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Neuroblastoma is the commonest extracranial pediatric malignancy. With few recurrent
single nucleotide variations (SNVs), mutation-based precision oncology approaches have
limited utility, but its frequent and heterogenous copy number variations (CNVs) could
represent genomic dependencies that may be exploited for personalized therapy. Patient-
derived cell culture (PDC) models can facilitate rapid testing of multiple agents to
determine such individualized drug-responses. Thus, to study the relationship between
individual genomic aberrations and therapeutic susceptibilities, we integrated
comprehensive genomic profiling of neuroblastoma tumors with drug screening of
corresponding PDCs against 418 targeted inhibitors. We quantified the strength of
association between copy number and cytotoxicity, and validated significantly
correlated gene-drug pairs in public data and using machine learning models. Somatic
mutations were infrequent (3.1 per case), but copy number losses in 1p (31%) and 11q
(38%), and gains in 17q (69%) were prevalent. Critically, in-vitro cytotoxicity significantly
correlated only with CNVs, but not SNVs. Among 1278 significantly correlated gene-drug
pairs, copy number of GNA13 and DNA damage response genes CBL, DNMT3A, and
PPM1D were most significantly correlated with cytotoxicity; the drugs most commonly
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associated with these genes were PI3K/mTOR inhibitor PIK-75, and CDK inhibitors P276-
00, SNS-032, AT7519, flavopiridol and dinaciclib. Predictive Markov random field models
constructed from CNVs alone recapitulated the true z-score-weighted associations, with
the strongest gene-drug functional interactions in subnetworks involving PI3K and JAK-
STAT pathways. Together, our data defined individualized dose-dependent relationships
between copy number gains of PI3K and STAT family genes particularly on 17q and
susceptibility to PI3K and cell cycle agents in neuroblastoma. Integration of genomic
profiling and drug screening of patient-derived models of neuroblastoma can
quantitatively define copy number-dependent sensitivities to targeted inhibitors, which
can guide personalized therapy for such mutationally quiet cancers.
Keywords: neuroblastoma, patient-derived culture, copy number variations (CNV), Comprehensive genomic
profiling (CGP), PI3K - AKT pathway, CDK (cyclin-dependent kinase), JAK-STAT cascade
INTRODUCTION

Neuroblastoma is the most common pediatric extracranial
malignant tumor and is responsible for a disproportionate 15%
of all childhood cancer deaths. Despite current intensive
multimodal therapy for patients with high-risk disease, 5-year
survival remains at 30-50% even after decades of international
multicenter trials. Due to its histologic and biologic
heterogeneity, the classic stage- and risk-based clinical trial
approach cannot adequately match treatments to the diverse
individual susceptibilities of each patient’s tumor, and is further
limited by the small numbers of patients in each subgroup (1).
Thus, therapeutic advancements for neuroblastoma may be
better realized with a personalized approach.

Precision oncology approaches based on identification of
targetable single nucleotide variants (SNVs) have limited
usefulness in embryonal tumors because of their low
mutational burden (2). Instead, copy number variations
(CNVs) are more prevalent and are stronger prognostic factors
in neuroblastoma (2–4). In particular, segmental chromosomal
aberrations (SCAs) are associated with advanced disease stage
and poorer prognosis. This corroborates with recent evidence
that the pathogenicity of CNVs correlate with dosage sensitivity
of involved genes, and are enriched for embryonal
neurodevelopmental functions (5). This suggests that gene
copy number could be used to predict and select targeted
therapies, especially in embryonal tumors of childhood (6).
While current sequencing-based panels may be an efficient and
cost-effective manner to perform clinical genomic profiling, most
are designed for adult cancers or hematological malignancies.
Recently, the Oncomine Childhood Cancer Research Assay
(OCCRA) was developed as a diagnostic-grade genomic
profiling tool curated specifically for pediatric cancers (7, 8).
This is a promising new resource to detect significant and
potentially actionable SNVs and CNVs in neuroblastoma.
riant; CNV, copy number variation;
CCRA, Oncomine Childhood Cancer
ulture; FDR, false discovery rate; PGM,
dependent kinase.

2

Individualized preclinical tumor models can be a
complementary means to rapidly test drug therapies ex vivo,
and have been able to successfully uncover potential therapeutic
leads (9, 10). While this has been employed extensively in
epithelial carcinomas, embryonal tumors like neuroblastoma
have not been consistently engrafted as personalized in vitro
models. Commercial cell lines are often significantly changed
with multiple serial passages or have been contaminated over
time, and do not capture individual patient genetic or phenotypic
differences in treatment response (11–14). We previously
developed multi-lineage patient-derived cell cultures (PDCs) of
neuroblastoma from pre- and post-treatment tumors and
demonstrated their recapitulation of original tumors ’
chromosomal alterations, immunohistochemical and gene
expression profiles, and ability to predict individualized
responses to standard-of-care chemotherapy (15). However,
the utility of patient-derived models for prediction of targeted
therapies for neuroblastoma have not been well studied.

We hypothesize that in neuroblastoma, gene copy number
and in vitro cytotoxicity to corresponding targeted inhibitors
display distinct relationships in a dose-dependent manner. To
study key genotype-phenotype correlations in neuroblastoma,
we characterized SNVs and CNVs of neuroblastoma tumors
using clinical genomic profiling and interrogated corresponding
PDCs with a medium-throughput inhibitor screen, then
correlated resulting genomic and phenotypic readouts. We
then defined the quantitative associations between these
genomic aberrations and the corresponding responses to
targeted agents as a framework to potentially guide
personalized targeted therapeutic options, particularly for
patients with few or no targetable mutations.
MATERIALS AND METHODS

Patients and Tumor Samples
Patients with neuroblastoma were prospectively recruited at KK
Women’s and Children’s Hospital with Institutional Review
Board approval (CIRB 2014/2079). Written consent from
parents, and assent from children were obtained. Criteria for
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study inclusion were: patients under undergoing surgical
biopsies or resections, with available excess tumor tissue; male
and female patients with neuroblastoma aged 1–8 were included.
No subject attrition was encountered, no randomization or
power calculation was required, and investigators were blinded
to patient identities. Excess tumor tissue from routine surgical
procedures were transported on ice on the same day to the
VIVA-KKH Paediatric Solid Tumour Laboratory for generation
of PDCs. Corresponding tumor aliquots were snap frozen for
molecular analysis.

