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Abstract

Gut bacterial communities have been shown to be influenced by diet, host phylogeny and

anatomy, but most of these studies have been done in captive animals. Here we compare

the bacterial communities in the digestive tract of wild birds. We characterized the gizzard

and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous

species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of

the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and com-

pared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA

gene-based sequencing data were examined using QIIME with linear discriminant analysis

effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We

identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria.

Beta diversity analyses indicated significant separation of gut communities by bird orders

(Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine,

PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and

xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was signifi-

cantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test,

p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest

that the most important factor separating the bacterial community structure was bird taxon-

omy, followed by foraging guild. However, variation between localities is also likely to be

important, but this could not been assessed with our study design.

Introduction

Birds have complex and unique diets, physiological traits, and developmental strategies. Addi-

tionally, flight capacity has been a strong selective pressure on many aspects of bird’s physiol-

ogy, including the structure of their digestive tract, dietary adaptations and gut microbiota [1].
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The study of microbial diversity and function in the avian gut has been focused mostly on

captive, commercial species (chickens and turkeys), finding that gut microbiota changes with

the diet, organ and age, and are influenced by factors such as captivity, antibiotic treatment, or

pathogen colonization [2,3]. However, in recent years a number of studies have been done on

wild birds such as hoatzin, vultures, kakapo, penguins, house sparrows, anseriformes and

some neotropical and temperate birds [2,4–8]. These studies show that diet affects microbiota

composition in birds. The predominant bacteria in the gut and feces of birds belong to the

phyla Firmicutes, Actinobacteria, Bacteroidetes, and with variations in their relative propor-

tions between herbivorous, carnivorous and omnivorous birds [5,9]. A previous study com-

paring the microbiota in gut organs between cows and hoatzin, a folivorous bird, concluded

that organ function best explained the structure of the microbiota [10]. Recent studies have

addressed the relationship between host taxonomy or geographical locations and gut micro-

biota in mammals and birds [2,5,6,8,9,11,12]

Studies of the intestine and gizzard microbiota have been focused on domestic birds

[4,5,13,14] and the objective of this study was to characterize the microbiota in these organs

across host taxonomy in neotropical wild birds with two different foraging guilds (granivory

and frugivory).

Materials and methods

Animals

A total of 32 wild birds were captured using mist-nets in 5 different localities in Venezuela (S1

Table). The Venezuelan Environmental Ministry (N˚ 328) and IVIC bioethical animal com-

mission (Dir-0884/1517/2014) approved the study.

Eight bird species from two orders (Columbiformes and Passeriformes) were classified

according to their reported foraging guilds (granivores and frugivores). Consumption of

insects have been only reported in the diet of Passeriformes studied [15]. Three species of gra-

nivorous birds were sampled: Ruddy Ground-Dove (Columbina talpacoti, n = 6), Common

Ground-Dove (Columbina passerina, n = 10) and Rufous-collared Sparrow (Zonotrichia capen-
sis, n = 2). There were 5 species of frugivorous birds including: Silver-beaked Tanager (Ram-
phocelus carbo, n = 3), Palm Tanager (Thraupis palmarum, n = 1), Glaucous Tanager

(Thraupis glaucocolpa, n = 3), Lance-tailed Manakin (Chiroxiphia lanceolata, n = 3) and Buff-

throated Saltator (Saltator maximus, n = 4).

Samples

Birds were euthanized and kept frozen at -20˚C until arrival to the laboratory, where the diges-

tive organs (gizzard and intestine) were dissected and their contents collected with sterile cotton

swabs to perform DNA extraction. The intestine was divided in two segments (upper section

-the section contiguous to the stomach and lower section -the final section closer to cloacae).

A total of 96 samples were collected from 32 wild birds (18 granivorous and 14 frugivorous

birds). Two samples were omitted for further analysis due to insufficient sequence coverage,

yielding a total of 94 samples, including 32 gizzards, 31 upper and 31 lower intestines.

16S rRNA gene-based sequencing analysis

DNA was extracted from samples from gizzard and intestine contents, using the Power Soil

DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA). The V4 region of the 16S
rRNA gene was amplified with barcode primers and sequenced as previously described [16].

Amplified DNA was sequenced using the Illumina HiSeq platform.

