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Cytosine-5 RNA methylation plays an important role in several biologically and pathologically relevant processes.

However, owing to methodological limitations, the transcriptome-wide distribution of this mark has remained largely un-

known. We previously established RNA bisulfite sequencing as a method for the analysis of RNA cytosine-5 methylation

patterns at single-base resolution. More recently, next-generation sequencing has provided opportunities to establish tran-

scriptome-wide maps of this modification. Here, we present a computational approach that integrates tailored filtering and

data-driven statistical modeling to eliminate many of the artifacts that are known to be associated with bisulfite sequencing.

By using RNAs from mouse embryonic stem cells, we performed a comprehensive methylation analysis of mouse tRNAs,

rRNAs, and mRNAs. Our approach identified all known methylation marks in tRNA and two previously unknown but

evolutionary conserved marks in 28S rRNA. In addition, mRNAs were found to be very sparsely methylated or not meth-

ylated at all. Finally, the tRNA-specific activity of the DNMT2methyltransferase could be resolved at single-base resolution,

which provided important further validation. Our approach can be used to profile cytosine-5 RNAmethylation patterns in

many experimental contexts and will be important for understanding the function of cytosine-5 RNAmethylation in RNA

biology and in human disease.

[Supplemental material is available for this article.]

5-Methylcytosine (m5C) is the longest-known and best-under-
stood epigenetic modification of DNA (Jones 2012). The genome-
wide analysis ofm5C patterns has greatly aided our understanding
of epigenetic gene regulation (Bock et al. 2010). Changes in DNA
methylation patterns have been found to underpin organismal
development and cellular differentiation (Smith and Meissner
2013) and also provide valuable biomarkers for the detection of
human diseases, including cancer (Heyn and Esteller 2012).

m5C also represents a well-known modification of RNA
(Motorin et al. 2010). In comparison to DNA modifications, RNA
modifications are substantially more diverse and complex, but
their functional significance is only beginning to be elucidated
(Gilbert et al. 2016; Tuorto and Lyko 2016). RNA modifications
are particularly enriched in tRNAs, where they are often linked
to translational regulation (Agris 2008). In this context, it has
been shown that m5C modification of tRNA plays an important
role in tRNA stability and in the regulation of translational fidelity
(Schaefer et al. 2010; Tuorto et al. 2012, 2015; Blanco et al. 2014).
Furthermore, m5C is also a widely conserved modification of
rRNA, where it is implied in the quality control of ribosome bio-
genesis (Sharma et al. 2013; Bourgeois et al. 2015; Schosserer
et al. 2015). These processes have been associated with a variety
of human diseases (Blanco and Frye 2014).

m5C in RNA can be reliably detected using radioactive label-
ing and thin-layer chromatography (Hengesbach et al. 2008).
However, this method only allows for an indirect quantification
of global methylation levels. In comparison, high-performance
liquid chromatography coupled to mass spectrometry (LC-MS) is
more accurate and also allows the analysis of larger sample num-
bers (Thüring et al. 2016) but currently does not provide any infor-
mation about the sequence context of the methylation marks.
Several methods for the mapping of RNA cytosine methylation
marks have been proposed (Hussain et al. 2013a; Li et al. 2016);
however, they are usually based on indirect detection and thus rep-
resent approximations of the actual distribution. Direct mapping
of RNA m5C marks in their native sequence context is currently
only provided by RNA bisulfite sequencing (Schaefer et al. 2009).
Bisulfite sequencing is based on the selective deamination of
unmethylated cytosines, thus converting unprotected cytosines
to uracils, followed by sequencing-based detection of methyla-
tion-related sequence polymorphisms (Clark et al. 1994). RNA
bisulfite sequencing can accurately identify the presence of select-
ed knownmethylationmarks in tRNA and rRNA andhas proven to
be very useful for themolecular characterization of RNA cytosine-5
methyltransferases (Schaefer et al. 2009).

A few studies have also utilized RNA bisulfite sequencing
to map RNA m5C marks at the transcriptome level and found
evidence for the presence ofm5C inmammalianmRNAs and non-
coding RNAs (Squires et al. 2012; Hussain et al. 2013b; Khoddami
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and Cairns 2013; Amort et al. 2017). While it has been suggested
that the human coding and noncoding transcriptome contains
up to 10,000 methylation sites (Squires et al. 2012; Amort et al.
2017), the function of these marks has remained elusive.
Furthermore, the available studies could not define a common
set of substrate mRNAs or consensus methylation target sequenc-
es, which raised the possibility that some of the results were influ-
enced by incomplete deamination, secondary structures, or other
confounding factors that are known to affect bisulfite sequencing
(Supplemental Table S1). It is also possible that methylation call-
ing was influenced by insufficient statistical stringency.