OCCRA Comprehensive Genomic Profiling
Access to OCCRA (RRID : SCR_007834) (Thermo Fisher
Scientific, Waltham, MA) was granted via an early access
program. The DNA assay was utilized, which calls SNVs from
hotspots of 86 genes and full exons of 44 genes, and CNVs from
28 genes. DNA was extracted from macro-dissected tissue using
ReliaPrep FFPE DNA extraction kit (Promega, Madison, WI,
USA). OCCRA primers and AmpliSeq Library Kit Plus
(Illumina, San Diego, California, USA) were used for library
preparation. The prepared libraries were sequenced using a
MiniSeq sequencer (Illumina). Base calling and mapping to a
reference genome (hg19) was performed using the BaseSpace
Informatics suite (Illumina). SNV variant calling was performed
with the DNA amplicon application (Illumina, version 2.1.1) and
CNV calling was performed with the OncoCNV caller
application (Illumina, version 1.2.0). All VCF files were loaded
into variant interpreter (version 2.7.0.412) for interpretation.
Criteria for selecting somatic SNV candidates were: >100
minimum coverage reads, 10% minimum allele frequency,
cosmic reported variant, and <1% prevalence in the 1000
Genome Population Database.

Cell Culture
PDCs were generated as previously described by explant culture
under growth conditions of 37°C with 5% CO2 (15), and
passaged at 1:2 split ratio upon reaching 80-100% confluence
(15). For each PDC line, optimal seeding density to achieve 72-
hour log-phase growth was determined. Cells of each PDC line
were seeded on clear bottom white 96-well plates in triplicate
(Corning, Cat 3903) in a 1:2 split ratio and assessed for
appropriate responses to positive and negative control agents
0.5% DMSO and 1mM Staurosporine over 72-hours using
IncuCyte® S3 Live-Cell Analysis System (RRID : SCR_019874)
(Essen BioScience, Sartorius, Japan) and IncuCyte Base Software
(v.2018B), using default analysis settings.

Short Tandem Repeat Fingerprinting
STR genotyping of all tumor-PDC pairs was performed using
PowerPlex® 21(Promega, Cat DC8902) using 1ng DNA. PCR
products were resolved in an Applied Biosystems® SeqStudio
genetic analyzer and compared.

Medium-Throughput Screening Assay
Selleckchem Kinase Inhibitor Library (SelleckChem, Cat. L1200),
consisting of 418 tyrosine kinase inhibitors, was reformatted into
96-well format and diluted with DMSO to achieve final
Frontiers in Oncology | www.frontiersin.org 3
concentrations of 1uM. Daughter plates were stored at -20°C
and underwent no more than 15 freeze-thaw cycles.

Cells were seeded in a 1:2 dilution factor on 96-well white
bottom plates (Corning, Cat 3917) using MultiFlo™ FX (RRID :
SCR_019746) (Biotek, Winooski VT). Plates were incubated for
24 hours at 37°C with 5% CO2, and 0.5mL of each drug was added
to the corresponding wells using Bravo BenchCel Workstation
(RRID : SCR_019468) (Agilent, Sata Clara CA) equipped with
automated liquid and microplate handling. Treated plates were
centrifuged for 1 minute at 1000rpm before and incubated for
the next 72 hours. Cytotoxicity was determined using CellTiter-
Glo® Luminescent Cell Viability Assay (Promega, Cat G7572).
Media was aspirated before adding 50uL of CellTiter-Glo reagent
prepared as per manufacturer’s protocol. Plates were shielded
from light and agitated at 300rpm for 15 minutes;
bioluminescence was measured using Infinite M1000 series
microplate reader (Tecan, Mannerdorf, Switzerland) using a
luminescence integration time of 250ms. Relative light units
(RLUs) were normalized against DMSO negative controls of
each corresponding plate to obtain normalized cytotoxicity
values. Screening runs were validated only if high cytotoxicity
to positive control staurosporine (1mM) and minimal DMSO
effect were observed

Data Analysis
Clustering of copy number and z-score data was performed on
ComplexHeatmap (v.2.0.0, RRID : SCR_017270) using R 3.6.1
with complete Euclidean clustering applied.

Pearson’s correlation coefficients were calculated for each of
56,848 gene-drug pairs, comparing cytotoxicity and SNV, and
cytotoxicity and copy number, using Fisher’s z-transformation
approach. Positive or negative drug-gene correlations were
obtained for all 56,848 gene-drug combinations for both
mutational variants and gene copy number. False discovery
rates (FDR) for the Benjamini-Hochberg procedure were set at
0.1 as a threshold of statistical significance of gene-drug pairs
(16). Data analysis was performed using R 4.0.3.

Probabilistic In Silico Model
Probabilistic Graphical Models (PGMs) were constructed with
ReactomeFIViz (v. 7.2.3) using Reactome Functional Interaction
(FI) network version 2018, which utilizes an adaptation of the
PARADIGM approach (17–19) (RRID : SCR_009634). Briefly,
this infers case-specific genetic variations, incorporating
information from curated Reactome pathways, converting
these reactions into factors then modeling the variations in
each gene as constraint graphs which represent them as
probability distribution functions. CNVs were input as
continuous observation variables without discretizing and
pairwise Markov random field models using empirical
distributions were constructed over 100 permutations. Genes
with mean differences in protein impact scores of <-0.01
and >0.01 between real and random samples were selected;
genes with no CNV were removed. The PGM network was
overlaid with associated Cancer Targetome drugs (20). A
corresponding network was constructed from gene-drug pairs
weighted according to z-scores, using Cytoscape (ver 3.8.0, RRID :
October 2021 | Volume 11 | Article 709525
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SCR_003032). Both networks were clustered according to
Reactome FI scores. Sub-networks (Reactome FI Modules) were
annotated for significantly enriched pathways from CellMap
(RRID : SCR_010642), Reactome, KEGG (RRID : SCR_012773),
NCI Pathway Interaction Database, Protein ANalysis THrough
Evolutionary Relationships (PANTHER), and BioCarta databases
(RRID : SCR_006917).
RESULTS

Molecular Profiling of Neuroblastoma
Identifies Few Actionable Pathogenic
Mutations but Multiple Copy Number-
Altered Genes Involved in Transcriptional
Regulation
Fresh tumor specimens were obtained from surgical biopsies and
resections of 13 patients with neuroblastoma following informed
consent. Median age was 2.65 (range: 1.45–7.80). The study
population appropriately demonstrated the expected spectrum of
pathological and cytogenetic risk features in neuroblastoma: 9/13
(70%) had stage 4 disease and 3/13 (23%) had MYCN
amplification (Supplementary Table S1). Tumor specimens
were subjected to genomic profiling while corresponding PDCs
were subjected to phenotypic drug-response testing (Figure 1A).