Bacterial gut communities of neotropical wild birds
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De-multiplexing 16S rRNA gene sequences, quality control, chimeric sequence elimination,

followed by closed-reference operational taxonomic units (OTUs) picking process at� 97%

sequence identity against the Greengenes database (13_8) was performed using the open

source pipeline Quantitative Insights Into Microbial Ecology (QIIME) version 1.8.0 [17]. The

total number of sequence reads was 5,828,311 (an average of 60,712 reads per sample). Each

organ was analyzed independently and the total number of sequence reads in gizzard, upper

and lower intestine were 2,081,059 (an average of 65,033 reads per sample), 1,867,516 (58,360

reads) and 1,879,736 (58,742 reads) respectively (paired-end, Phred> = Q20) (S2 Table).

Samples were rarefied to 14,077 reads per sample, and Chao 1 richness was used to estimate

the alpha diversity comparing foraging guild in each organ separately. Tukey’s post-hoc test

was used to determine significant differences. Weighted and unweighted UniFrac distances

were used to evaluate beta diversity (diversity between groups) with principal coordinate anal-

ysis (PCoA).

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

(PICRUSt) was used to predict the metabolic pathways from 16S rRNA gene-based microbiota

of gizzard and intestine of birds studied [18]. The abundance of each OTU was normalized

using the Greengenes database version 13_5. The predicted functions (KOs) were then col-

lapsed into hierarchical KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways using

the categorize_by_function step in the PICRUSt pipeline.

Statistical analyses

A core microbiota analysis was also run in QIIME to identify OTUs (bacterial taxa) present in

>90% of the samples included in this study. The goal of this analysis is to identify taxa that

may be shared across digestive tract of bird species [19].

We used the statistical analysis of similarity (ANOSIM) [20] and the non-parametric multi-

variate ANOVA based on dissimilarities (Adonis) with 999 random permutations [21] imple-

mented in QIIME to determine the relationship between categorical variables associated with

each bird and the microbial communities. The categorical variables tested were foraging guild,

sampling locality and bird taxonomy (order and species) in each organ. The ANOSIM statistic

compares the mean of ranked dissimilarities between groups to the mean of ranked dissimilar-

ities within groups. An R value close to "1.0" suggests dissimilarity between groups while an R

value close to "0" suggests an even distribution of high and low ranks within and between

groups [22]. Adonis is a function for the analysis and partitioning of sums of squares using

semimetric and metric distance matrices. Adonis returns a p value for significance, and an R2

value, indicative of the amount of variation explained by a specific variable [21]. A linear mul-

tivariate regression model (MaAsLin, Multivariate microbial Association by Linear models)

was applied to determine significant associations between microbiota and categorical variables

associated with each bird (foraging guild, organ, locality and bird taxonomy) [23].

Linear discriminant analysis (LDA) effect size (LEfSe) was calculated to identify bacterial

lineages whose frequencies differed significantly as a function of foraging guild and bird taxo-

nomic variables in each organ. LEfSe detects differentially distributed lineages with the Krus-

kall-Wallis test, and checks the consistency of subclass distinctions with the pairwise Wilcoxon

text. The final linear discriminant analysis was used to rank all differentiating lineages by their

effect size. LEfSe was used with default parameters on species-level OTU tables (operational

taxonomical unit) to determine taxa that best characterized each population; only features

with LDA score >3.0 were kept [24].

MaAsLin, LEfSe and PICRUSt analyses were completed using the Galaxy platform (http://

huttenhower.sph.harvard.edu/galaxy/).

Bacterial gut communities of neotropical wild birds
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Results

The digestive tract of the birds studied share a core microbiota (S3 Table). All gizzards shared

40 OTUs, belonging to the phyla Bacteroidetes, Cyanobacteria, Planctomycetes, Verrucomi-

crobia and Alpha and Gammaproteobacteria. Ninety percent of upper and lower intestines

shared a total of 58 and 36 OTUs respectively. The phylum Proteobacteria had the largest

number of OTUs shared in all digestive tracts. Common families of shared Proteobacteria

OTUs included Hyphomonadaceae (Class Alphaproteobacteria) and Thiohalorhabdales (Class

Gammaproteobacteria).

