5+/
Pericyte like

Rgs4hi

Pericytes (16)

DSS – acute (D3) CD90med Foxl1+ telocytes C5 - MRISCs MFs
(17)

Colon – Healthy/
DSS – acute (D7)

EpCAM-CD45- S2 S3 S1 S4 – IAFs MFs Pericytes
(14)

Colon – Healthy/
DSS/acute (D8)

EpCAM-CD45- CTFs Matrix FB 2 Matrix FB 1 MFs/SMCs Pericytes
(18)

DSS – acute (D7) Dataset from
(14)

pi16+ Col15a1+ Adamdec1+

Lrcc15+ (15)

DSS - chronic EpCAM-CD45-

Ter119-
FB2 - MFs FB3 - Interstitial FB1 - MAFs FB2 - MFs

(13)

Human

Colon – Healthy/
colitis

EpCAM-

CD45- CD235-
S2a S2b S3 S1 S4 – IAFs MFs/SMCs Pericytes

(14)

Colon – Healthy/
colitis

Lamina propria
non epithelial

WNT5B+_1 WNT5B+_2 WNT2B+RSPO3+ WNT2B+

Foshi
WNT2B+

Foslo
IAFs MFs/SMCs Pericytes

(19)

Inflamed/non-
inflamed tissue

Dissociated
tissue

PDGFRa+ FB ABCA8+ fibroblasts IAFs MFs/SMCs Pericytes
(20)

Colon (pediatric) –
Healthy/IBD (UC/
CD)

CD45- FB epithelia proxima FB TACI/WNT2Bhi FB LP/TACI IAFs MFs Pericytes
(21)

Colon - Normal Dissociated
tissue

S2 S3 S1 MFs SMCs Pericytes
(22)

Colon - Normal EDTA-treated
tissue

ICAM1+/- telocytes CD24+/NT5E+ FBs FGFR2+ FBs DES+/MFAP+

MFs
Pericytes

(23)
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interchangeably in single cell RNA sequencing analyses (9–12,

14, 16, 18). Notably, the small intestine and colon display similar

mesenchymal subsets with location-specific differences in their

transcriptional profiles (5, 10).

Besides the regulation of epithelial homeostasis and tissue

integrity, pseudotime analysis and lineage inference have

indicated that CD81+/pi16+ fibroblasts could also act as

mesenchymal stem cells and thus as sources of adult

fibroblasts, which pass through intermediate PDGFRaloCD81-

Col15a1+/CD90+ cells towards differentiated subsets (10, 14, 15).

This is in accordance with lineage tracing data of Grem1+ cells,

which can renew the entire mesenchymal sheath over a year

(34). We also recently showed that following depletion of

Col6a1-Cre+ colonic fibroblasts, CD34+ cells could proliferate,

occupy subepithelial locations and alter their gene expression

profile to support epithelial cell differentiation and regeneration,

highlighting the potential plasticity of resident fibroblasts (25).

There is fewer insight into the significance of distinct

fibroblast subsets in the regulation of intestinal immune

homeostasis. Of note, there are also specialized stromal

populations that regulate immunity within the topologically

restricted structures of the gut-associated lymphoid tissue,

including Peyer’s patches and isolated lymphoid follicles (6).

Still, intestinal fibroblasts, and especially PDGFRahi and

PDGFRaloCD81- cells, express various chemoattractants,

cytokines and cytokine receptors and could thus regulate
Frontiers in Immunology 04
immune cell turnover and function (10, 35, 36). Fibroblasts

also produce retinoic acid, which synergistically with GM-CSF

drives the functional education of migratory dendritic cells (37).

BAFF production by lamina propria fibroblasts induces B cell

proliferation and differentiation to IgA+ plasma cells (38).

Human colonic fibroblasts express PD-L1 and PD-L2, which

suppress CD4+ T-helper cell activation and proliferation

through inhibition of IL-2 production (39). Conversely, they

also express MHC-II molecules and CD80/86 co-stimulators,

suggesting a potential role as non-professional antigen

presenting cells, which can stimulate allogeneic CD4+ T-cell

proliferation (40) and induce activation of Tregs at least in

vitro (41).