Standard analytical pipelines for whole-transcriptome bisul-
fite sequencing (WTBS) data sets are currently not available. Fur-
thermore, available tools do not sufficiently address the need for
statistical approaches in the elimination of stochastic artifacts.
Our approach addresses these issues and identifies profoundly dif-
ferent methylation patterns for mRNA, rRNA, and tRNA.

Results

Whole-transcriptome bisulfite sequencing libraries were prepared
by separating total RNA samples into small (<200 nt) and long
(>200 nt) RNA fractions. Depending on whether ribosomal RNA
was also examined, an rRNA depletion step was included or not.
The long fractionwas fragmented to a size distribution appropriate
for Illumina sequencing. Both fractions were DNase-digested,
bisulfite converted, and end-repaired prior to cDNA library prepa-
ration for deep sequencing (Fig. 1A; Supplemental Methods).

Sequenced reads were aligned with BSMAP (Xi and Li 2009) and
subjected to initial quality control (read length ≥25 nt, aligned
uniquely, forward and reverse reads at the same location). A closer
examination of candidate methylation sites revealed many obvi-
ous false-positive sites that were related to inefficient conversion
(i.e., tracts of three or more consecutive nonconverted Cs) or mis-
alignment (Supplemental Fig. S1). We therefore implemented
filters for the removal of these artifacts (for details, see Supplemen-
tal Methods). For methylation calling, a Poisson distribution was
fit to each sample, and nonconversion P-values were calculated. Fi-
nally, available replicates were joined, and a combinednonconver-
sion P-value was calculated (Fig. 1B; Methods).

For the present study, we sequenced and analyzed three rep-
licates of bisulfite-converted libraries from mouse embryonic
stem (ES) cells and various genotypes; 19,198,431 to 84,435,380
read pairs were available after sequencing of each sample (Supple-
mental Table S2). Bisulfite conversion rates were determined from
unmethylated regions of rRNA and ranged from 98.4%–98.6%
(Supplemental Table S2).

Initial data analysis using the mRNA data set from a single
wild-type replicate showed that the vast majority of cytosines
had conversion ratios >90% (Fig. 2A). To further analyze the
nonconverted cytosine reads, we estimated the Poisson parameter
λp as the count of nonconverted (Nn) cytosines separately within
each coverage bin between 10× and 1200× (bins of 10 in coverage,
extended to ensure aminimumof 60 data pointswere used; for fur-
ther details, seeMethods). The average andmedian coverages were
44× and 20×, respectively. The ratio r = λp/(Nn +Nc) was computed

in each bin (whereNc = count of convert-
ed cytosines,N =Nn +Nc is the coverage).
r had a tight distribution and showed
no strong dependence onN. The median
of r was 0.0164, with 95% confidence
interval [0.0164; 0.0166] (Fig. 2B; Supple-
mental Table S3). Not surprisingly, (1−
λp/ coverage) was close to the deamina-
tion rate for this sample, which we calcu-
lated at 98.3% (Supplemental Table S2).
Similarly, the ratios λp/coverage were ob-
tained for all sequencing libraries (Sup-
plemental Table S3) and showed only
minor differences, in agreement withmi-
nor variations in bisulfite deamination
efficiencies (Supplemental Table S2).

In subsequent steps, we compared
nonconversion rates with the underlying
distribution for each cytosine site where
the nonconversion ratio is higher
than λp/ coverage. Out of 3,338,384 cyto-
sines, 53,510 had a nonconversion ratio
higher or equal to 0.2 (Fig. 2C), con-
sistent with earlier findings in human
cell lines (Squires et al. 2012). However,
only 266 out of 53,510 cytosines
achieved statistical significance (P <
0.05) after Benjamini-Hochberg correc-
tion for multiple testing (Fig. 2C). Many
significant sites exhibited a low non-
conversion ratio of 0.2. Conversely,
some cytosines with higher nonconver-
sion ratios did not pass a 0.05 sig-
nificance threshold (Fig. 2C). The large

Figure 1. Schematic outline of whole-transcriptome bisulfite sequencing. The illustration shows key
steps of library preparation (A) and data analysis (B).
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amount of nonsignificant P-values demonstrates the requirement
for statistical approaches in the analysis of whole-transcriptome
bisulfite sequencing data sets. This notion was confirmed when
we analyzed nonconversion tracks for all three independent repli-
cates (see representative example in Fig. 2D). In spite of the consid-
erable overall deamination efficiency, all samples showed a
persistent background of residual nonconversion, as well as indi-
vidual sites with particularly reduced conversion rates (Fig. 2D).
However, these patterns were usually not conserved between the
three replicates, indicating that they are the result of nonreprodu-
cible methylation or random incomplete bisulfite deamination.