Genomic profiling was performed using the OCCRA DNA
panel. Among 130 genes interrogated for SNVs, 71 separate
SNVs in 12 patients fulfilled criteria as sequence variants of
IARC Class 3 and above according to American College of
Medical Genetics standards (21); 27 of 71 SNVs were recurrent
single nucleotide polymorphisms (SNPs) frequently encountered
in our local population and excluded. Of the remaining 44 SNVs,
34 were Indels, amounting to a mean incidence of 3.1 mutations
per case (Figure 1B). The most frequent mutations were
encountered in TSC2, TP53, ARID1A and ARID1B
(Supplementary Table S2). Among these, 11 were predicted
by Sift scores to be deleterious (Figure 1B), and by PolyPhen
scores, 5 as probably damaging and 4 as possibly damaging.
TSC2 and TP53 mutations were observed in recognized hotspots
(21) (Figure 1C). Two patients had germline splice variants of
SMARCB1, though neither exhibited clinical phenotype of the
associated Coffin-Siris syndrome (22) (Figure 1C).

To profile CNVs, normalized copy number of all 2998 probes
were segmented to derive the mean copy number log2 ratios of
136 genes (Supplementary Table S3). Characteristic copy
number losses in 1p [n=4 (31%)] and 11q [n=5 (38%)], and
gains in 17q [n=9 (69%)] were observed (Figure 2). No CNVs
were detected in 5 genes: FASLG, NF2, NRAS, SETBP1,
SMARCB1. On unsupervised clustering, only MYCN clustered
significantly from the copy number profiles of the other genes,
with no significant clustering of other clinical covariates by mean
copy number (Supplementary Figure S1). Of 4 patients with
MYCN gain, 3 had massive amplifications (>10 copies) and 3
had 1p deletion. Both findings were separately verified on FISH.
Among the genes with the highest mean copy numbers were
transcription factors PPM1D, GNA13, STAT3 and STAT5B
Frontiers in Oncology | www.frontiersin.org 4
(log2 ratios 0.568, 0.442, 0.228, 0.200, respectively) – all sited
on chromosome 17q. Lowest copy number log2 ratios were seen
in X chromosome genes ATRX (-0.666) and XIAP, and
transcriptional regulators GATA1 (-0.678) and SH2D1A
(-0.720 each).

High Throughput Screening of
Neuroblastoma PDCs Reveals Drug Hits
Targeting key Molecular Pathways
Implicated in Neuroblastoma
Concurrently, PDCs were generated from the same 13 tumors
and their recapitulation of the corresponding original tumors
were validated as previously described (15) (Supplementary
Data 3). To evaluate the ex vivo drug response phenotype,
PDCs in log-phase growth were screened against an established
418-compound targeted inhibitor library and cytotoxicity
normal ized aga ins t DMSO negat ive contro l s ( see
Supplementary Data 4). The compound library was restricted
to kinase inhibitors, to constrain target selectivity and limit off-
target effects. Drug classes associated with the highest mean
normalized cytotoxicity targeted cytoskeletal signaling, cell cycle,
angiogenesis and PI3K/Akt/mTOR pathway (Figure 3A).

Overall, 351 (84.0%) compounds showed positive mean
normalized cytotoxicity, among which 70 (16.7%) compounds
had >33% cytotoxicity and were profiled as hits. To characterize
the expected molecular targets, drugs were mapped to
corresponding genes and signaling pathways according to drug
library specifications. The commonest genes targeted by the 70
hits included mTOR [n=17 (24%)], Cdk [n=8, (11%)], FLT3 and
JAK, [n=5 (7%), each] (Figure 3B). Correspondingly, among the
identified drug hits were pan-CDK inhibitors flavopiridol and
dinaciclib which are in early phase trials for neuroblastoma and
advanced solid tumors (23–25), and mTOR ATP-competitive
inhibitor INK128 (70.5% mean cytotoxicity) and PI3K inhibitor
PIK-75, both with known preclinical activity against
neuroblastoma (26, 27).

To determine the clinical significance of drug screen results,
we correlated cytotoxicity and clinical variables using non-
hierarchical unsupervised clustering, but no significant
associations between PDC drug-response profiles and clinical
variables were observed (Supplementary Figure S2) (28).

Correlation of Cytotoxicity and
Copy Number Identify Mostly Novel
Gene-Drug Associations
Having separately characterized the molecular aberrations of the
patient tumors and the drug response profiles of their PDCs, we
then sought to correlate both genomic and phenotypic readouts.
Copy number and mutation calls of 131 genes and normalized
cytotoxicity to 418 compounds were compared to determine
significantly correlated gene-drug pairs. The z-score of Pearson
correlation coefficients of 54,758 possible gene-drug combinations
were normally distributed for both copy number and SNVs
(Figure 4A). Selecting for significantly-correlated gene-drug pairs
at 0.1 false discovery rate (FDR) cutoff, copy number and
cytotoxicity were significantly correlated in 1278 gene-drug
October 2021 | Volume 11 | Article 709525
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A

B

C

FIGURE 1 | Single nucleotide variants in neuroblastoma are largely not actionable. (A) Schema of experimental protocol. (B) Waterfall plot of the distribution of
mutations found in 13 neuroblastoma tumors, filtered for population SNPs, reflecting mutation type predicted according to Sift in each identified variant (main plot),
frequency of mutations per sample (upper panel), frequency of samples mutated (left panel) and clinical-pathological covariates (lower panel heatmap). T, tolerated;
T- tolerated (low); D, deleterious; INPC, International Neuroblastoma Pathology Classification; UH, unfavorable histology; FH, favorable histology. (C) Lollipop plots
showing overall low frequency of mutations but occuring in expected hospots: TSC2 mutations in the DUF3384/TSC1-binding domain and TP53 variants in the P53
DNA-binding hotspot region; germline splice variants in SMARCB1 occurred in the coiled-coil C-terminal domain of the BAF47 subunit associated with mutations of
SWI/SNF genes.
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combinations (Supplementary Figure S3). Among these were 49
hit compounds with >33% mean cytotoxicity, which involved 159
significantly correlated gene-drug pairs (Table 1).

Due to the small number of mutations, no significant gene-
drug combinations could be identified from a similar correlation
Frontiers in Oncology | www.frontiersin.org 6
of SNVs and cytotoxicity (Figure 4A). Thus, we subsequently
focused on evaluating the gene-drug pairs with significantly
correlations of copy number and cytotoxicity.

