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Materials fail by the nucleation and propagation of a crack, the critical condition of which is quantitatively
described by fracture mechanics that uses an intensity of singular stress field characteristically formed near
the crack-tip. However, the continuum assumption basing fracture mechanics obscures the prediction of
failure of materials at the nanoscale due to discreteness of atoms. Here, we demonstrate the ultimate
dimensional limit of fracture mechanics at the nanoscale, where only a small number of atoms are included
in a singular field of continuum stress formed near a crack tip. Surprisingly, a singular stress field of only
several nanometers still governs fracture as successfully as that at the macroscale, whereas both the stress
intensity factor and the energy release rate fail to describe fracture below a critically confined singular field of
2-3 nm, i.e., breakdown of fracture mechanics within the framework of the continuum theory. We further
propose an energy-based theory that explicitly accounts for the discrete nature of atoms, and demonstrate
that our theory not only successfully describes fracture even below the critical size but also seamlessly
connects the atomic to macroscales. It thus provides a more universal fracture criterion, and novel atomistic
insights into fracture.

range of fields including engineering, physics, materials science, biology, and geophysics, because fracture

is both a physically essential phenomenon and a practically inevitable issue that all materials in all range of
scales intrinsically possess and commonly suffer from Refs. 1-13. The fracture of materials is generally initiated
locally from a crack tip, which leads to a global failure of materials through crack propagation across the entire
structure. Therefore, the mechanical behavior of crack is of central importance to the fracture. Fracture
mechanics', established on the basis of the continuum mechanics theory, provides a theoretical framework to
describe the critical conditions at which a crack becomes mechanically unstable and begins to propagate. The
presence of a crack significantly concentrates mechanical stress or strain to the immediate vicinity of the crack-tip
and the stress diverges as a singularity of 1/1/r at the tip'*, which intensively accumulates strain energy to the
crack-tip area as the driving force to initiate fracture. Therefore, not the maximum stress at a single point, but the
stress intensity of this continuum “singular field” near the crack tip determines the initiation of fracture. A huge
number of studies have been conducted over a long period based on this fracture mechanics concept, both
experimentally and theoretically for a wide range of specimen sizes, from meters to micrometers'™'®. These
studies have demonstrated that fracture is successfully described by the singular field of continuum stress,
regardless of the size of materials, nevertheless fracture is ultimately characterized by discrete events at the atomic
scale, such as bond breaking'®.

However, ambiguity emerges at the nanoscale: As the structural dimensions of materials are further scaled
down to nanometers, the singular stress field formed near the crack tip is similarly confined to nanometers, where
only an extremely smaller number of atoms are present with respect to the macroscale materials. This situation is
clearly inconsistent with the facture mechanics concept based on the continuum theory that postulates the
presence of a sufficiently large number of atoms to regard even a crack-tip area as continuum media. This
inconsistency brings fundamental questions of to what scale does fracture mechanics go and what is alternative
principle governing fracture below a critical dimension at which fracture mechanics breaks down. Although very
few attempts toward this critical issue have been done due to experimental difficulties at the nanometer scale, a
result suggested that even a singular stress field of several tens of nanometers would still govern fracture*"’. Direct
fracture tests for even smaller specimens, however, are experimentally almost intractable. Thereby, interpretation
from the continuum (fracture) mechanics perspective and finding the limit still remains a considerable and hard
challenge.

This Letter provides striking results that fracture mechanics based on the continuum theory still successfully
describe fracture even in an extremely confined singular stress field of only several nanometers, according to ideal

l | nderstanding the nature of fracture, a catastrophic failure of materials, remains a major challenge in a wide
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fracture experiments for a brittle material in silico. In addition, we
first capture the breakdown of fracture mechanics and successfully
identify the lower applicable limit (dimensional bound) for fracture
mechanics. An attempt is also made to consistently describe fracture
even below the lower limit by a straightforward extension of the
fracture mechanics concept to the atomic scale.