In subsequent analyses, we therefore examined the intersec-
tion of the three replicates (i.e., sites with a nonconversion rate
consistently above the library nonconversion rate shown in
Supplemental Table S2) to reliably identify methylated cytosines
in mRNAs. Out of the 2,105,654 cytosines that had sufficient cov-
erage in all three replicates, 56,940 had a bisulfite nonconversion

ratio larger than λp/coverage. Remarkably, only 745 sites were
significant (adjusted P-value <0.05) (Fig. 3A). Out of these candi-
dates, only a small fraction combined high statistical significance
with high methylation ratios (Fig. 3A; Supplemental Table S3).
In order to assess the type I error of the method, we also evaluated
the proportion of false positives resulting from the Poisson test by
a simulation of several instances of a million stochastically non-
converted cytosines. This allowed us to reconstitute nonconver-
sion ratios (Fig. 3B) and to calculate type I error estimates
(Supplemental Fig. S2). Simulated nonconversion ratios were re-
markably close to the experimental data (Fig. 3B), thus confirming
that our simulations are realistic, and type I error was identical or
lower than the significance level of 0.05 (Supplemental Fig. S2).
Simulations of 10,000 cytosines methylated at various levels
among 3 million cytosines provided statistical power estimates,
using either Benjamini-Hochberg adjustment (Fig. 3C) or indepen-
dent hypothesis weighting (Supplemental Methods; Supplemen-
tal Fig. S2) for multiple testing. The results showed that our

Figure 2. WTBS of mouse ES cell mRNA. (A) Frequency of bisulfite non-
conversion (resp. methylation) ratios in mRNA. (B) Estimated Poisson rate
λp/coverage as a function of coverage, as well as corresponding boxplot.
(C) Bisulfite nonconversion ratio (x-axis) and −log of methylation P-values
(y-axis) for 53,510 cytosines passing the 0.2 ratio threshold. Color indi-
cates density (count of points per symbol area). (D) Cytosine position
and methylation tracks for a representative mRNA transcript
(NM_007984) in three replicates.

Figure 3. Statistical analysis of WTBS data sets. (A) Bisulfite nonconver-
sion ratio (x-axis) and −log of methylation P-values (y-axis) for 56,940 cy-
tosines with ratio >λp/coverage that are common to the three wild-type
replicates. Color indicates density (count of points per symbol area). (B)
Number of cytosines and nonconversion ratios, as determined experimen-
tally (left) or by simulation (right). (C) Statistical power stratified by cover-
age and by nonconversion ratio. (D) Histogram of coverage in a
representative (Wt1L) sequencing data set. The red line indicates a cover-
age of 20×. (E) Logo plot for all cytosines with a ratio >0.1 and significant P-
value (<0.05) in at least one sample.
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analysis had the ability to reliably (statistical power = 99.9 ±
0.04%) detect siteswith as lowas 20%nonconversion at a coverage
of more than 20×. A coverage of more than 20× was obtained for
>50% of the cytosine residues in our sequencing data sets (Fig.
3D), thus demonstrating sufficient statistical power for ameaning-
ful data analysis.

However, even after statistical analysis, several candidate sites
remained that could not be considered bona fide methylation
sites. For example, site C153 within mRNA NM_001199350 had
a median nonconversion ratio of 1.0 and an adjusted P-value of
6.6 × 10−84 but actually presented a C>T sequence polymorphism
at this specific position. As a consequence, a read containing the
T-variant multiply aligned to both the NM_001199350 sequence
and to its T-containing variant and was therefore discarded.
However, C-containing reads would align uniquely and were
therefore maintained in the analysis, resulting in an overestima-
tion of themethylation ratio. To further address the reproducibilty
of the remaining candidate methylation sites, we selected 10 can-
didates with the lowest adjusted P-values and four additional can-
didates with a methylation level close to 1.0 and significant
adjusted P-values in a subset of samples (Supplemental Table S4)
for an amplicon-based resequencing approach. The results showed
that four out of 14 analyzed cytosines were unmethylated
(Supplemental Fig. S3; Supplemental Table S4). This again suggests
that the very lownumber of candidatemethylation sites identified
in our analysis contains a certain amount of false positives. In
agreement with this notion, candidate methylation sites also
failed to reveal any pattern specificity, as we could not identify
any clear enrichment for specific sequence contexts (Fig. 3E).