Beta diversity analyses indicated significant separation of gut communities by host taxo-

nomic categories in each organ studied (p< 0.05; Fig 1, S1 Fig, S4 Table). LEfSe and Multivar-

iate Association with Linear Models (MaAsLin) analyses showed that bird taxonomy (species)

showed the highest number of significant associations with microbial taxa, particularly in the

gizzard (Fig 2, S5 Table).

Granivorous birds showed higher gizzard bacterial alpha diversity, in relation to frugivo-

rous birds (Chao 1 for richness; non-parametric t-test, p< 0.05; Fig 3A). However, there were

no significant differences in bacterial alpha diversity by foraging guild in upper or lower intes-

tine (Fig 3B and 3C). Granivorous birds gizzards were characterized by bacterial communities

dominated by Proteobacteria (29%), Firmicutes (21%), and Actinobacteria (17%) whereas that

of frugivorous birds had a higher proportion of Proteobacteria (47%; Fig 3D). In the intestines,

frugivorous birds had an absolute dominance of Proteobacteria (43% in upper and 57% in

lower intestines), while in granivorous birds the intestine was dominated by Firmicutes (38%

in upper and 50% in lower) and Actinobacterias (28% in upper and 21% in lower; Fig 3E

and 3F).

We observed significant separation of bacterial beta diversity between gizzards of granivo-

rous and frugivorous birds (ANOSIM R = 0.43, p< 0.05; Fig 4A, S2 Fig, S4 Table). However

there was no significant difference in bacterial beta diversity by foraging guilds in upper or

lower intestine (Fig 4B and 4C, S2 Fig, S4 Table). Adonis statistical test showed significant

differences in all organs (p< 0.05) but R2 values were low; indicating that only 6–7% of inter-

specific differences can be explained by foraging guilds. We observed significant associations

of specific microbial taxa (n = 6) with foraging guilds using MaAsLin analysis (S5 Table).

To identify specific bacterial taxa differentially distributed between granivorous and frugiv-

orous birds in each organ, we performed LEfSe analysis (LDA score> 3.0; Fig 4D, 4E and 4F).

In the gizzard, a total of 11 genera were differentially represented among the two foraging

guilds, with 8 genera (Corynebacterium, Enterococcus, Gallibacterium, Veillonella, Campylobac-
ter, Actinomyces, Sarcina, and two unidentified genera in Peptostreptococcaceae and Alcali-

genaceae families) being more abundant in granivorous birds and two genera (Bacillus and

Clostridium) in frugivorous birds. In the upper intestine, Corynebacterium, Enterococcus,
Veillonella, Actinomyces, Rubrobacter, Bacillus, and an unidentified genus in Lachnospiraceae

family were overrepresented and Clostridium, Weissella, and an unidentified genus in Entero-

bacteriaceae family were depleted in granivorous birds, in relation to frugivorous birds. In

lower intestine, Enterococcus, Corynebacterium, unidentified genera in Peptostreptococcaceae

and Clostridiaceae were overrepresented and an unidentified genus in Enterobacteriaceae was

depleted in granivorous birds, in relation to frugivorous birds. Corynebacterium (Phylum Acti-

nobacteria) and Enterococcus (phylum Firmicutes) are overrepresented in granivorous birds

among all organs (Fig 4D, 4E and 4F).

The microbiota of Z. capensis, is more related to other Passeriformes despite its granivorous

diet, than to other granivores from the Columbiformes (Fig 1D, 1E and 1F). Amongst grani-

vores, ANOSIM analyses show differences only in the gizzard of Z. capensis and C. passerina

Bacterial gut communities of neotropical wild birds
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Fig 1. Beta diversity of gut bacterial communities by bird taxonomy in different organs. A, B, C) Principal coordinates analysis (PCoA) of unweighted UniFrac

distances of bacterial communities by bird orders (Columbiformes and Passeriformes). D, E, F) PCoA of unweighted UniFrac distances of bacterial communities by bird

species.

https://doi.org/10.1371/journal.pone.0194857.g001
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Fig 2. Linear discriminatory analyses (LEfSe) of bacterial taxa discriminant of bird species (LDA>3). Histogram

showing abundance of OTUs according to bird species in the gizzard, upper and lower intestine (Granivorous: C.

passerina, C. talpacoti and Z. capensis. Frugivorous: Ch. lanceolata, R. carbo, S. maximus, T. glaucocolpa and T.

palmarum).

https://doi.org/10.1371/journal.pone.0194857.g002
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and the upper intestine of Z. capensis and C. talpacoti (p< 0.05; S4 Table). Adonis analyses

show significant differences in all organs of Z. capensis and C. passerina and in the gizzard and

upper intestine of Z. capensis and C. talpacoti (p< 0.05; S4 Table).