To further study these observations, we compared the
expected gene-drug associations (according to drug library
specifications) with the significantly correlated gene-drug pairs
(according to z-scores of copy number-cytotoxicity correlations)
identified (Figure 4B). A total of 416 gene-drug pairs were
expected (Supplementary Data 1). Among these, copy number
and cytotoxicity of 4 gene-drug pairs showed significant
correlations at 0.1 FDR cutoff (true positive pairs): JAK3 with
AT9283, JAK1 with CYT387, FGFR1 with tyrphostin (AG1296),
and FGFR3 with brivanib (BMS540215) (Figure 4C). Only the
former 2 drugs demonstrated >33% cytotoxicity and qualified as
hits (Figure 4C).

In1274 gene-drugpairs, correlationswerenot expectedbutwere
observed. To identify pairs with the strongest treatment effect and
correlation, we ranked them according to the product of their
cytotoxicity and z-score (see Supplementary Data 1). Among the
top- and bottom-ranked pairs, were PI3K and cell cycle agents that
correlated with copy number losses of transcriptional regulators
CBL andDNMT3A (log2 ratios -0.294, and0.039, respectively), and
copy number gains ofGNA13 and PPM1D (Figure 4D). The drugs
most commonly associated with these pairs were PI3K/mTOR
inhibitor PIK-75, and CDK inhibitors P276-00, SNS-032,
AT7519, flavopiridol and dinaciclib (Supplementary Figure S4).
Intertumor heterogeneity of copy-number dependent drug
sensitivities were observed. For example, MYCN non-amplified
tumors showed increased drug sensitivity to these agents with
increased PPM1D and GNA13 copy number, while MYCN
amplified tumors did not show similar trends (Supplementary
Figure S4). As this was a substantial number of novel gene-drug
associations that were not expected, we next verified them against
available data sources and via in-silicomodelling.

Significantly Correlated Gene-Drug Pairs
Are Verified in Public Datasets
To verify if the significantly correlated gene-drug pairs were
consistent with published literature, we compared them against
known gene-drug associations in 6 public datasets. In each
dataset, median 224 (range:46–965) pairs were identified as
having an established association of drug and gene target
(Supplementary Figure S5 and Supplementary Data 1). In all,
1305 of 54,758 (2.4%) pairs were identified in at least 1 dataset.
Verified and unverified gene-drug pairs did not significantly
differ in the distribution of cytotoxicity of the drug involved,
copy number of the gene involved, and z-score of the pair across
the 6 datasets (Supplementary Figure S5).

Among the 1278 significantly correlated gene-drug pairs, 19
pairs (1.5%) were verified in at least 1 data set (Supplementary
Table 4) (Figure 5A), though only 1 pair (5.3%) qualified as a hit
with >33% mean cytotoxicity [JAK3 with AT9283 (mean
cytotoxicity 64.3 ± 16.8%)]. Among the remaining unverified
1259 gene-drug pairs, a higher percentage of pairs [12.9%
(n=162)] were predicted to be hits with >33% mean
cytotoxicity. Among these pairs, cytotoxicity was positively
FIGURE 2 | Copy number variations in neuroblastoma. Copy number log
ratio alterations of 136 genes in 13 neuroblastoma tumor samples in upper
panel, and distribution of log ratios of individual cases (circles) and mean log
ratios (horizontal bars) in lower panel. Mean copy number losses are
observed in chromosomes 1p (MTOR, ID3, ARID1A, CSF3R, MPL, JAK1), 3p
(CCNB1, CCR5,SETD2, RHOA), 8q (JAK2), 9p (KDM4C, CDKN2A), and 11q
(EED, CBL); with mean gains in chromosomes 7 (EGFR, CDK6), and 17
(STAT5B, STAT3, PPM1D, GNA13). Gains are in red and losses in blue.
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A

B

FIGURE 3 | Drug screen of neuroblastoma PDCs identify agents targeting PI3K pathway and cell cycle. (A) Boxplots of drug classes of all 418 compounds, ranked
by mean normalized cytotoxicity, with drug names of outliers labelled. (B) Waterfall plot of top 70 drug hits with >33% cytotoxicity in top panel, with current clinical
trial phase indicated in shades of grey; bottom panel reflects corresponding key gene targets and main mechanism of action. Among the 70 top drug hits, 18 (26%)
had progressed beyond Phase 1 trials. The 5 top drug hits included BGT226, a class I PI3K/mTOR inhibitor for PI3Ka/b/g; P276-00, a Cdk inhibitor; PIK-75, a PI3K
inhibitor; and tivantinib, a c-Met receptor tyrosine kinase non-ATP-competitive inhibitor (83.6%, 79.7%, 78.9%, 76.7% mean normalized cytotoxicity, respectively).
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C

FIGURE 4 | Correlation of significantly associated gene-drug pairs. (A) Distributions of z-scores of Pearson correlation coefficients for correlations of cytotoxicity
versus mutational variants and gene copy number among 54,758 gene-drug combinations. (B) Venn diagram illustrating distribution of true positive, false positive,
false negative, and true negative gene-drug pairs. (C) Scatterplots of cytotoxicity against copy number for 4 true positive gene-drug pairs across 13 PDC lines,
ranked by median cytotoxicity which is represented in the adjacent boxplots. Clinical-pathological characteristics of individual PDC lines are reflected in legend. INPC,
International Neuroblastoma Pathology Classification; UH, unfavorable histology; FH, favorable histology. (D) Scatterplots of mean cytotoxicity and z-scores of top-
ranked false negative gene-drug pairs of PI3K and cell cycle drugs and CBL, DNMT3A, GNA13 and PPM1D. Gene-drug pairs significantly correlated at 0.1 FDR are
in bold while non-significant pairs are ghosted.
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TABLE 1 | Pairs of drug hits and corresponding genes with significant association between cytotoxicity and copy number.

Drug Mechanism of
action

Mean
cytotoxicity

(S.D.)