The prevalence of m5C inmRNAwas further analyzed by LC-
MS/MS. mRNA was enriched from total RNA by two consecutive
rounds of polyA selection, followed by small RNA depletion and
two consecutive rounds of rRNA depletion (Fig. 4A). Samples

were taken at each step and analyzed by RNA-seq for sample com-
position and by LC-MS/MS for basemodifications. The sequencing
results showed that the enrichment protocol resulted in a strong
increase of mRNA reads (Fig. 4B). However, a significant (7.1%)
fraction of rRNA reads remained after the final step (Fig. 4B), prob-
ably resulting from ineffective rRNA fragment depletion. LC-MS/
MS analysis of all samples demonstrated a strong reduction of
m5C (Fig. 4C) that closely corresponds to the rRNA depletion ob-
served by sequencing. Of note, we also failed to detect any evi-
dence for the presence of the oxidated derivative of m5C, 5-
hydroxymethylcytosine, in any of our samples (Fig. 4C). Very sim-
ilar results were obtained in parallel analyses of Drosophila S2 cell
RNA samples (Supplemental Fig. S4). Based on a detection limit
of 1 fmol (Supplemental Fig. S5), this finding corresponds to a
maximum hm5C content of 50 ppm (0.005%) per C residue.
Our results thus contrast the antibody-based detection of 5-
hydroxymethylcytosine as a prevalent mRNA modification in
Drosophila (Delatte et al. 2016). Furthermore, our results also sug-
gest that mRNAs are very sparsely methylated or not methylated
at all.

While the cytosine-5 methylation status of mRNAs is contro-
versial, rRNAs and tRNAs have long been known to carry defined
methylation marks (Machnicka et al. 2013). We therefore com-
pared the methylation frequencies between these three types of
RNA. In mRNA, only 1090 cytosines out of 764,645 had a signifi-
cant bisulfite nonconversion ratio larger than 0.1, which corre-
sponds to a hypothetical mRNA methylation level of 0.1% (Fig.
5A). In contrast, methylation levels appeared to be substantially
higher in rRNA (1.3%) and in tRNA (8.3%), which is consistent
with the known prevalence of m5C in these RNAs (Fig. 5A).
Similarly, when we systematically evaluated the reproducibility
of the nonconversion ratio for all candidate methylation sites,
standard errors appeared substantially higher for mRNA than for

Figure 4. LC-MS/MS analysis of RNA samples from mouse ES cells that
were subjected to multistep mRNA enrichment. (A) Basic outline of the
mRNA enrichment protocol. (B) Relative amounts of mRNA and rRNA as
determined by RNA-seq. The proportion of tRNA reads was <1% for all
samples. (C ) Modification analysis of m5C, hm5C, m26A, m6A, and
m1A content, relative to A content.

Figure 5. Methylation frequencies and reproducibility in mRNA, rRNA,
and tRNA. (A) Proportion of nonconverted cytosines (coverage≥ 20×).
(B) Standard error (coverage≥ 20× and nonconversion ratio ≥0.1).
Values are based on triplicate wild-type data sets for mRNA and tRNA
and on duplicate data sets for rRNA.
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rRNA and tRNA (Fig. 5B). This finding again suggests that tRNAs
and rRNAs are methylated differently from mRNAs.

