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Abstract

Circadian rhythms help animals synchronize motivated behaviors to match environmental

demands. Recent evidence indicates that clock neurons influence the timing of behavior by

differentially altering the activity of a distributed network of downstream neurons. Down-

stream circuits can be remodeled by Hebbian plasticity, synaptic scaling, and, under some

circumstances, activity-dependent addition of cell surface receptors; the role of this receptor

respecification phenomena is not well studied. We demonstrate that high sleep pressure

quickly reprograms the wake-promoting large ventrolateral clock neurons to express the pig-

ment dispersing factor receptor (PDFR). The addition of this signaling input into the circuit is

associated with increased waking and early mating success. The respecification of PDFR in

both young and adult large ventrolateral neurons requires 2 dopamine (DA) receptors and

activation of the transcriptional regulator nejire (cAMPAU : PleasenotethatCREB � bindingproteinhasbeenchangedtoCREBthroughoutthearticletoenforceconsistency:Pleaseconfirmthatthischangeiscorrect:response element-binding protein

[CREBBP]). These data identify receptor respecification as an important mechanism to

sculpt circuit function to match sleep levels with demand.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Circadian rhythms help animals synchronize motivated behaviors with salient events such as

when food or mates are available or when it is time to forage or sleep [1]. However, the optimal

time of day to engage in particular behaviors can vary depending upon seasonal and environ-

mental factors, which can, under some circumstances, place competing behaviors in conflict

(e.g., foraging versus risk of predation; sleep versus mating success) [2–4]. The mechanisms

regulating the timing of competing behaviors are not well understood.

Central and peripheral clocks can be synchronized by sleep and environmental cues such as

light, temperature, food, social, and interactions [5–9]. Interestingly, recent evidence indicates

that clock neurons do not act in a hierarchical manner but rather regulate behavior as a distrib-

uted network [10–15]. Although the regulation of these networks is complex, the neuropeptide

pigment dispersing factor (PDF) and its receptor (PDFR) play a prominent role in synchroniz-

ing oscillations in the clock network [13,16]. Indeed, PDF can influence the timing of behavior

by differentially staggering the timing of activity peaks in diverse neuronal groups [16,17].

Thus, the PDFR is well suited for regulating the timing of competing behaviors.

InAU : PleaseconfirmthattheeditstothesentenceInmammals; exposuretoshort � andlong � dayphotoperiods;which:::didnotaltertheintendedthoughtofthesentence:mammals, exposure to short- and long-day photoperiods, which mimic naturally occur-

ring seasonal changes, results in respecification of transmitters and their receptors [18,19].
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Receptor respecification is a form of plasticity that, like Hebbian and homeostatic plasticity,

may be employed to alter circuit function in response to changing environmental demands

[19]. Importantly, sleep circuitry is plastic and can change through developmental and in

response to environmental factors (e.g., starvation, predation risk, and mating status) [3,20–

27]. Surprisingly, it remains unknown whether receptor respecification plays a role in modu-

lating sleep plasticity.

In the Drosophila brain, there are approximately 150 clock neurons that are divided into 6

groups [28]. PDF is expressed in both the large and small ventral lateral neurons (l-LNvs and

s-LNvs); In contrast to other clock neurons, the l-LNvs are not believed to express PDFR

[13,29–31]. Given the role that PDF plays in coordinating the timing of diverse neuronal

groups important for adaptive behavior, we hypothesized that under some circumstances, the

PDFR could be respecified to help regulate the timing of competing behaviors. Indeed, we find

that the PDFR is respecified in the l-LNvs for the first approximately 48 h after eclosion, when

sleep drive is highest. Gain and loss of function experiments reveal that in young flies, PDFR

expression is associated with increased waking and early mating success. Importantly, the

PDFR can be reestablished in adult l-LNvs through prolonged sleep disruption. The most com-

mon forms of respecification alter the polarity of the synapse to alter the function of the circuit

[19]. In contrast, our data suggest an additional type of respecification in which an input path-

way into a circuit can be turned on and off, without changing the sign of the synapse (excit-

atory/inhibitory). These data identify receptor respecification as an important mechanism to

sculpt circuit function to match sleep need with environmental demands.