Gene (mean copy number, z-score)

Staurosporine TGF-beta/Smad 95.7 ( ± 5.5) GNA13 (2.9, 0.73); ABL2 (2, -0.81); GNA11 (1.8, 0.86)
BGT226 (NVP-
BGT226)

PI3K/Akt/mTOR 83.6 ( ± 16) GNA11 (1.8, 0.86); MAP2K2 (1.8, 0.86); MPL (1.8, 0.82); JAK1 (2, 0.72)

P276-00 Cell Cycle 79.7 ( ± 14.5) GNA13 (2.9, 1.23); PPM1D (3.2, 1.05); ASXL2 (2.1, -0.73); DNMT3A (2.1, -0.77); CBL (1.7, -1.01)
PIK-75 PI3K/Akt/mTOR 78.9 ( ± 14.5) GNA13 (2.9, 1.4); PPM1D (3.2, 1.16); BRAF (2.2, 0.74); EZH2 (2.2, 0.74); MET (2.2, 0.74); SMO (2.2, 0.74);

EED (1.8, -0.89); CBL (1.7, -1.41)
Tivantinib (ARQ
197)

Protein T.K. 76.7 ( ± 11.2) GNA13 (2.9, 0.88); PPM1D (3.2, 0.75); DNMT3A (2.1, -0.72); CBL (1.7, -0.99)

Flavopiridol
(Alvocidib)

Cell Cycle 75.4 ( ± 16.4) GNA13 (2.9, 1.14); PPM1D (3.2, 1.04); ASXL2 (2.1, -0.71); DNMT3A (2.1, -0.77); EED (1.8, -0.79); CBL (1.7,
-1.25)

Flavopiridol HCl Cell Cycle 73.4 ( ± 16.7) GNA13 (2.9, 1.14); PPM1D (3.2, 1.07); EED (1.8, -0.77); CBL (1.7, -1.24)
SNS-032 (BMS-
387032)

Cell Cycle 70.8 ( ± 18) GNA13 (2.9, 1.05); PPM1D (3.2, 0.98); EED (1.8, -0.75); CBL (1.7, -1.17)

Dinaciclib
(SCH727965)

Cell Cycle 70.7 ( ± 16.9) GNA13 (2.9, 1); PPM1D (3.2, 0.98); ASXL2 (2.1, -0.7); DNMT3A (2.1, -0.79); CBL (1.7, -1.12)

INK 128
(MLN0128)

PI3K/Akt/mTOR 70.5 ( ± 7.6) CBL (1.7, -0.96)

Torin 2 PI3K/Akt/mTOR 70.4 ( ± 7.8) JAK1 (2, 0.78); CBL (1.7, -0.83)
AT7519 Cell Cycle 70 ( ± 22.5) GNA13 (2.9, 1.01); JAK1 (2, 0.89); PPM1D (3.2, 0.83); CBL (1.7, -0.81)
PF-04691502 PI3K/Akt/mTOR 69 ( ± 7.2) CBL (1.7, -0.72)
GSK2126458
(GSK458)

PI3K/Akt/mTOR 67.8 ( ± 8) NF1 (2.2, -0.7); SUZ12 (2.2, -0.7); CBL (1.7, -0.8)

AZD8055 PI3K/Akt/mTOR 67.7 ( ± 8.9) JAK1 (2, 0.77)
WYE-125132
(WYE-132)

PI3K/Akt/mTOR 65.6 ( ± 7.7) H3F3A (2.2, 0.75); MDM4 (2.2, 0.75); CBL (1.7, -0.89)

VS-5584
(SB2343)

PI3K/Akt/mTOR 65.2 ( ± 7.9) JAK1 (2, 0.77); MPL (1.8, 0.72)

AZD3463 Protein T.K. 65.2 ( ± 17.4) TCF3 (2, 0.88); JAK1 (2, 0.7)
GDC-0980
(RG7422)

PI3K/Akt/mTOR 64.5 ( ± 8.1) JAK1 (2, 0.8); MPL (1.8, 0.71); TCF3 (2, 0.69)

AT9283 JAK/STAT 64.3 ( ± 17.4) DNMT3A (2.1, -0.7); CBL (1.7, -0.72); CALR (1.8, -0.72); CEBPA (1.9, -0.72); CIC (1.8, -0.72); CRLF1 (1.9,
-0.72); JAK3 (1.9, -0.72)

AZD2014 PI3K/Akt/mTOR 63.7 ( ± 9.1) JAK1 (2, 0.87); MPL (1.8, 0.77)
PP242 PI3K/Akt/mTOR 57.6 ( ± 10.3) TCF3 (2, 0.76); MPL (1.8, 0.75); JAK1 (2, 0.73)
Rigosertib (ON-
01910)

Cell Cycle 57.2 ( ± 10.9) JAK1 (2, 0.89); PHF6 (2.1, 0.71)

PF-477736 Cell Cycle 56.2 ( ± 19.2) JAK1 (2, 1)
JNK Inhibitor IX MAPK 55.6 ( ± 11.4) JAK1 (2, 0.85)
PF-3758309 Cytoskeletal

Signaling
55.2 ( ± 18.7) JAK1 (2, 0.85); CBL (1.7, -0.94)

Milciclib (PHA-
848125)

Cell Cycle 55.2 ( ± 9.1) ASXL1 (2.1, -0.7)

HMN-214 Cell Cycle 51.9 ( ± 13) JAK1 (2, 0.72)
TAK-901 Cell Cycle 51.6 ( ± 18.3) JAK1 (2, 0.85)
KX2-391 Angiogenesis 51.2 ( ± 9.4) JAK1 (2, 0.76); GNA13 (2.9, 0.71); ASXL2 (2.1, -0.74); DNMT3A (2.1, -0.75)
Pelitinib (EKB-
569)

Protein T.K. 51 ( ± 13.7) RUNX1 (2, -0.73)

CHIR-124 Cell Cycle 50.7 ( ± 12.7) FBXW7 (2, -0.73); FGFR3 (2, -0.73); KDR (2, -0.73); KIT (2, -0.73); PDGFRA (2, -0.73); CBL (1.7, -0.98)
OSI-027 PI3K/Akt/mTOR 50.5 ( ± 8.1) CRLF2 (1.4, 0.89); DDX3X (1.4, 0.89); KDM6A (1.4, 0.89); MPL (1.8, 0.77); ABL1 (2, 0.71); NOTCH1 (2,

0.71)
TG101209 JAK/STAT 48.5 ( ± 16.8) TCF3 (2, 0.89)
GDC-0349 PI3K/Akt/mTOR 48.4 ( ± 11.1) JAK1 (2, 0.72); TCF3 (2, 0.7)
KU-0063794 PI3K/Akt/mTOR 47 ( ± 11.5) GNA11 (1.8, 0.85); MAP2K2 (1.8, 0.85)
HS-173 PI3K/Akt/mTOR 46.2 ( ± 12.6) PHF6 (2.1, 0.76); MYCN (27.9, 0.7)
IMD 0354 NF-KB 45.6 ( ± 8.5) GNA11 (1.8, 0.85); MAP2K2 (1.8, 0.85); PHF6 (2.1, 0.76); MYCN (27.9, 0.7); PPM1D (3.2, 0.72); SMARCA4