Finally, we also investigated the effect of specific enzymes on
RNAm5C patterns. To this end, we further developed our compu-
tational pipeline to provide a standard analysis of specific types of
RNA and to compare methylation patterns between genotypes. As
a proof of principle, we determined the effects of the presence or
absence of the tRNA methyltransferase DNMT2 on tRNA, rRNA,
and mRNA methylation levels. This identified numerous known
tRNA m5C sites (Fig. 6A; Supplemental Table S5). In addition,
our results also demonstrate that DNMT2 is a highly specific en-
zyme, as Dnmt2 mutants specifically lost methylation at C38 in
tRNA(Asp), tRNA(Gly), and tRNA(Val) (Fig. 6A). The analysis of
rRNA revealed the presence of two novel and completely methyl-
ated cytosines in 28S rRNA, namely, C3438 and C4099 (Fig. 6B).
These marks were not affected in Dnmt2 knockouts, and their se-
quence contexts (Supplemental Fig. S6) were identical to the
m5C marks described in Homo sapiens and Arabidopsis thaliana
rRNA (Burgess et al. 2015), consistent with evolutionary conserva-
tion of rRNAmethylation patterns. In addition, we also found two
cytosines with partial (C909, ratio equal to 0.5) and almost com-
plete (C911, ratio equal to 0.8) methylation in mitochondrial
rRNA, which is consistent with published findings (Metodiev
et al. 2009).We also analyzedmRNAmethylation inDnmt2 knock-
outs and could not detect any DNMT2-dependent mRNAmethyl-
ation candidates (Fig. 6C). Finally, because a recent study has
suggested a role of TET dioxygenases in the demethylation of
Drosophila mRNAs (Delatte et al. 2016), we also investigated the
mRNA methylation pattern of mouse ES cells that lack all three
mammalian Tet homologs (Dawlaty et al., 2014). A comparison
with mRNA methylation patterns from wild-type cells again pro-
vided very little evidence for mRNA methylation (Fig. 6D). A
very small number of cytosines showed a reduced nonconversion
ratio in the TET-deficient cells (Fig. 6D). However, nonconversion
ratios of TET-deficient libraries were systematically reduced by
0.004 (P-value of a two-sample t-test <2.2 × 10−16), which can be
explained by amore efficient bisulfite deamination (Supplemental

Table S2). As such, our results fail to provide any evidence for TET-
mediated demethylation of mRNAs in mouse ES cells.

Together, these results comprehensively illustrate the robust-
ness of our approach for the transcriptome-wide analysis of cyto-
sine-5 methylation patterns at single-base resolution.

Discussion

Previous whole-transcriptome bisulfite sequencing pipelines often
relied on cutoff-based methylation calling approaches (typically
coverage and nonconversion ratio more than 10× and >20%, re-
spectively) (Supplemental Table S6). Improved accuracy was
achieved by a more stringent quality control and the removal of
nonconverted reads (Edelheit et al. 2013; Blanco et al. 2014), while
reproducibility was ensured by the inclusion of replicates (Amort
et al. 2013; Blanco et al. 2014). Most recently, it was suggested to
integrate several methods derived from the DNA methylation
field, including generic statistical tests and a custom low-redun-
dancy reference (Rieder et al. 2016; Amort et al. 2017). However,
concerns about false positives from stochastic nonconversion
events and other sources of artifacts have remained (Hussain
et al. 2013a; Gilbert et al. 2016; Helm and Motorin 2017). We
have now developed a pipeline for the accurate and reproducible
analysis of m5C marks in whole-transcriptome bisulfite sequenc-
ing data sets. Tailored filtering addressed most sequencing and
alignment artifacts, which is particularly important for the short
low-complexity reads that result from bisulfite conversion. In par-
ticular, we tested for residual misalignments and discarded them if
significant. Statistical modeling of bisulfite nonconversion was
used to characterize and eliminate random nonconversion arti-
facts. Simulations confirmed a high statistical power of our pipe-
line, using Benjamini-Hochberg adjustment for multiple testing
or using independent hypothesis weighting for cytosines with a
nonconversion ratio ≥20%. The inclusion of replicates allowed
us to identify candidate sites that are reproducibly methylated.
Also, standard errors were estimated on replicates, indicating
how variable methylation is at each cytosine. The application of
this pipeline on various data sets provided novel insight into the
distribution of m5C in the mouse transcriptome.

A recent study detectedm5C in prokaryoticmRNA, but not in
yeast mRNA, suggesting that cytosine-5 mRNA methylation may
be restricted to prokaryotic transcriptomes (Edelheit et al. 2013).
Our results are consistent with these findings and argue against
the notion that m5C is a widespread modification of coding and
noncoding RNAs in mammals (Squires et al. 2012). Our results
are also in agreement with earlier chromatographical studies that
have failed to reveal any evidence for cytosine-5 methylation in
mammalian mRNA (Desrosiers et al. 1974; Adams and Cory
1975; Salditt-Georgieff et al. 1976). Alternatively, the small
amounts and high variability could indicate a rapid turnover of
m5C in mRNA.