Distinct fibroblast subsets have also been found in the

human intestine, and share many similarities with their mouse

counterparts, as shown both by direct comparison of single cell

transcriptomic data (11, 14, 18) and assessment of marker gene

expression (Table 1). Among them PDGFRA+, WNT5B+, S2, or

epithelia proxima fibroblasts express FOXL1, WNT5A, and

BMPs, and display a subepithelial localization, correlating with

mouse PDGFRahi
fibroblasts (14, 19–23). Interestingly, in

humans, two clusters have been identified, one expressing

ACTA2 and TAGLN and the other PTX3, NPY, but their

potential distinct functions are yet unknown (14, 19).

Additionally, WNT2B+ cells that express RSPO3 are most

likely equivalent to mouse CD81+ fibroblasts, while
FIGURE 1

Fibroblasts in intestinal homeostasis, damage, and repair. Intestinal homeostasis is regulated by 3 distinct fibroblast subsets through the
production of effector molecules. WNT ligands, R-spondins and Gremlin 1 are produced by CD81+ fibroblasts and maintain intestinal stem cell
(ISC) identity. PDGFRahi

fibroblasts orchestrate epithelial differentiation through the production of BMPs and WNT5A. In the lamina propria,
PDGFRaloCD81- fibroblasts contribute to extracellular matrix (ECM) production and remodeling. Upon inflammatory stimuli, fibroblasts are
activated and secrete a variety of pro-inflammatory factors to drive immune cell recruitment and function. During damage, intestinal fibroblasts
provide paracrine signals to promote epithelial regeneration and ECM remodeling. FB, fibroblast; ISC, intestinal stem cell. Created with
BioRender.com.
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WNT2B+FOS+ lamina propria fibroblasts correlate with

PDGFRaloCD81- fibroblasts (14, 19, 21). Additional subsets

include myofibroblasts/smooth muscle cells and pericytes (14,

19–23). These results further support the value and

translatability of mouse studies in modeling human health and

disease in the gut.
2.2 Fibroblasts in intestinal damage and
repair

Tissue damage or infection leads to inflammation so that

damaged cells and microbes can be removed and is followed by

the resolution of inflammation and epithelial regeneration to

restore organ function. Deregulation of the mechanisms

underlying these processes can lead to pathology, including

chronic inflammation, fibrosis, and cancer. Recent data show

that resident intestinal fibroblasts play a significant role both in

the support of initial immune responses and in the resolution of

inflammation, the remodeling of the ECM and the re-

organization of the intestinal epithelium, including the re-

epithelization of the tissue in ulceration sites (35) (Figure 1).

2.2.1 Insights from single-cell transcriptomics
All single cell transcriptomic data related to intestinal

damage, inflammation and repair in the mouse to date

originate from analyses of the DSS colitis model (42). A recent

such analysis of the colon at different timepoints during the

acute damage and repair phases showed that fibroblasts have the

highest impact on other cells and could act as a hub of cellular

interactions during acute inflammation (43). Fibroblast-specific

studies, which include early non-inflamed (day 3), acute severely

inflamed (day 7-8) and chronically inflamed timepoints reveal

the persistence of homeostatic subsets, which maintain their

topology, although their gene expression is altered (13, 14, 17,

18, 25, 44). For example, production of BMPs by PDGFRahi

fibroblasts is reduced, while Grem1, Rspo3 and Sfrp1 are induced

in all PDGFRalo cells during acute colitis, indicating a shift

towards the support of ISC proliferation (14, 18). The most

prominent changes though involve the significant increase in

inflammatory mediators, ECM components and remodeling

enzymes (13, 14, 18). One study further reported the

identification of a distinct inflammatory fibroblast subset that

showed increased expression of cytokines and chemokines, such

as Il33 and Ccl19 (14). However, this could also represent an

activated state of CD81+ fibroblasts, as indicated by the

proximity and combined analysis of the two subsets.