(1.9, -0.73); GNA11 (1.8, -0.84); MAP2K2 (1.8, -0.84); APC (2.1, -0.89); CSF1R (2.1, -0.89); EBF1 (2.1,
-0.89); FGFR4 (2.1, -0.89); IL7R (2.1, -0.89)

AP26113 Protein T.K. 42.9 ( ± 21.3) H3F3A (2.2, 0.89); MDM4 (2.2, 0.89); TCF3 (2, 0.78); JAK1 (2, 0.74); ARID1B (1.9, -0.7); CCND3 (1.9, -0.7);
DAXX (1.9, -0.7); ESR1 (1.9, -0.7); HIST1H3B (1.9, -0.7)

LDK378 Protein T.K. 42.1 ( ± 28.8) H3F3A (2.2, 0.95); MDM4 (2.2, 0.95); TCF3 (2, 0.91); GNA11 (1.8, 0.79); MAP2K2 (1.8, 0.79); ARID1B (1.9,
-0.82); CCND3 (1.9, -0.82); DAXX (1.9, -0.82); ESR1 (1.9, -0.82); HIST1H3B (1.9, -0.82)
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associated with copy number of GNA13, PPM1D, JAK1, and
MAP2K2, and inversely associated with copy number of CBL,
EED, DNMT3A and ASXL2. The drugs most commonly
associated with these pairs were PI3K inhibitors PIK-75 and
P276-00, and CDK inhibitors SNS-032, flavopiridol and
dinaciclib (Supplementary Tables 5, 6) – similar to the
commonest genes and drugs identified from the above
comparison with specified targets of the drug library. The high
incidence of hits among unverified top gene-drug pairs further
suggested that important gene-drug relationships may exist
among this group, and warranted further exploration.

Identified Gene-Drug Associations Are
Replicated in Probabilistic In-Silico Model
and Reveal Gene-Drug Subnetworks
Centered Around PI3K and JAK-STAT
Signaling
Since published data on this majority of the significantly
correlated gene-drug relationships was lacking, we performed
an in-silico prediction of how the CNV profile of our
neuroblastoma tumors would be expected to influence drug
response, and compared that with the corresponding z-score-
based relationships. We constructed a Probabilistic Graphical
Model (PGM) network by weighting our CNV data with
Reactome pathway-based interactions to infer variations in
inter-gene relationships (17, 19), then overlaying networks
with associated Cancer Targetome drugs (20) (Figure 5B). A
corresponding network was constructed from the 1278
significantly correlated gene-drug pairs and weighted according
to z-scores (Figure 5C). Both networks were clustered according
to Reactome Functional Interaction (FI) scores, and sub-
networks of commonly represented drugs were examined.

Since the curated source included only FDA-approved cancer
drugs, as expected only verified gene-drug pairs were found in
the PGM network (Supplementary Data 1). Among them, gene-
drug pairs involving sunitinib and vandetanib were modeled by
the PGM network – both receptor tyrosine kinase inhibitors with
known effects against neuroblastoma (29–31). Examples in
Figure 5D show how the PGM, derived only from CNV data,
Frontiers in Oncology | www.frontiersin.org 10
predicted associations between sunitinib malate and ALK and
MAP2K2, and between vandetanib and ACVR1 and FGFR1 –
which were similarly demonstrated in the z-score-weighted
network. The similarities observed between the CNV-based
PGM predictions and the z-score-weighted network supported
the integrity of the gene-drug associations identified by our
experimental system.

Since FI-based clustering might reveal associations between
drugs and signaling pathways with potential functional
significance, we isolated FI-clustered sub-networks of gene-
drug pairs and annotated them for enriched Reactome
pathways and Gene Ontology features (Supplementary Data 2).
Interestingly, 2 sub-networks coincided with the unverified
significantly associated gene-drug pairs that were earlier
identified (Supplementary Figures S6A, B). In the former, copy
number of ALK, DNMT3A and ASXL2 was inversely associated
with efficacy of multiple kinase inhibitors like saracatanib
(Module 1). In the latter, copy number of 17q genes CBL,
PPM1D and GNA13 were positively associated with cytoxicity
to dinacilib, flavopiridol and ponatinib (Module 8). Other sub-
networks shared common involvement of the PI3K-mTOR
(Modules 3, 6, 11), JAK-STAT (Modules 0, 3, 5, 6) pathways.
Notably the z-score network also illustrated the lack of inhibitors
associating with MYCN despite its substantial degree of copy
number amplification.
DISCUSSION

CNVs are more prevalent in mutationally quiet embryonal
cancers like neuroblastoma and may reflect fundamental
oncogenic dependencies that can be potentially exploited for
cancer therapeutics – particularly since this phenomenon has
already been utilized to target oncogene amplifications in adult
cancers. In this study we hypothesized that CNVs may modulate
gene dosage and correspondingly, drug response to respective
targeted inhibitors. Thus, we integrated diagnostic-grade
genomic profiling with phenotypic readouts of personalized
preclinical tumor models to identify copy number-dependent
TABLE 1 | Continued

Drug Mechanism of
action

Mean
cytotoxicity

(S.D.)

Gene (mean copy number, z-score)

TG101348
(SAR302503)

JAK/STAT 36.3 ( ± 17.3) TCF3 (2, 0.9); H3F3A (2.2, 0.71); MDM4 (2.2, 0.71); GNA11 (1.8, 0.7); MAP2K2 (1.8, 0.7)

BI 2536 Cell Cycle 35.2 ( ± 16.6) H3F3A (2.2, 0.82); MDM4 (2.2, 0.82)
FIIN-2 Protein T.K. 35.2 ( ± 17) JAK1 (2, 0.75)
AZ20 PI3K/Akt/mTOR 35.2 ( ± 11) JAK1 (2, 0.88)
Pacritinib
(SB1518)

JAK/STAT 35.1 ( ± 19.1) H3F3A (2.2, 0.88); MDM4 (2.2, 0.88); TCF3 (2, 0.78); CBL (1.7, -0.72)

R547 Cell Cycle 34.8 ( ± 13.7) CBL (1.7, -0.87)
R406 (free base) Angiogenesis 34.6 ( ± 10.8) AKT1 (2.2, -0.8); DICER1 (2.2, -0.8); ASXL1 (2.1, -0.83); PIK3CA (2.1, -0.9); RUNX1 (2, -1.05)
AZD7762 Cell Cycle 34.3 ( ± 15.3) JAK1 (2, 0.89)
Volasertib (BI
6727)