Fracture tests are carefully performed in silico for pre-cracked
nanoscale specimens of a brittle material, where the atomistic nature
of fracture is particularly clear enough to determine. Geometry of our
nanoscale specimens is shown in Fig. 1a. The crack length 24 is one
third of the plate width, 2W(a = W/3). Based on Saint-Venant’s
principle, the plate height H is set to be large enough (H = 8W) to
avoid undesirable effects from the loading points to the stress field
near the crack. Several tens of specimens are prepared with the same
geometry and different sizes, ranging from 2W = 2.1 to 276 nm,
which includes up to 4,147,200 atoms. The samples consist of a single
crystal of a silicon diamond-cubic structure, where the [110], [001],
and [110] axes correspond to the x, y, and z directions of the speci-
mens, respectively. The crack is thus along the (110) cleavage plane
with the [001] crack front. The brittle nature of fracture at the crack
tip can be described by a bond-order potential of modified Stillinger-
Weber form'®, which gives the lattice constant of 5.431 nm and the
mode I fracture toughness for the present crack system (110)[001] in
the bulk of 1.03 MPay/m, and is in excellent agreement with the
experimental values of 5.431 nm' and 0.90-1.15 MPay/m?»%,
respectively. We apply constant loads to the top and bottom of speci-
mens as precondition for the present fracture tests. A quasi-static
tensile test is performed by applying a stepwise increment of load P to

P

the atoms at the top and bottom of the specimen. At each loading
step, the atomic structure is fully relaxed until all forces acting on the
atoms are less than 1.0 X 107~° nN. We carefully tested around the
critical load where the crack begins to propagate with a much smaller
increment of load (less than 0.05% of the critical load). During the
tensile test, the y cell dimension is fixed with a periodical boundary,
i.e,, a plane-strain condition. In addition to tensile testing, a quasi-
static bending test is performed for half-sized specimens with an edge
crack, as shown in the bottom panel of Fig. 1(a). The bending test
achieves the same (mode I) stress field near the crack tip while the far
stress field is different from that of the tensile test. To carefully cross-
check the results of above classical atomic simulations, we addition-
ally perform first-principles density-functional theory calculations
for crack-propagation using the commonly-used supercell set-up'c.
The detailed simulation models and procedure are shown in
Supplementary Material.

During the tensile tests, the displacement d at the loading point
linearly increases with the applied load P (Fig. 1(b)). Subsequently,
the displacement increases abruptly when the applied load reaches
the critical value P,, where the crack becomes mechanically unstable
and begins to propagate along the (110) cleavage plane (Fig. 1c). The
global deformation is thus linearly elastic and the subsequent frac-
ture is purely brittle. Such brittle nature of fracture is consistently
observed in all specimens tested under both tension and bending.
The results of fracture tests are investigated from a continuum-
mechanics perspective by assuming the specimen to be an elastic
continuum medium in order to explore the lower size limit of frac-
ture mechanics". In a specimen of W = 104 nm, the stress inten-
sively concentrates near the crack-tip and forms a singular field
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Figure 1| Fracture testing for pre-cracked nanoscale specimens. (a), Geometry and loading conditions of pre-cracked nanoscale specimens for tensile
tests (top) and bending tests (bottom). The computational experiments are performed for the different size of specimens of 2W = 2.1-276 nm.

(b), Tensile load P and the corresponding displacement d under tensile tests (top), and bending moment M and the corresponding angle of deflection 0
under bending tests (bottom), for a specimen of W= 104 nm. (c), Change in atomic configuration during the crack propagation under a critical loading
conditions. The crack propagates along the (110) cleavage plane with a sequential bond breaking.
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Figure 2 | Critical stress intensity of singular field in nanoscale specimens and dimensional limit of continuum fracture mechanics. (a), Normal stress
0, at the onset of fracture as a function of distance from the crack tip ralong the (110) crack plane under tensile and bending tests (solid red and blue lines,
respectively) for a larger specimen of W = 104 nm. The dashed lines indicate the slope of a 1/+/7 singularity, and the shaded area of Ax indicates

the K-dominant region (singular stress field size) near the crack-tip. (b), Same as Fig. 2a, but for a smaller specimen of W = 16 nm. (¢), Critical stress
intensity factor at fracture K{ as a function of K-dominant region A obtained by fracture tests for different size of specimens. The horizontal dotted line
indicates the fracture toughness K;c = 1.03 MPay/m of the corresponding crack system (110)[001]. K{ gradually starts to deviate from fracture toughness
around the critical size of A§ = 2-3 nm.

inversely proportional to the square root of distance, o, =K;/v/2nr, ~Kjc=1.03MPay/m. This evidently indicates that the fracture
where K; denotes the stress intensity factor (SIF) (Fig. 2(a)). mechanics criterion, ie., the crack propagates just when the SIF