Additional subset-specific changes include the overexpression

of Il33, Il6 and Ptx3 in CD81+ cells, Grem1, Il11 and Mmp3 in

PDGFRalo cells, and Cxcl13 and Timp3 in PDGFRahi

fibroblasts, but their potential context- and/or location-specific

basis and their functional significance is not clear (14). Re-
Frontiers in Immunology 05
analysis of the same data in the context of a pan-tissue

inflammatory framework revealed the persistence of the same

pan-tissue homeostatic fibroblasts, and further identified the

emergence of an Lrcc15+ myofibroblast-specific subset and a

“colitis-specific” Adamdec1+ subset with increased Grem1 and

Il11 expression, which also included BMPs, Mmp3 and Timp3

(15). In both studies, CD81+/pi16+ showed increased

proliferation/stemness, indicative of their potential as cellular

sources of activated fibroblasts, while PDGFRahi cells were

proportionally reduced (14, 15). In chronic inflammation,

immune-related genes expressed in fibroblasts also include

those encoding complement components, MHC-related

molecules, redox regulators, and chemokines (13). Notably,

CD81+ cells show increased frequency and higher expression

of pro-inflammatory genes, including the pro-fibrotic cytokine

Il11, in line with the acute colitis data (13).

Similar analyses in patients with ulcerative colitis and

Crohn’s disease identified both homeostatic subpopulations

and an additional inflammation-associated subset (IAFs) that

was enriched in pro-inflammatory genes, including cytokines

(e.g. IL11, IL33, IL6), and chemokines (e.g. CCL19, CXCL1/2/3/

4/5/8). The presence of WNT2B+ and WNT5B+ subsets in IAFs

(19), and the expression of inflammatory genes in homeostatic

subsets (20, 21) support the hypothesis that IAFs represent an

activated state of diverse fibroblast subpopulations. Together,

these findings suggest similarities in fibroblasts remodeling

during damage and inflammation in humans and mice.

2.2.2 Fibroblasts in epithelial regeneration
Single cell transcriptomic data and in vitro/in vivo

experiments show that fibroblasts play significant roles in the

regulation of epithelial responses during tissue damage and

repair. Both broad and subset-specific mechanisms related to

the expression profile and location of fibroblasts have been

identified. CD81+ fibroblasts contribute to intestinal repair

through their increased production of Wnts and R-spondins 1

and 3 upon damage (44, 45). Fibroblast-derived R-spondin 3, in

particular, is required for tissue repair after DSS-induced

damage, DT-induced ISC ablation or C.rodentium infection

(46–48). It is activated by IL-1R1 signaling and regulates stem

cell renewal, barrier restoration and de-differentiation of Axin2-

cells, depending on the mouse model. R-spondin 1 is also

increased during DSS-colitis, through a mechanism involving

reactive oxygen spieces (ROS)-mediated activation of an

MAP3K2/ERK5/KLF2 axis, and acts to protect the stem cell

pool (17). Recently, membrane-bound MMP17, expressed by

Grem1+ mesenchymal cells, was also shown to be required for

epithelial restoration following DSS- or irradiation-induced

damage though cleavage of periostin and activation of YAP in

epithelial cells (49).

Other broadly expressed fibroblast-derived factors that

regulate epithelial regeneration include growth factors,
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cytokines, and ECM molecules. Nrg1, an EGF family ligand, is

upregulated in PDGFRa+ cells following irradiation and

chemotherapy-induced injury and promotes intestinal cell

proliferation and tissue repair through MAPK and AKT

pathways (50). IL-33 produced by pericryptal fibroblasts

protects against Salmonella infection by promoting epithelial

cell differentiation (51). Angiopoietin-like protein 2 (Angptl2) is

expressed in intestinal mesenchymal cells and regulates BMP

expression to facilitate epithelial restoration following DSS- or

irradiation-induced damage (52). Igf2bp1-mediated Ptgs2

expression by wound-associated fibroblasts is necessary for

epithelial repair (53). Stromal-derived Ptgs2 and downstream

PGE2 are activated by Tpl2 in response to innate stimuli to

promote compensatory proliferation and improved intestinal

healing upon TNBS- and DSS-mediated epithelial injury (54).

Regulation of IGF1 signaling by stromal-specific miR-143/145

following DSS-induced injury promotes epithelial wound

healing (55). ETS1-mediated ISLR secretion by stromal cells in

the DSS- and TNBS-challenged murine intestine dampens

Hippo signaling and enhances YAP in epithelial cells to

facilitate regeneration and repair (56). Heat-Shock Factor 1

(HSF1) in colonic fibroblasts regulates ECM remodeling and

thus crypt number and size during DSS colitis (57). The

proteoglycan Asporin expressed by pericryptal fibroblasts

promotes epithelial regeneration ex vivo and in vivo after

chemotherapy-induced damage by inducing fetal-like state

reversion in epithelial cells via activation of the Tgfb signaling

pathway (58). Finally, direct physical interaction, mediated

through the generation of aSMA contractile stress fibers and

deposition of collagen paths by fibroblasts, can orchestrate the

organized and directed movement of epithelial cells and drive

gap closure in an ex vivo model of intestinal wound healing (59).