Results

PDFR is expressed in l-LNvs in young flies

Sleep is highest in young animals during a critical period of brain development when neuronal

plasticity is high [26,32]. As previously described, flies were collected and sexed using C02

anesthesia on the day they eclosed, placed into tubes, and sleep was quantified during their

first full day of adult life. Sleep is highest during the first 48 h after eclosion (day 0, day1) and

then reaches stable mature adult levels by approximately day 3 (Fig 1A and 1B). The increased

sleep observed during these approximately 48 h is important for the development of circuits

that maintain adaptive behavior into adulthood [33,34]. How neurons in sleep circuitry change

during this period has not been explored. The l-LNvs promote waking behavior through both

dopamine (DA) and octopamine (Oa) signaling (19,22–24); thus, we hypothesized that one or

both of these pathways might be down-regulated during this early developmental period of

high sleep. To test this hypothesis, we used live brain imaging in l-LNvs expressing the reporter

Epac1 camps to define cAMP response properties [30,31,35,36]. Contrary to our hypothesis,

neither DA- or Oa-induced cAMP responses changed as the flies matured (Figs 1C and 1D

and S1). Interestingly, we did observe PDF-induced cAMP responses in l-LNvs in the first 48 h

of adulthood (Fig 1E and 1F), while they were predominantly absent in mature adult l-LNvs,

consistent with previous reports [30,31]. To determine if this transient PDF sensitivity is regu-

lated at the receptor level, expression of the PDFR was examined directly using Pdfr-myc, a

tagged receptor genetic construct under the natural PDF promoter [29]. As anticipated, detec-

tion of MYC antibody staining is high on day 0 and not detectable on day 5 of adulthood (Fig

1G), revealing transient expression of the receptor. Finally, we examined an adjacent group of

clock neurons, the s-LNvs [37]. Responses to PDF in s-LNvs are present at the beginning of

adulthood and then decrease in amplitude over the first approximately 48 h of adulthood. In

contrast to the l-LNvs, sensitivity to PDF in the s-LNvs persists into mature adulthood (S1
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Fig). Together, these data indicate that the PDFR is transiently expressed in wake-promoting l-

LNvs in young flies to support waking when sleep drive is highest.

Expression of PDFR in l-LNvs alters behavior in young flies

During the day, sleep is highest during the midday siesta and is reduced in the hours preceding

lights out (Fig 1A) [26,33,34]. We have operationally defined the 2-h period before lights out as

the wake maintenance zone (WMZAU : PleasenotethatWMZhasbeenaddedafterthefirstmentionof wakemaintenancezoneasitsabbreviationinthesentenceWehaveoperationallydefinedthe2 � hperiodbeforelights:::Pleaseconfirmthatthisiscorrect:) based upon the observation that sleep rebound is absent or

dramatically reduced when flies are released into recovery during this time window [33,38]. The

ability to maintain waking in the face of high sleep drive suggests that this window of time is pro-

tected for important waking behaviors [39]. With that in mind, we hypothesized that flies lacking

the PDFR would sleep more than genetic controls during the WMZ. Pdfr-null mutant (Pdfr5304)

flies were outcrossed to Cs flies for 5 generations. To avoid handling of flies on the day they

eclosed, Pdfr5304 and Cs flies were plated on juice plates for 4 h to lay eggs, and then L1 larvae

were put into individual glass tubes and monitored. Sleep was assessed in male flies that eclosed

between Zeitgeber time (ZT1) and ZT4. As seen in Fig 2A and 2C on the day of eclosion, Pdfr5304

null mutants sleep significantly more than their genetic controls during the WMZ. To determine

whether the change in sleep was due to expression of the PDFR in the l-LNvs, we expressed wild-

type Pdfr (UAS-Pdfrwt) using the c929-GAL4 driver in a Pdfr5304 mutant background. Since

c929-GAL4 is expressed in other peptidergic neurons [40], we combined c929-GAL4 with cry-
Gal80, which targets the GAL4 inhibitor GAL80 to all CRY+ neurons including the l-LNvs to sup-

press the PDFR rescue [41]. As seen in Fig 2B and 2D, sleep remained elevated during the WMZ

in Pdfr5304;c929/+;cryGAL80/+ (green) and Pdfr5304;UAS-Pdfrwt/+ (purple) parental controls as

expected. In contrast, waking was rescued during the WMZ in Pdfr5304;c929/UAS-Pdfrwt flies