Cell Cycle 33.2 ( ± 10.1) H3F3A (2.2, 0.79); MDM4 (2.2, 0.79); MPL (1.8, 0.7)
T.K., tyrosine kinase.
October 2021 | Volume 11 | Article 709525

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wong et al. Neuroblastoma Copy-Number Dependent Drug Susceptibilities
A

B

D

C

FIGURE 5 | In-silico validation of gene-drug pairs. (A) Parallel waterfall plots of the mean cytotoxicity of drugs unverified or verified in public datasets, ranked by the
product of their z-scores and cytotoxicity; with similar distribution of z-scores and cytotoxicity are seen among both groups. Significantly correlated gene-drug pairs
in each group are indicated in black [upper panel: 1259 of 55,543 unverified gene-drug pairs, lower panel: 19 of 1305 verified gene-drug pairs (total 54,758 gene-
drug pairs)], color scale indicates z-scores. (B) ReactomeFIViz Probabilistic Graphical Model (PGM) constructed from weighted factors derived from CNV of 131
OCCRA genes in 13 neuroblastoma cases, annotated with 46 associated Cancer Targetome drugs and clustered according to Reactome Functional Interaction (FI)
scores; solid links indicate known associations and dotted links indicate predicted association, nodes are colored according to Reactome FI clusters (C) z-score
weighted network of 131 OCCRA genes and 418 drugs, clustered similarly according to Reactome FI scores; width of links indicates z-score and size of diamonds
indicates cytotoxicity. (D) Association of sunitinib and vandetanib with first-degree neighbor genes, determined by z-scores, and as predicted by PGM. Both sets of
gene-drug pairs are correspondingly indicated in yellow in (B, C).
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therapeutic susceptibilities in patients with neuroblastoma. We
used correlational coefficients to quantify the strength of
association between tumor copy number and cytotoxicity of
PDCs in corresponding gene-drug pairs, and validated this
against public data and in silico. The findings defined a
prioritized set of targetable copy number-altered genes and
their ideal corresponding inhibitors for copy-number
dependent drug targeting. To provide a statistically robust
context to apply these in clinical practice, we generated
prediction models of the expected therapeutic response for
given degrees of copy number change for each gene-drug pair.
These potentially form the basic elements of a decision-making
framework that could be used to inform personalized therapeutic
decisions by predicting potential drug hits based on CNVs.

While the identified SNVs were known genomic aberrations
in neuroblastoma (32–34), they were mostly unactionable. This
underscored the limitations of targeted mutational profiling for
identifying personalized treatment options for neuroblastoma
and other mutationally quiet embryonal cancers (2, 35). Among
the commonest variants observed in our study cohort, TP53
mutations are still largely considered untargetable (36, 37).
Similarly, options for TSC2-deficient tumors are limited and
largely aimed at downstream mTOR pathway targets (38).
Frequency of these SNVs differed from Western series where
ALK, TERT, PTPN11 and NRAS mutations are more frequent,
likely reflecting known inter-ethnic differences in mutational
incidence. For example, de novo somatic TP53 mutations are
uncommon in Western series of neuroblastoma (33), but
polymorphisms such as R72P R337H are more frequent in
non-Caucasian populations and are associated with varying
incidence of neuroblastoma (39, 40). Similarly, recurrent
mutations in TSC, ARID1A and ARID1B have been reported
at a lower incidence (1.7%, 11% and 6.9%, respectively) in
Western populations (41–43).

Conversely, CNVs were more prevalent and importantly,
demonstrated significant and biologically consistent
correlations with cytotoxicity to corresponding targeted
inhibitors. PPM1D, GNA13, and STAT family genes – all on
17q and implicated in up to 70% of neuroblastomas – showed the
strongest correlations of copy number and cytotoxicity to
targeted inhibitors (44–50). This could be due to SCAs, which
are frequent and associated with worse outcome in
neuroblastoma (4, 51), and regulate sensitivity to drug
response in various cancers (52–54). Hence, with the known
prevalence of SCAs in neuroblastoma, these associations between
CNVs of key transcription factors and sensitivity to
corresponding inhibitors suggests that differential copy number
may be a potential quantitative predictor of drug response
in neuroblastoma.

Significant associations between PI3K/Akt/mTOR pathway
genes and their corresponding inhibitors were most frequently
observed, accounting for half of the top 20 drug hits. PI3K/Akt/
mTOR pathway upregulation, with cytoplasmic phosphorylated
Akt, occurs in 62% of neuroblastomas and is a promising
therapeutic target (55, 56), due to the central role played by
PI3K activation in stabilizing MYCN, rendering neuroblastoma
Frontiers in Oncology | www.frontiersin.org 12
tumors sensitive to PI3K inhibition via downregulation of
MYCN and corresponding tumor proliferation (27, 57).
BGT226 was the most potent PI3K inhibitor identified (83.6%
cytotoxicity), but its effects on neuroblastoma remain under-
studied, and development has been discontinued following phase
I/II trials in advanced adult solid tumors for lack of efficacy,
inconsistent target inhibition and dose-limiting toxicities (58,
59). PI3Ka inhibitor PIK-75 (78.9% cytotoxicity) stimulates anti-
neuroblastoma activity by destabilizing MYCN and sensitizing
tumor cells to anthracyclines (27, 60), and indeed increased
cytotoxicity with PIK-75 was associated with PPM1D and
GNA13 gain, and DNMT3A, CBL, EED and ASXL2 loss. Next
most potent was PI-103 (68.3% cytotoxicity), which sensitizes
neuroblastoma cells to TRAIL-induced apoptosis (61), and
primes them to cytotoxicity from anthracyclines (62).

Cyclin dependent kinases (CDKs) critically affect cell growth,
proliferation and transcriptional regulation in neuroblastoma (63).
Pan-CDK inhibitors flavopiridol and dinaciclib – both among our
top hits – are in now early phase trials for neuroblastoma and
advanced solid tumors (23–25). AT7519, a CDK2 inhibitor (70.0%
cytotoxicity), has shown excellent preclinical anti-tumor responses
against MYCN-amplified neuroblastoma (64), and is currently in
phase II clinical trials for adults (NCT00390117) and children
(NCT01627054). CDK4/6 expression is upregulated in 30% of
neuroblastomas resulting in E2F overexpression and S and G2/M
phase progression (32), and is another attractive therapeutic
target. Palbociclib, a CDK4/6 inhibitor, is currently approved for
advanced breast cancer and in phase III clinical trials (65); P276-
00, a selective CDK4 inhibitor (79.7% cytotoxicity), has shown
anti-proliferative effects against other cancers (66), but too has not
been assessed in neuroblastoma.