The critical SIF at fracture is evaluated to be K{ =1.03MPay/m, reaches the fracture toughness, is applicable. This is also true for
which is in perfect agreement with the fracture toughness the bending test despite of different far stress field. This indicates
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Figure 3 | Brittle fracture mode at the crack-tip. (a), Visualization of fracture mode at the onset of brittle fracture (left panel), and the fracture mode
displacement normalized by the maximum displacement at the crack-tip for the different size of specimens (right panel). Ardenotes the fracture-
dominant zone. The fracture mode is analysed by instability mode analysis (see supplementary information). (b), K-dominant region Ag vs. fracture-
dominant zone Ayin different size of specimens. Ax/A¢= 10, 4, and 2 for the specimens of W = 104, 41, and 16 nm, respectively.

that fracture is well-dominated by only the singular stress field near
the crack tip, the size of which Ax = 5.1 and 4.1 nm (K-dominant
region) for the tensile and bending tests, respectively. On the other
hand, in a smaller specimen of W = 16 nm, where the K-dominant
region is Ax = 0.8 nm (Fig. 2(b)), fracture contrastingly occurs at

K{ =0.96MPa+/m. This clearly deviates from the fracture toughness.
Here, it should be noted that the result does 70t mean that the crack
in the nanoscale specimen becomes mechanically weak (the fracture
toughness itself decreases), because the bending test for the same size
of specimen gives a contrastingly higher critical SIF of 1.07 MPay/m.
Such deviation is also experimentally observed very recently in gra-
phene with an extremely short crack of 33 nm? Therefore, fracture
in such nanoscale specimens is no longer governed by SIF, i.e., con-
tinuum fracture mechanics breaks down. The critical size of K-dom-
inant region is evaluated to be A¢ = 2-3 nm (W = 40-60 nm in
specimen size), as shown in Fig. 2(c) and confirmed by quantum-
mechanical tests (Supplementary Fig. S1).

To provide physical insight in depth into the lower limit of fracture
mechanics A$, here we investigate the atomistic nature of brittle
fracture using our instability mode analysis (see Supplementary
Material)®’, which allows to rigorously capture the deformation
mode of atoms at the onset of brittle fracture, and the mode is
visualized in Fig. 3(a). The mode clearly shows the behavior of atoms
that opens the crack and advances the crack-tip along the (110)
cleavage plane through a bond break, and the same fracture mode
is consistently observed in all different size of specimens tested. In
addition, the analysis based on density-functional theory calcula-
tions also gives the same fracture mode (Supplementary Fig. S2).
These features evidently represent an intrinsic mode of brittle frac-
ture for the Si crack. The discrete motion of atoms is highly concen-
trated near the crack-tip, and the size of this fracture-dominant zone

Ayis estimated to be 0.4-0.6 nm. Here, let us mention a hypothesis of
fracture mechanics that the K-dominant region must be geometric-
ally large enough compared to a fracture process zone, which
includes various nonlinear phenomena resulting in inelastic
deformation near the crack-tip'. Since A; can be regarded as an
atomic-level process zone for brittle fracture, A% is expected to be
related to Ax As shown in Fig. 3(b), fracture mechanics is valid in a
large specimen of W = 104 nm, where A is ten times larger than A,
and is thus large enough to satisfy the hypothesis Ax >> Ax On the

other hand, K{ starts to deviate and fracture mechanics breaks down
in smaller specimens of W = 41 and 16 nm, where Ag becomes
closer to Ay and the hypothesis of fracture mechanics thus breaks

down. In fact, the deviation of K{ is more dramatically pronounced
around Ak = Ay (Fig. 2(c)). Therefore, Asdetermines the lower limit
of fracture mechanics, roughly estimated to be A = 3-6As

Fracture mechanics provides another criterion of energy release
rate (ERR) G, originally proposed by Griffith*, and extended by
Orowan® and Irwin®®. The ERR is defined as the released mechanical
(strain) energy with infinitesimal change of crack cross-section A,
and LEFM gives

dHCOﬂt (A) —

Hcont (A + AA) — Hcont(A)
dA ’

li
1m AA

AA—0

(1)

Grepm = —

where I1,,:(A) denotes the strain energy of continuum media and A

is the crack cross-section. In W > 60 nm, G{EFM is in good agreement
with the fracture toughness Gc=5.2 J/m* (Fig. 4(a)). However,
g{EFM begins to gradually deviate from G¢ around a specimen size
of W€ = 40-60 nm, i.e., the energy-based LEFM fails. The critical
specimen size is W€ = 40-60 nm, which is consistent with the failure
of SIF already discussed because Gigpm corresponds to SIF with
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Figure 4 | Energy-based criteria on the basis of continuum vs. discrete fracture mechanics. (a), Critical energy release rate at fracture & based on linear
elastic fracture mechanics (LEFM) and quantized fracture mechanics (QFM) as a function of specimen size W. The LEFM and QFM are both based
on the conventional continuum mechanics. The horizontal dotted lines indicate the fracture toughness G- =5.2 J/m’. (b), Comparison of strain energy
density distributions near the crack-tip between the actual atomic specimen and the continuum assumption in three different size of specimens under the
critical loading conditions. The strain energy density is normalized by the averaged strain energy density of the entire specimen. In the large (104 nm)
specimen where fracture mechanics works the continuum strain energy is in good agreement with the actual one, while the continuum strain energy
dramatically deviates from the actual one in critically small specimens (41 and 16 nm). (¢c), Critical energy release rate at fracture Q{)FM based on discrete

fracture mechanics (DFM) proposed here as a function of specimen size W.