(red), and this increase in waking was prevented when the expression of UAS-Pdfrwt was blocked

in clock cells (Pdfr5304;c929/ UAS-Pdfrwt;cryGAL80/+,blue). We verified the effectiveness of cry-
GAL80 using a UAS-GFP reporter (S2 Fig). To further exclude the possibility that expression of

UAS-Pdfrwt in other peptidergic neurons outside the l-LNvs altered waking, we rescued the

expression UAS-Pdfrwt in a Pdfr5304 mutant background using Pdf-GAL4, which targets only LNv

neurons. As seen in S2 Fig, sleep was reduced in Pdfr5304;Pdf-GAL4/UAS-Pdfrwt compared to

parental controls. Finally, we asked whether the inability of Pdfr5304 mutants to stay awake during

the WMZ was due to the absence of Pdfr in the l-LNvs. As seen in Fig 2E, Dcr2;929-GAL4/
UAS-PdfrRNAi flies slept significantly longer during the WMZ than either Dcr2;c929-GAL4/+ or

UAS-PdfrRNAi/+ parental controls. Together, these data indicate that PDFR in the l-LNv promotes

waking in young flies when sleep drive is high.

Although the respecification of the PDFR in l-LNvs supports waking in young flies, it is

unclear whether the observed changes impact ecologically relevant behaviors. Inspired by the

observation that the male pectoral sandpipers that sleep the least during breeding season sire

more offspring [3], we assayed mating success in flies with and without PDFR. As above, we

began by evaluating Pdfr5304 mutants and their genetic controls (Cs). FollowingAU : PleaseconfirmthattheeditstothesentenceFollowingeclosion;maleflieswereindividuallypairedwithawild:::didnotaltertheintendedthoughtofthesentence:eclosion, male

flies were individually paired with a wild-type virgin female fly at ZT4 for 20 h, and the

Fig 1. PDFR is expressed in l-LNvs of young flies. (A, B) Sleep is elevated in young male flies following eclosion and reaches stable adult values in 3-day-

old flies (n = 35–93 flies/age; one-way ANOVA F[5,472] = 81.34, for age, p = 3.7E-63). (C–E) FRET ratio measurements in Pdf-GAL4>UAS-Epac1 flies in

response to DA (3e-3M), Oa (3e-3M), and PDF (1e-6M) (n = 5–15 ROI. Each ROI represents 2 to 4 l-LNvs). (F) The amplitude of l-LNv responses to PDF

decreases with age (PDF amplitude); (n = 13–24 ROI/age; one-way ANOVA for age F[5,93] = 19.86, p = 3.3E-13). (G) GFP expression in LNv neurons (Pdf-
GAL4; UAS-gfp). (H) Immunohistochemistry reveals coexpression of PDF (red) and myc (green) in 0-day-old P[acman] Pdfr-myc70 flies, which is not

observed on day 5. �p< 0.05, modified Bonferroni test. Data underlying this figure can be found in S1 Data. DA, dopamine; FRETAU : PleasedefineFRETinFig1abbreviationlistifthisindeedisanabbreviation:, Förster Resonance

Energy Transfer; GFP, green fluorescent protein; l-LNv, large ventral lateral neuron; Oa, octopamine; PDF, pigment dispersing factor; PDFR, pigment

dispersing factor receptor; ROI, region of interestAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 6:Pleaseverifythatallentriesarecorrect:.