Whether the few remaining candidate sites identified in our
analysis represent genuine methylation marks or reproducible
deamination artifacts remains to be determined by truly orthogo-
nal approaches, such as sequence-specificmass spectrometric anal-
ysis (Ross et al. 2016) or single-molecule real-time sequencing
(Vilfan et al. 2013). It should be noted that bisulfite deamination
artifacts can be caused by residual proteins that bind to nucleic ac-
ids and/or by RNA secondary structures (Supplemental Table S1),
which could provide an explanation for their reproducibility.

As bisulfite sequencing cannot discriminate between m5C
and hm5C (Huang et al. 2010), our results predict that hm5C

Figure 6. Site-specific methylation analysis by whole-transcriptome
bisulfite sequencing. Scatter plots show nonconverted cytosines for
tRNA (A), rRNA (B), and mRNA (C ) in wild-type and Dnmt2 knockout ES
cells. Methylation ratios are specifically reduced for C38 of tRNA(Asp),
tRNA(Gly), and tRNA(Val) in Dnmt2 knockouts. (D) Scatter plot for
mRNA in wild-type and TET-deficient ES cells.
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also represents a very rare or absent modification in mRNA from
mouse ES cells, consistent with mass spectrometry data obtained
in our study and by others (Fu et al. 2014). Recent data suggesting
high levels of hm5C in theDrosophila transcriptome (Delatte et al.
2016) may have been influenced by antibody-based detection
methods. Alternatively, high levels of cytosine modification in
Drosophila mRNA may also be a tissue-specific feature. Additional
data based on direct detection methods will be required to clarify
this issue.

In conclusion, our results establish whole-transcriptome
bisulfite sequencing as a powerful method for a single-base resolu-
tion analysis of m5C RNA methylation patterns and suggest pro-
found differences between the patterns of tRNA, rRNA, and
mRNA methylation. Our approach identified all known methyla-
tionmarks in tRNA and two previously unknownbut evolutionari-
ly conserved marks inmouse 28S rRNA. Furthermore, the catalytic
activity of the DNMT2 RNA methyltransferase was resolved at
single-base resolution. This suggests that whole-transcriptome
bisulfite sequencing can be used to profile cytosine-5 RNAmethyl-
ation patterns in many experimental contexts ranging from basic
biological processes to human disease.

Methods

Cell culture, RNA isolation, and library preparation

Mouse ES cells were grown on a primary MEF feeder layer in stan-
dardmedium. RNA isolationwas performedwith TRIzol (Ambion).
Thirty micrograms of total RNAwas fractionated into a long (>200
nt) and small (<200 nt) RNA fraction and depleted for rRNA as in-
dicated. Small and long fractions were DNase-digested and bisul-
fite converted using the EZ RNA Methylation Kit (Zymo
Research). After stepwise RNA end repair and further purification,
cDNA synthesis and library preparation was carried out using the
NEBNext Small RNA Library Prep Set, followed by paired-end se-
quencing on an Illumina HiSeq 2000 platform. Further details
are provided in Supplemental Methods.

454 bisulfite sequencing

454 Life Sciences (Roche) bisulfite sequencing was performed us-
ing the EZ RNA Methylation Kit (Zymo Research). PCR primers
are provided in Supplemental Table 7. Sequenced reads from indi-
vidual amplicons were aggregated in heatmaps. Further details are
provided in Supplemental Methods.

LC-MS/MS analysis

LC-MS/MS analysis of RNA frommouse ES cells and Drosophila S2
cells (cultured under standard conditions) was performed as de-
scribed previously (Kellner et al. 2014). Further details are provided
in Supplemental Methods.

Reference sequences

Separate references were generated for tRNA, rRNA, and mRNA:
First, tRNA genomic sequences for mouse mm9 were retrieved
from the genomic tRNA database. Duplicate sequences were
removed. In case of bisulfite-conversion duplicates (i.e., two se-
quences becoming identical upon cytosine to thymine conver-
sion), the duplicate sequence containing thymine was removed.
This allowsmethylation detection in such sequences, even though
the methylation ratio cannot be determined here. Second, se-
quences for 5.8S, 18S, and 28S rRNAs were retrieved from the
BK000964.3 reference sequence in the NCBI nucleotide database,

whereas mitochondrial rRNA sequences were obtained from
Ensembl GRCm38 (release 81). We chose to keep only one variant
for each main Svedberg category of rRNA (5.8S, 18S, 28S) so as to
not discard reads that would otherwise align to multiple rRNA ref-
erence sequences. Third, mRNA transcript sequences were down-
loaded from NCBI RefSeq for mouse mm9. To ensure that reads
uniquely align to mRNA, this reference was complemented with
controls consisting of tRNA sequences and a comprehensive col-
lection of noncoding RNA sequences (BK000964.3, other rRNA
variants from SILVA database (https://www.arb-silva.de/) and
Ensembl, and noncoding RNA sequences from NCBI RefSeq).