Microbial metabolic pathways were estimated based on the 16S rRNA gene data using the

PICRUSt software and comparisons between granivorous and frugivorous birds in each organ

were made using LEfSe (Fig 5). Predicted functional analysis showed differences in KEGG

pathways in each organ when comparing granivorous and frugivorous birds, in particular in

the lower intestine. In granivores, aminoacid and vitamins metabolism pathways were abun-

dant in gizzards and upper intestines, and energy and carbohydrate metabolism predominate

in the lower intestine. Lipid metabolism and xenobiotics biodegradation are overrepresented

in intestines of frugivorous birds.

ANOSIM and Adonis analyses show weak significant differences in most comparisons (S4

Table). ANOSIM test show that most variations in the gut microbiota are explained by the

host taxonomic categories and foraging guild (p<0.05, R: 0.33–0.58). However, Adonis shows

that categorical variables that explain the highest amount of variation are host taxonomy and

locality (p<0.05, R2: 0.19–0.40). The PCoA using weighted and unweighted unifrac analyses

for sampling localities were included, but we did not observe a differential pattern between

localities (S3 Fig). However, MaAsLin analyses show that sampling localities (Ramal de Calde-

ras and Sierra de Tirgua) had significant associations to specific microbial taxa (n = 14) (S5

Table). The interpretation of these results is difficult because bird taxonomy overlapped with

foraging guild and most of birds’ species were captured in different localities. However to sim-

plify the interpretation, we carried out PCoA analysis comparing two frugivorous bird species

(R. carbo and S. maximus) in three localities (Ramal de Calderas, Uey river and Sierra de Tir-

gua) to determine the effect between birds taxonomy and locality (S4 Fig). We observed signif-

icant differences (ANOSIM R: 0.78; Adonis R2: 0.86; p<0.05) between localities only for the

gizzards (S4D Fig).

Alpha and beta bacterial diversity of crops of Columbiformes birds showed a high propor-

tion of Actinobacteria (45%) (S5A Fig), with no significant differences in alpha diversity, from

the lower intestine (Chao1 index richness between organs t test, p = 0.07) (S5B Fig). Gizzard

and crop shared 10.2% of OTUs and 13.6% of OTUs were unique in these organs (S5D Fig).

Discussion

Studies about gut microbiota in wild birds have increased in recent years, demonstrating the

importance of the role of microorganism in host physiology [2,4–8]. This study contributes to

the bacterial characterization of gizzard and intestine from 8 species of wild birds with two dif-

ferent foraging guilds in five different localities.

Studies in temperate and neotropical birds showed that gut microbiota variation is related

to bird taxonomy [6,8]. However, several avian studies showed that diet is an important factor

to determine the microbiota composition [5]. Furthermore, other studies in mammals, one on

the fecal microbiota of 60 mammalian species, and another in Phyllostomidae bats demon-

strated that the gut microbiome composition was intimately related to host-phylogeny and

feeding-strategies [9,25]. In our study, PCoA, ANOSIM, Adonis, MaAsLin and LEfSe analyses

show that microbiota variation is mainly explained by bird taxonomy and locality (Figs 1 and

2, S4 and S5 Tables).