https://doi.org/10.1371/journal.pbio.3001324.g001
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pairings that produce offspring were tabulated. As seen in Fig 3A, approximately 80% of pair-

ings with Cs males resulted in offspring, while only 25% of pairings with Pdfr5304 mutants were

successful on day 0. Moreover, mating success was also reduced when Pdfr was knocked down

in c929-GAL4 expressing cells (Fig 3B). Importantly, the deficit in mating success observed in

Pdfr5304 mutants on day 0 was rescued by expressing wild-type PDFR using c929-GAL4 (Fig

3C). Previous studies have shown that the expression of PDFR in the dorsal lateral (LNd) neu-

rons, a different set of clock neurons, promotes mating behavior in mature males [42]. How-

ever, no changes in mating success were observed in 2-day-old Pdfr5304 mutants or in Pdfr5304;
c929/UAS-Pdfrwt rescue flies compared to genetic controls (Fig 3A–3C).

To further determine whether expression of PDFR in the l-LNvs was important for mating

success, we utilized a competition assay in which we rescued PDFR in a Pdfr5304 mutant back-

ground. In this assay, one red-eyed male and one white-eyed male were combined with a

Fig 2. Expression of PDFR in l-LNvs regulates sleep in young flies. (A) Sleep traces of Pdfr5504 mutants and Cs controls on day 0. (B) Sleep traces for Pdfr5504;
c929-GAL4; UAS-Pdfr (rescue, green), Pdfr5504; UAS-Pdfr/+, Pdfr5504; c929-GAL4/+; Cry-Gal80/+, and Pdfr5504; c929-GAL4/UAS-Pdfr; Cry-Gal80 (n = 26–31/

genotype). (C) Quantification of sleep during the WMZ of flies shown in (A). Cs flies sleep less during the WMZ than Pdfr5504 mutants (n = 26/genotype; t test,

p< 0.05); (D) Quantification of sleep during the WMZ of flies shown in (B). Pdfr5504; c929-GAL4; UAS-Pdfr sleep less than parental controls; ANOVA F[3,109] =

6.33, p = 5.4E-4; n = 22–31. (E) Sleep is increased in Dcr2; c929-GAL4/UAS-PdfrRNAi flies on day 0 compared to Dcr2; c929-GAL4/+ and UAS-Pdfr/+ parental

controls (ANOVA; F[2,279] = 12.00, p = 1.04E-5; n = 26–28). Data underlying this figure can be found in S2 Data. l-LNv, large ventral lateral neuron; PDFR, pigment

dispersing factor receptor; WMZ, wake maintenance zone.

https://doi.org/10.1371/journal.pbio.3001324.g002
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Fig 3. Role for PDFR in l-LNvs in mating success. (A) Cs flies produce more offspring than Pdfr5504 mutants (n = 30/genotype); χ2 = 12.13, p = 0.0004. (B) Dcr2;
c929-GAL4/UAS-PdfrRNAi flies produce fewer vials with offspring compared to Dcr2; c929-GAL4/+ and +/UAS-PdfrRNAi parental controls; (n = 30/genotype); χ2 =

21.3, p = 0.00002 (C) Pdfr5504; c92-GAL4; UAS-PdfrWT (rescue, green) flies produce more offspring than Pdfr5504; UAS-PdfrWT/+ (purple), Pdfr5504; c929-GAL4/+;
CryGal80/+ (red), and Pdfr5504; c929-GAL4/UAS-Pdfr; Cry-Gal80 (blue) parental controls (n = 30/genotype) χ2 = 8.95, p = 0.029. (D) Mating competition assay

scheme on day 1. (E) Cs males outcompeted white-eyed challenger flies compared to Pdfr5504 mutants (t test, p< 0.001, n = 3 sets of 20 flies/genotype). (F) Pdfr5504;
c929-GAL4/+; UAS-Pdfr/+ males outcompeted white-eyed challengers compared to Pdfr5504; UAS-Pdfr, Pdfr5504/+; c929-GAL4/+; Cry-Gal80/+, or Pdfr5504;

c929-GAL4/UAS-Pdfr; Cry-Gal80/+ controls (ANOVA F[3,13] = 15.01, p = 4.9−4; n = 3 sets of 20 flies/line). (G) Dcr2; c929-GAL4/UAS-Pdfr RNAi flies displayed

reduced mating success compared to Dcr2; c929-GAL4/+ and +/UAS-Pdfr RNAi control flies (ANOVA, F[2,8] = 8.10, p = 0.019, n = 43–55). �p< 0.05, modified