Mixed patterns of gene-drug associationswere observed in JAK/
STAT pathway genes, MAPK and ALK. JAK3 showed significant
correlation with its corresponding inhibitor AT9283 and qualified
as a drug hit, but not with other JAK inhibitors like ruxolitinib.
While RAS-MAPK mutations are frequent in relapsed
neuroblastoma, response to MAPK inhibitors (67), and BET and
MEK inhibitors (68), have been inconsistent in vivo, possibly due to
more complex relationships between receptor tyrosine kinase
inhibitors and MAPK family genes. Similarly, we also did not find
significant correlation between ALK copy number and cytotoxicity
with crizotinib, but instead observed associations between ALK
copy number and response to other kinase inhibitors. Despite the
well-established prognostic significance of ALK mutations in
neuroblastoma (69), a phase I/II clinical trial for pediatric patients
with relapsed and refractory solid tumors yielded complete
responses in only 1 out of 11 patients with known ALK mutations
(NCT00939770) (70). Results are awaited from more recent trials
for patients with ALK mutations investigating loratinib, a third
generation ALK inhibitor (NCT03107988), ceritinib and ribociclib
(NCT02780128), and ensartinib (NCT03155620). These findings
may indicate variations in gene dosage-related sensitivity to
response within drug classes.

This study was limited by the small number of cases, which
may limit the robustness of the gene-drug correlations identified,
and the inherent inability to test every drug hit in individual
October 2021 | Volume 11 | Article 709525
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patients. Few of our shortlisted gene-drug associations could
ultimately be verified against available datasets, limiting the
confidence of our observations. However, our low incidence of
verified gene-drug pairs is mirrored in the other drug
repurposing studies mapping gene-drug associations in human
disease (71). In future, corroboration of our findings in larger
cohorts, and further functional validation will be required to
verify the true clinical efficacy of our identified gene-drug pairs.

Associations between gene copy number and drug response
could have been influenced by prior systemic treatment, or
activation of alternate signaling pathways, though these are
frequently encountered in relapse clinical cases where
personalized therapeutic solutions are most often pursued. For
example, the higher frequency of TSC2mutants in our series could
have contributed to thehigh ratesof sensitivityof thePDCs toPI3K/
mTOR-targeted agents (72). The frequently observed massive
amplifications of MYCN may have also affected responses to cell
cycle agents. While MYCN is similarly recognized as an
undruggable target due to the lack of appropriate drug binding
surfaces on itsDNAbindingdomain, BH3mimetics andpan-BCl-2
inhibitors can exploit the Bcl-2 over-expression frequently
accompanying MYCN amplification (73–75). Alternative
treatment strategies have also been suggested that capitalize on its
interactions with ALK and AURKA (76, 77).

Treatment susceptibility prediction via genomic profiling and
phenotypic assays also have their respective limitations: genomic
profiling makes fundamental assumptions on correlations between
genotype and phenotypic response to targeted inhibitors, while in
vitro models may not fully recapitulate the original tumor drug-
response phenotype. Also, while OCCRA offers a more efficient and
focused means to survey for meaningful genomic aberrations,
other novel gene targets may be missed. Future studies could
complement mutational profiling with gene expression results.
Also, in future, drug sensitivity could be evaluated more
accurately with three-dimensional organoid models, which may
better represent the true tumor microenvironment and expression
profile that may influence response to test agents (41, 78).

In conclusion, integration of individualized genomic profiling
and drug screening of patient-derived models of neuroblastoma
showed that susceptibility to PI3K and cell cycle agents was
significantly associated with copy number gains of PI3K and
STAT family genes, particularly on 17q. This approach can
facilitate CNV-based quantitative treatment response prediction
in other mutationally quiet embryonal cancers like neuroblastoma.
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Supplementary Figure S1 | Unsupervised hierarchical clustering of normalized
cytotoxicity of 418 drugs against 13 PDCs. Rows represent cytotoxicity (blue-red
scale) and columns represent cases. INPC, International Neuroblastoma Pathology
Classification; FH, favorable histology; UH, unfavorable histology; INSS,
International Neuroblastoma Staging System; MOA, mechanism of action.

Supplementary Figure S2 | Unsupervised hierarchical clustering of copy
number profiles of 13 neuroblastoma tumor samples. Rows represent gains (red)
and losses (blue) of each gene and columns represent cases. Four tumors with
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MYCN amplification clustered together, of which 3 cases had concurrent copy
number losses in 1p genes MPL, CSF3R, ARID1A, and ID3, and 19p genes
MAP2K2, GNA11, CIC, CALR, JAK3, CRLF1, and SMARCA4 (NBL170120,
NBL061218, NBL031219B) (solid box) and 1 case had multiple losses involving
chromosome 9, 10, 15 and 16p genes (NBL061218) (dotted box).

Supplementary Figure S3 | Heatmap of z-scores of 418 drugs (columns) and
136 genes (rows) using unsupervised Euclidean clustering. Blue-red color
scale highlights gene-drug pairs with 2.5% top- and bottom-most z-scores.
Significant clusters of genes and drugs are annotated, and corresponding
OCCRA panels for respective genes are indicated in grey and black on the
right panel.

Supplementary Figure S4 | Scatterplots of cytotoxicity against copy number for
top 6 false negative gene-drug pairs, ranked left to right by product of cytotoxicity
(%) and z-score. Clinical-pathological characteristics of individual PDC lines are
reflected in legend. INPC, International Neuroblastoma Pathology Classification;
UH, unfavorable histology; FH, favorable histology.
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Supplementary Figure S5 | Boxplots showing distribution (median, quartiles,
range) of: (top panel) copy number of matched genes, (middle panel) cytotoxicity of
matched drugs, and (lower panel) z-scores of matched gene-drug pairs, verified in 6
datasets of gene-drug associations.

Supplementary Figure S6 | (A–M) z-score-weighted sub-networks determined
by FI-based clustering; corresponding top 5 signaling pathways most enriched in
the sub-networks are listed. Source of pathways are annotated as follows: (C)
CellMap, (R) Reactome, (K) KEGG, (N) NCI PID, (P) Panther, (B) BioCarta.

Supplementary Data Sheet 1 | Genomic profiling, drug screening and Pearson
correlation data.

Supplementary Data Sheet 2 | Reactome and GO annotations.

Supplementary Data Sheet 3 | Neuroblastoma PDC and tumor STR profiles.

Supplementary Data Sheet 4 | Neuroblastoma PDC growth curves.
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