GLERrM =K12(1 —v?)/E, where E and v are the Young’s modulus and
Poisson’s ratio, respectively'. It should be noted that Pugno and
Ruoff proposed quantized fracture mechanics (QFM)*, which par-
tially includes the effect of discreteness of atoms at the crack-tip into
the continuum fracture mechanics by considering finite advance of
crack in continuum media, but the ERR based on QFM still fails to
describe fracture below the critical size (Fig. 4(a)). Such failure is
because the actual strain energy distribution near the crack-tip is
no longer described by continuum assumption in such critically
small specimens (Fig. 4(b)). The deviation must be critical for the
evaluation of ERR because the strain energy concentrated in the K-
dominant region predominantly contributes to ERR". Thus, the fail-
ure of LEFM and QFM is due to the continuum assumption basing
both of them.

Beyond the continuum-based fracture mechanics as discussed
above, here we propose a following ERR, where the discreteness of
atoms at the crack tip is now fully taken into account by a straight-
forward extension of the fracture mechanics concept to the atomic
scale, as an effective parameter to describe fracture below the lower
size limit,

Anatom (A) _

l_Iatom (A + AA) — Hatom (A)
AA bl

AA

GOppm = —

(2)

where I, (A) is the potential energy of the simulated atomic spe-
cimen with a crack cross-section of A. AA is the finite change of the
crack cross-section at the onset of fracture which can be derived from
the fracture mode analysis; in the present case it corresponds to a
single bond break at the crack-tip as seen in the mode. DFM accounts
for the strain energy of discretized atomic body and the discrete
nature of atoms at the crack-tip, in contrast to the original ERR which
assumes the continuum strain energy and infinitesimal crack ad-
vance. In addition, DFM no longer postulates the presence of sin-
gular field, suggesting applicability to non-crack systems. Here we
call this analytic theory discrete fracture mechanics (DFM), and the

critical ERR based on proposed DFM, Q{)FM, as a function of spe-
cimen size W is shown in Fig. 4c. The fracture event always occurs
when G, reaches a critical constant value of 5.2 J/m?, regardless of
the loading conditions, for all specimen sizes, even below W* = 40—
60 nm. The DFM therefore describes the onset of crack propagation
successfully even in nanoscale specimens where the continuum frac-
ture mechanics breaks down. In addition, Gy, effectively works as a
governing parameter, not only at the nanoscale, but also at the
macroscale: As the specimen size approaches the macroscale, the
finite AA can be approximately regarded as an infinitesimally small
value with respect to the entire size of the specimen (AA—0) and the
strain energy distribution near the crack-tip is well approximated by
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continuum assumption (Allyom(A)=ATIln(A); Fig. 4(b)). Thus,
Gppy s identical to G, .y, at the macroscale from Egs. (1) and (2).

This seems to be rational because the critical Q{DFM of 5.2 J/m? where
fracture occurs, perfectly agrees with the fracture toughness
Gc=5.2]/m? given by the original framework of fracture
mechanics. Therefore, DFM consistently and seamlessly bridges
the nanometer (atomic) scale and the macroscale (continuum),
and successfully describes fracture for all scales.

We have shown that fracture mechanics fails below a critical sin-
gular-field size of 2-3 nm. Alternatively, we have proposed a new
energy-based theory that now accounts for the discrete nature of
atoms, and have demonstrated that it universally describes fracture
even below the critical size and provides a seamless connection
between the atomic and macroscale (continuum). This success not
only contributes to the reliability and design of industrial devices that
now consist of nanoscale materials, but also provides additional
atomistic insight into fracture toughness, which has simply been
considered as materials constants to represent the resistance to frac-
ture within the conventional framework. These results also promote
hard experimentation on fracture at the nanoscale and novel theor-
etical or physical re-interpretation of fracture events of various mate-
rials beyond conventional fracture mechanics, leading to new
strategies for the improvement of materials strength and toughness.
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