Bonferroni test. Data underlying this figure can be found in S3 Data. l-LNv, large ventral lateral neuron; PDFR, pigment dispersing factor receptor; RNAi, RNA

interference.

https://doi.org/10.1371/journal.pbio.3001324.g003
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white-eyed female for 2 h at the beginning of the WMZ at ZT10 on day 1. Successful mating of

the red-eyed male was determined by female progeny with eye color (Fig 3D). Consistent with

the data presented above, Pdfr5304 males sired fewer offspring than the Cs controls (Fig 3E).

Despite the fact that white− flies show impaired courtship [43,44], white-eyed males sired more

offspring than red-eyed Pdfr5304;c929/+, Pdfr5304; UAS-Pdfrwt, and Pdfr5304;c929/UAS-Pdfrwt;
cryGAL80/+ controls (Fig 3F). In contrast, male flies expressing the Pdfr in l-LNvs (Pdfr5304;
c929/UAS-Pdfrwt) sired more red-eyed progeny on day 1 (Fig 3F). To determine whether the

deficit in mating success in Pdfr5304 mutants was due to loss of PDFR in the l-LNvs, we evalu-

ated Dcr2;929-GAL4/UAS-PdfrRNAi flies. As seen in Fig 3G, Dcr2; c929>; UAS-PdfrRNAi lines

reduced mating success compared to Dcr2; c929/+ and UAS-PdfrRNAi/+ parental controls.

Therefore, the expression of the PDF receptor in the l-LNvs is associated with successful mat-

ing in early adulthood when sleep pressure is high.

Respecification of PDFR in l-LNvs modulates adult behavior

Given that the expression of the PDFR in the l-LNvs confers advantages to the young fly, we

wondered why its expression would then be turned off on days 2 to 3 of adult life. To gain fur-

ther insight into this question, we evaluated behavior in 5-day-old flies ectopically expressing

the PDFR in the l-LNv using a specific split-GAL4 driver (GRSS000645, l-LNv-GAL4). Daytime

sleep was modestly reduced in l-LNv-GAL4>UAS-Pdfrwt flies compared to l-LNv-GAL4/+ and

UAS-Pdfrwt/+ parental controls (Fig 4A). As a negative control, we evaluated sleep in adult

Fig 4. Behavioral consequences of PDFR expression in l-LNvs. (A) Daytime sleep in 5-day-old l-LNv-GAL4>; UAS-PdfrWT/+ flies and parental controls

(ANOVA[2,92] = 5.7 p = 0.004; n = 30–32/genotype). (B) Sleep in Dcr2; c929-GAL4/UAS-Pdfr flies and parental controls (ANOVA[2,150] = 17.24 p = 1.86E-07;

n = 40–60/genotype; �p< 0.05, modified Bonferroni test). (C) Kaplan–Meier analysis reveals % survival during starvation in l-LNv-GAL4>; UAS-PdfrWT

flies and parental controls (n = 3 replicates of 10–16/genotype, χ2 = 19.55, df = 2, p-value< 0.0001). (D) Kaplan–Meier analysis reveals % survival during

starvation in Dcr2; c929-GAL4/UAS-PdfrRNAi flies and parental controls (n = 3 replicates of 10–16/genotype, χ2 = 23.35, df = 2, p-value< 0.00001). Data

underlying this figure can be found in S4 Data. l-LNv, large ventral lateral neuron; nAU : Pleasedefinen:s:inFig4abbreviationlistifthisindeedisanabbreviation:.s., not significant; PDFR, pigment dispersing factor receptor.