Sequence alignment

Reads were trimmed with a quality cutoff of 30 for each base (cor-
responding to a confidence level of 99.9%) and aligned using
BSMAP (Xi and Li 2009), which allows C-T base modifications
without flagging them as mismatches. We used a 3% mismatch
rate and full sequence usage in BSMAP (parameters: -s 12 -v 0.03
-g 0 -w 1000 -S 0 -p 1 -V 1 -I 1 -n 0 -r 2 -u -m 15 -x 1000).
Resulting aligned reads were kept only if their length was ≥25 nt,
if they aligned uniquely, and if both forward and reverse pairs
were located at the same positions.

Methylation calling

Reliable distinction between stochastic nonconversion and
methylation (or other events) depends on a valid null hypothesis
for the underlying distribution of stochastic nonconversion.
Thus, we assessed the adequacy of the empirical null distribution
formed by the nonconverted cytosine counts (restricted to non-
conversion lower than 0.3) to the binomial B, negative binomial
NB, or Poisson P distributions. We estimated the parameters of
each distribution and calculated the data log-likelihood using
function “fitdistr” in R, where the log-likelihood is denoted
LB(X ; û ; coverage), LNB(X ; û ; coverage), or LP (X ; û ; coverage)
and depends on the vector containing the count of nonconverted
Cs at each site, X; on the estimated distribution parameters set, û ;
and on the coverage. Bins of 10 in coverage, extended to ensure a
minimum of 60 data points (number of cytosine positions fall-
ing within this bin) were used: {10, 20, 30, 40, 50, 60, 80,…, 280,
300, 350,…550, 600, 1000, 2000, etc.}. Since the parameters
of the binomial distribution could not be found using ‘fitdistr,’
we estimated the binomial parameters n̂ = coverage and
p̂ = average nonconversion ratio and generated the correspond-
ing values of LB(X ; û ; coverage). At all coverages, we obtained
LB(X ; û ;coverage)≤ min(LP (X ; û ;coverage),LNB(X ; û ;coverage)),
so that we considered B a less useful assumption than NB or P.
Because P offered a minimal and coverage-independent parame-
terization λp/coverage (λp denotes the estimate of the Poisson
parameter) (Fig. 2B), we made the assumption that the theoretical
null distribution of bisulfite nonconversion in this data set follows
P. Subsequently, we tested nonconverted read counts at each spe-
cific cytosine against the null hypothesis that the counts follow
P(lp) (Poisson exact test in R, adjustment of P-values for multiple
testing with Benjamini-Hochberg method, significance level α =
0.05). A significant result was interpreted as a possibly methylated
cytosine and qualified the site as a valid candidate. Because sec-
ondary structures and nucleic acid binding proteins cause repro-
ducible bisulfite deamination artifacts (Warnecke et al. 2002), we
could not use raw P-values for subsequent tests, as this would
lead to significance for most of these artifacts. However, Fisher’s
method has shown robustness in a variety of contexts where the
underlying assumptions are not strictly met (Derkach et al. 2013;
Rau et al. 2014). We therefore summed the log-transformed
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adjusted P-values of cytosines that had a nonconversion ratio
higher than λp/coverage in each of the three replicates and com-
bined themusing a χ2 test on their sum. This allowed us to identify
cytosines that robustly have small adjusted P-values in all three
replicates. The methylation calling methods described in this par-
agraph are implemented in the R package BisRNA.

Calculation of deamination rates

Deamination rates were calculated as the count of converted
cytosines divided by the sumof converted andnonconverted cyto-
sines. This calculation is carried out on nuclear andmitochondrial
rRNA. Known methylation sites in rRNA were removed from the
calculations.

Software availability

BisRNA is available as a source R package in the Supplemental
Information and from the Comprehensive R Archive Network
(https://cran.r-project.org/web/packages/BisRNA/).

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE81825.
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