Fig 3. Alpha diversity of gut bacterial communities by frugivorous and granivorous birds in different organs. A, B and C) Bacterial community richness (Chao1

index) for the gizzard, upper and lower intestine. D, E and F) Relative abundances of phyla (%) present in the gizzard, upper and lower intestine. Different letters above

boxplots indicate significant differences (non-parametric t-test�0.05).

https://doi.org/10.1371/journal.pone.0194857.g003
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Fig 4. Beta diversity of bacterial communities in different organs of frugivorous and granivorous birds. A, B, C) Principal coordinates analysis (PCoA) of

unweighted UniFrac distances. D, E F) Linear discriminatory analyses (LEfSe) of bacterial taxa discriminant of frugivorous and granivorous birds (LDA>3). Histogram

showing OTUs that are more abundant in granivorous and frugivorous birds by gizzard, upper and lower intestine.

https://doi.org/10.1371/journal.pone.0194857.g004
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Fig 5. Linear discriminatory analyses (LEfSe) comparing KEGG module predictions using PICRUSt in different

organs from granivorous and frugivorous birds (LDA>2).

https://doi.org/10.1371/journal.pone.0194857.g005
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The bird taxonomy and foraging guild were closely related as the granivorous birds

belonged to the Columbiformes order and the frugivorous birds belonged to the Passeriformes

order, except for Z. capensis, which belongs to the Passeriformes but is a seed eater. However,

ANOSIM and Adonis analyses show that microbiota differences were more significant

between Columbiformes vs. Passeriformes birds than between granivorous vs frugivorous for-

aging guilds (S4 Table), as had previously been reported in other temperate and neotropical

birds [6,8].

In this study, alpha diversity was higher in gizzards from granivorous than from frugivo-

rous birds (Fig 3A) and ANOSIM analysis showed significant beta diversity differences (S4

Table). Firmicutes, Actinobacteria and Proteobacteria were the phyla most commonly found

in granivorous birds (Fig 3D, 3E and 3F). Similar results have been found in other seed eating

birds like Northern Bobwhite (Colinus virginianus) [26], House Sparrow (Passer domesticus)
[4] and chicken [2]. Starches are the most abundant carbohydrates in seeds. These complex

polysaccharides are difficult to digest for vertebrates [27]. The rich bacterial community in gra-

nivorous birds is probably associated to the transformation of complex carbohydrates to short-

chain fatty acids (SCFAs) mediated by consortia of multiple bacteria with complementary

capabilities [27]. This observation is supported by PICRUSt analyses, where carbohydrate

metabolism is predominant in the lower intestine of granivorous birds (Fig 5).

LEfSe analyses showed that the Clostridiaceae family (Firmicutes phylum) is abundant in

the lower intestine of granivorous birds and Clostridium genus is predominant in the gizzard

and upper intestine in frugivorous birds (Fig 4D, 4E and 4F), particularly in Buff-throated

Saltator (Fig 2). This family of bacteria is abundant in the ceca of granivorous chicken [13,28],

neotropical birds [6], gastrointestinal tract of turkeys [29] and in vulture facial skin and hind-

gut samples [14]. The members of this bacterial family are associated with proteolytic activity

and complex carbohydrate degradation, [30–32]. It is possible that the predominance of

amino acid and vitamin metabolism pathways (Fig 5) found in the intestine of studied birds

could be associated to this family.

Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria are the predominant phyla

found in the avian gut microbiota with carnivore (penguins and vultures) and herbivore diets

(kakapo, turkey, duck, goose and emu) [2]. Bacteroidetes are known for their ability to degrade

complex carbohydrates, including starch [33]. However, in our study only 2–13% of OTUs

found belong to this phylum. Low proportion of Bacteroidetes has been reported for Northern

Bobwhite (0.02%) [26], Parrots (0.2%) [34], pet birds (0.03%) [35] and different orders of tem-

perate (2.7%) and neotropical birds [6,8]. The significance of low proportion of Bacteroidetes

species in certain birds is unknown.

A large proportion of Proteobacteria was detected in all organs of frugivorous birds

(between 43–57%) (Fig 3D, 3E and 3F). This is higher than that found in the gut of some

mammal species [36]. Nevertheless, similar results have been reported in other wild birds with

herbivorous, frugivorous and omnivorous dietary habits [2,6,8,37] and in wild bats with fru-

givorous diets [38]. Wang and coauthors [37], hypothesized that high Proteobacteria abun-

dance in the gut of wild birds with frugivorous diets may significantly contribute to increase

digestive efficiency and assimilation, which may play an important role in providing energy

and nutrients. Additionally, the low content of nitrogen in fruits could be favoring nitrogen-

fixing bacteria that use atmospheric nitrogen to produce ammonium, which has been reported

in diverse taxonomical groups of bacteria [39]. Nitrogen-fixing bacteria belonging to Gamma-

proteobacteria and Alphaproteobacteria were reported before in termites [40] and Amazonian

catfish (Panaque nigrolineatus) [41]. Nitrogenase activity has been reported in herbivorous

grouses [42]. In this study, LEfSe analyses show Gammaproteobacteria (Enterobacteriaceae

family) predominance in upper and lower intestines of frugivores and this might be associated