https://doi.org/10.1371/journal.pbio.3001324.g004
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flies while expressing UAS-PdfrRNAi in the l-LNvs. Not surprisingly, expressing UAS-PdfrRNAi

in the l-LNvs did not alter sleep in adult flies (Fig 4B). Previous studies have shown that muta-

tions that confer resistance in one environmental setting may increase the vulnerability of

individuals in alternate settings [45]. Thus, we hypothesized that increased waking could suffi-

ciently alter energy demands to make adult flies expressing PDFR in the l-LNvs vulnerable to

starvation. To test this hypothesis, we starved flies and examined survival. As above, we exam-

ine the impact of starvation when the PDFR was overexpressed or knocked down in the l-

LNvs. As seen in Fig 4C, survival was shorter in l-LNv>UAS-Pdfrwt compared to l-LNv/ + and

UAS-Pdfrwt/+ parental controls. Astonishingly, l-LNv-GAL4>UAS-PdfrRNAi flies showed

improved survival compared to both parental controls flies (Fig 4D). Although knocking

down Pdfr attenuated starvation induced waking, sleep was reduced in both pdf01 mutants and

w1118 genetic controls during the first 18 h of starvation (S4 Fig). However, waking activity was

significantly lower in pdf01 mutants, and they survived significantly longer compared to w1118

controls (S4 Fig). Together, these data indicate that the ability of pdf to influence adaptive

behavior during starvation extends beyond modifying sleep time.

The increased survival seen in starved l-LNv-GAL4>UAS-PdfrRNAi flies suggested that the

genetic program that activates the PDFR in the l-LNvs may be reactivated in mature adults

during conditions of high sleep drive. Short periods of starvation (approximately 12 h)

increase waking without activating sleep drive presumably to maintain cognition during forag-

ing [45,46]. However, longer periods of starvation (approximately 20 h) are able to activate

homeostatic mechanisms [22]. Thus, we hypothesized that starvation would lead to the respe-

cification of the PDFR in the l-LNvs. As seen in Fig 5A, PDF responses in the l-LNvs of mature

adult flies are restored following starvation when compared to age-matched, nonstarved sib-

lings. To determine how much time was required for starvation to respecify the PDFR in the l-

LNvs, we evaluated the time course of PDFR respecification in the l-LNvs. Interestingly, star-

vation-induced restoration of PDF sensitivity in l-LNvs requires a similar duration as reported

for the activation of homeostatic drive (Fig 5B). These data suggest that the respecification of

the PDFR in the l-LNvs is to help flies maintain wakefulness during starvation. With that in

mind, we hypothesized that blocking the expression of the PDFR in the l-LNvs would result in

more sleep during starvation. Indeed, Dcr2; c929>; UAS-PdfrRNAi flies slept more than paren-

tal controls between 21 h of starvation, when homeostatic drive begins, and 32 h of starvation

prior to the point when flies begin dying (S5 Fig). In summary, starvation reduces sleep result-

ing in a buildup of sleep pressure, which may mimic the conditions present in early adulthood

that lead to PDFR respecification in l-LNvs.

Starvation is an indirect method to increase sleep pressure. With that in mind, we asked

whether sleep deprivation would also result in the respecification of the PDFR in the l-LNvs in

mature, adult flies. As seen in Fig 5D, l-LNvs respond physiologically to PDF following sleep

deprivation in 5-day-old flies. Although total sleep deprivation is the most common method

for increasing sleep drive in the laboratory, it seems unlikely that circumstances in the natural

environment would keep an animal awake continuously for 12 h or more. In contrast, sleep

consolidation is more easily disrupted and, perhaps, more likely to be impacted by a variety of

environmental conditions [21,23]. Thus, we hypothesized that interrupting sleep consolidation

would be sufficient to respecify the PDFR in the l-LNvs. A variety of manipulations that

increase sleep drive (e.g., memory consolidation and activating the dorsal fan-shaped body)

increase average daytime sleep bout duration to>22 min/bout [47,48]. Thus, we disrupted

sleep consolidation by presenting a mechanical stimulus to the flies for 1 min every 15 min for