2.2.3 Fibroblasts regulate immune cell
responses

Bulk, subset-specific, and single cell gene expression analyses

have shown that upon damage or inflammation all fibroblast

subsets express pro-inflammatory genes and could thus affect

immune cell recruitment and function. In vitro studies also

support the robust activation of inflammatory mediators,

including cytokines, chemokines, and matrix remodeling

enzymes, in intestinal fibroblasts in response to a variety of

stimuli (7, 35, 36). Notably, these properties are in many studies

attributed to intestinal (subepithelial) myofibroblasts, but this

mainly reflects their in vitro morphology and expression of

aSMA due to the culturing conditions, and it is thus

impossible to ascribe them to specific subsets. IL-1b and TNF

are the most well-established inducers of the pro-inflammatory

activation of intestinal fibroblasts (20, 35, 54). IL-1b signaling

specifically activates fibroblast-derived neutrophil-attracting

factors and IL-1b co-localizes with FAP staining in ulceration

sites of human patients (20). TNF also drives proinflammatory
Frontiers in Immunology 06
gene expression and fibroblast-restricted activation of TNF

signaling is sufficient for the development of intestinal

pathology in TNFDARE mice (60). In addition, Oncostatin M

also induces chemokine production by stromal cells, leading to

CD4+ T cell and granulocyte recruitment, which drive

inflammation in a preclinical model of anti-TNF-resistant

colitis (61). Besides cytokines, intestinal fibroblasts are also

activated via TLR and NOD receptors, indicating their

potential role as sentinel cells (35, 62). NFkB and MAPK

signaling pathways are crucial downstream mediators of

fibroblast activation. NFkB signaling, in particular, plays an

important role in the activation of PDGFRahi
fibroblasts

during DSS colitis, as Col6a1-Cre-specific deletion of IKK2 led

to reduced colitis, associated with decreased production of

inflammatory mediators, reduced inflammatory cell infiltration

and epithelial-specific STAT3 activation (63). However, deletion

of IKK2 in Col1a2+ fibroblasts did not affect colitis development

(64), suggesting that different signaling pathways could regulate

the inflammatory activation of distinct subsets.

In addition to pro-inflammatory functions, intestinal

fibroblasts can also regulate the resolution of inflammation

through multiple paracrine mechanisms. For example, CCL2

secretion by colonic stromal cells in response to NOD2

activation by C. rodentium infection drives the recruitment of

Ly6hi inflammatory monocytes, which promote bacterial

clearance (65). NLRP6 in colonic fibroblasts mediates tissue

recovery through paracrine signaling that regulates epithelial cell

proliferation and Th-17 immune responses (66). PD-L1

upregulation by fibroblasts in ulcerative colitis can suppress

CD4+ T-cell activation, pathogenic IFN-g secretion and Th1

responses (39, 67, 68). IL-36-mediated proliferation and

cytokine/chemokine gene expression in colonic fibroblasts

during the regeneration phase of acute colitis induces in vitro

neutrophil migration to promote wound healing (69).

Seprina3n, a serine protease inhibitor, secreted by stromal

fibroblasts during the remission phase of DSS-induced

inflammation, inhibits the function of elastase in recruiting

neutrophils to the colon and as such facilitates the resolution

of inflammation that could otherwise become pathogenic (43).
3 Discussion

In conclusion, recent studies, especially ones using single cell

transcriptomics, have revealed distinct fibroblast subsets that

regulate epithelial homeostasis along the crypt/villous axis and

are similar between intestinal regions and across mammalian

species. They also suggest that specific subsets can act as sources

of more differentiated fibroblasts. Upon intestinal damage,

fibroblasts are activated and support immune cell infiltration

and function, while during repair they facilitate the resolution of

inflammation and the tissue ’s re-epithelization and
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morphogenesis through multiple mechanisms, although the

subset and location-specificity of these functions is not clear.

Further studies are expected to elucidate the plasticity of resident

fibroblasts, their fates during inflammation and regeneration

and their potential utility in the diagnosis and/or therapy of

intestinal disorders.
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