Bacterial gut communities of neotropical wild birds
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with nitrogen-fixing bacteria; however more studies are necessary to demonstrate their

presence.

Comparing the bacterial community by organ, we observed that gizzards from granivorous

birds possessed a bacterial community significantly richer than frugivorous birds (Fig 3A).

Additionally, LEfSe analyses show that the gizzard of granivorous birds had a higher diversity

of bacterial taxa than the intestine of granivorous birds (Fig 4D, 4E and 4F). It has been

reported in chicken that the gizzard functions to grind food, and similar microbial communi-

ties were found in the crop and gizzard [43]. In this study, well developed crops were observed

only in Columbiformes birds. Therefore, the crop was not included in the analyses; however,

alpha and beta bacterial diversity of Columbiformes including crops were made (S4 Fig).

Crop and gizzard of Columbiformes had no significant differences in the Chao1 index rich-

ness or PCoA analysis (S4B and S4C Fig). This suggests that most bacteria found in gizzards

were also present in crops. However, the distribution of OTUs at the phylum level shows that

the gizzard had a higher proportion of Proteobacteria and Bacteroidetes and that 13.6% of

OTUs were unique, suggesting that gizzard function is more than grinding food (S4A and

S4D Fig) and may imply that different environmental conditions promote the establishment

of these bacterial phyla.

Frugivorous birds have a small gizzard and short intestine with a higher rate of food pas-

sage. This is an adaptation to digest food with high proportion of simple carbohydrates and

water, and low content of protein and fiber as fruit pulp [44,45]. This may suggest that micro-

organisms have little contribution in nutrient assimilation [45]. In our study, frugivorous

birds had small, non-muscular gizzards and short intestines and their bacterial community

had few differences between organs. The high proportion of easily digestible carbohydrates in

their diets could explain these few differences observed in bacterial communities between

organs. On the other hand, the microbiota of these birds might be associated to nitrogen

metabolism. Some nectarivorous, omnivorous, granivorous and herbivorous birds reflux uric

acid into the intestine and ceca where bacteria degrade the uric acid for amino acid synthesis

that, in turn birds can reabsorb [46,47]. Additionally, PICRUSt analysis shows a predominance

of xenobiotics biodegradation pathways suggesting that these bacteria could help in other

functions such as detoxification of plant secondary compounds, synthesis of vitamins, preven-

tion of pathogen colonization and regulation of the immune system [32,48].

Recent studies demonstrated that factors, such as locality and habitat, are important in the

microbial structure, because variables like local flora and fauna, photoperiod, available food,

climate conditions, etc. may affect host microbiota [11,12]. Our study is not suitable to fully

assess the importance of the locality variable in shaping the microbiota, because our 8 bird spe-

cies were captured in 5 different localities. However, to determine the effect on microbiota

between birds’ taxonomy and locality, we compare two frugivorous bird species (R. carbo and

S. maximus) in three localities (Ramal de Calderas, Uey river and Sierra de Tirgua) (S4 Fig). In

gizzards, the PCoA analysis shows that host microbiota is more related to the locality (Ramal

de Calderas) than to the species identity (S4A and S4D Fig), suggesting that host environment

had an important effect on microbiota composition. Therefore, we cannot discard the impor-

tance of locality in the composition of microbial community of the host digestive tract. Future

studies should address the host microbiota variations by locality in detail.

Conclusion

The results of this study indicate that host taxonomy and foraging guild are strong modulators

of the gut bacterial community structure; gizzard bacteria were more diverse than the intesti-

nal bacteria, in granivorous but not in frugivorous birds. Additionally, variation between
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localities is also likely to be important, but this could not be adequately assessed with our study

design.
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