48 h. As seen in Fig 5C, this protocol modestly disrupted sleep and did not result in a compen-

satory sleep rebound. To determine if the lack of a sleep rebound was due to the respecification

of PDFR, we examined the l-LNvs physiologically and histologically. As seen in Fig 5D, PDF
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responses in the l-LNvs of mature adult flies are restored following 48 h of sleep restriction. To

determine if the mechanical stimulus alone would respecify the PDFR in the l-LNvs, siblings

were exposed the same amount of stimulation (approximately 190 min) as sleep-restricted sib-

lings but during the biological day when sleep debt does not accrue [26,49]. As expected,

mechanical stimulation in the absence of sleep restriction did not respecify the PDFR in the l-

LNvs (Fig 5D). To confirm the physiological data, PDFR was examined directly using Pdfr-
myc [29]. MYC antibody staining in the l-LNvs is clearly visible in mature adult flies following

sleep restriction but is not observed in nondisturbed age-matched controls (Fig 5E). Next, we

asked how much sleep restriction was required for the respecification of the PDFR. As seen in

Fig 5F, PDF sensitivity becomes apparent after 24 to 48 h of sleep restriction, is sustained dur-

ing the first day of recovery, and then dissipates. Finally, we asked whether knocking down the

PDFR in the l-LNvs would modulate sleep homeostasis following sleep disruption. As seen in

Fig 5G, Dcr2;c929/+>UAS-PdfrRNAi flies slept significantly more following sleep restriction

than Dcr2;c929/+ and UAS-PdfrRNAi/+ parental controls. These data indicate that PDFR can be

respecified to mitigate against the effects of sleep pressure in the context of sleep disruption.

Nejire modulates PDFR in both young and mature l-LNvs

The PDFR is transiently expressed in the l-LNvs of young flies and can be respecified again in

mature adults in response to certain environmental perturbations. Thus, we asked whether

these seemingly different conditions invoke the same mechanisms to activate the expression of

PDFR in the l-LNvs. To begin, we conducted an RNA interference (RNAiAU : PleasenotethatRNAihasbeendefinedasRNAinterferenceatitsfirstmentioninthesentenceTobegin;weconductedanRNAinterferenceðRNAiÞscreenof :::Pleasecorrectifnecessary:) screen of transcrip-

tion factors that are known to be expressed in LNvs [50]. We crossed UAS-RNAi lines with

pdf-GAL4;UAS-Epac and monitored PDF sensitivity in both l-LNvs and s-LNvs in young flies

on day 0. As mentioned above, s-LNvs display persistent expression of the PDFR in both

young and mature adults. Thus, we hypothesized that by monitoring both cell types, we could

distinguish between regulatory elements specific to the transient pathway in l-LNvs. We also

examined DA responses to discriminate between transcription factors specifically involved in

the PDF pathway and those common to other GPCR signaling pathways. As seen in Fig 6A,

knocking down Drosophila cAMP response element-binding protein (CREB) (nejire) or Suppres-
sor of Under-Replication (SuUR) ablated PDF sensitivity in l-LNvs on day 0, while other tran-

scription factors left the sensitivity of the l-LNvs to PDFR largely intact. The amplitude of DA

responses was not altered by nejire, SuUR, or any other RNAi lines, revealing that the roles of

nejire and SuUR are specific to the PDF pathway in this context (S6A Fig). PDF sensitivity in

the s-LNvs was not ablated by RNAi knockdown of nejire (S6 Fig). Interestingly, nejire also

plays a role in the respecification of the PDFR in the l-LNvs in mature adults following sleep

restriction (Fig 6B). As in young flies, the panel of RNAi lines did not alter DA responses in

the l-LNvs (S6 Fig). To further evaluate the role of nejire in the respecification of the PDFR in

mature adults, we expressed wild-type nejire (UAS-nejireWT) or UAS-nejireRNAi using Pdf-
GA4; UAS-Epac. We hypothesized that the overexpression of nejire would restore PDFR sensi-

tivity to the l-LNvs in well-rested mature adults and that knocking down nejire would block

Fig 5. Sleep pressure induces PDFR expression in mature l-LNvs. (A) Normalized FRET ratio during PDF application in l-LNvs from starved (n = 10) and

fed (n = 16) Pdf-GAL4>UAS-Epac1 flies. (B)The amplitude of l-LNv responses to PDF is observed in 5-day-old Pdf-GAL4>UAS-Epac1 flies following 21–24

h of starvation. Data are shown for 8 h bins (ANOVA F[7,71] = 9.08, p = 9.8E-8; ROI = 7–20). (C) Sleep in Cs flies on sleep restriction day 2 and recovery. (D)

Normalized FRET ratio during PDF application in l-LNvs recorded from Pdf-GAL4>UAS-Epac1 flies during sleep restriction sleep deprivation and bang

controls (n = 12–25 ROI/genotype). (E) Immunohistochemistry of PDF (red) and myc (green) in 5-day-old sleep-restricted P[acman] Pdfr-myc70 flies. (F)

The amplitude of l-LNv responses to PDF in l-LNvs during baseline, sleep restriction, and recovery (ANOVA F[4,81] = 8.00, p = 1.94E-4, n = 9–24 ROI/

condition). (G) Sleep rebound in Dcr2; c929-GAL4/UAS-PdfrRNAi flies and parental controls (ANOVA F[2,147] = 6.37, p = 2.22E-3; n = 43–55). �p< 0.05,

modified Bonferroni test. Data underlying this figure can be found in S5 Data. FRET, Förster Resonance Energy Transfer; l-LNv, large ventral lateral neuron;

nAU : PleasedefineFRETandn:s:inFig4abbreviationlistiftheseindeedareabbreviations:.s., not significant; PDF, pigment dispersing factor; PDFR, pigment dispersing factor receptor; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3001324.g005
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the respecification of the PDFR in the l-LNvs during sleep restriction. Indeed, the sensitivity of

the l-LNvs to PDF was restored in well-rested mature adults by overexpressing UAS-nejireWT.

Conversely, the respecification of the PDFR to the l-LNvs during sleep restriction was blocked

by UAS-nejireRNAi (Fig 6D). Together, these data reveal that conditional PDFR expression in l-

LNvs shares common mechanisms in both young flies and mature adults.

Fig 6. nejire regulates PDFR respecification in l-LNvs of both young and mature flies. (A) The amplitude of l-LNv responses to PDF on day 0 in Pdf-GAL4>UAS-

Epac1 flies crossed to UAS-RNAi lines of the depicted transcription factors (ANOVA; F[8,127] = 11.1, p = 1.26E-11, �p< 0.05, modified Bonferroni test, n are listed below

the x-axis). (B) PDF amplitude in control and 5-day-old sleep restricted Pdf-GAL4>UAS-Epac1 flies compared to Pdf-GAL4>UAS-Epac1 flies expressing UAS-nejRNAi

(n = 6–19 neurons/genotype). (C) In the absence of sleep loss, the l-LNvs of Pdf-GAL4>UAS-Epac1/UAS-nejWT respond to PDF while age-matched Pdf-GAL4>UAS-

Epac1 do not (t test, DF 34–1, t = 22.6, p = 3.74e-5, n = 9–26 neurons/genotype). (D) Data quantified from (B). (t test, DF 40–1, t = 17.8, p = 4.10e-4, n = 16–26). (E) The

amplitude of l-LNv responses to PDF in l-LNvs on day 0 in Pdf-GAL4>UAS-Epac1 flies crossed to UAS-RNAi lines of the depicted cell surface receptors (ANOVA

F[10,105] = 5.38, p = 2.8−6 p< 0.05, modified Bonferroni test, n are listed below the x-axis). (F) The amplitude of l-LNv responses to PDF in l-LNvs on day 5 in sleep-

restricted Pdf-GAL4>UAS-Epac1 flies crossed to UAS-RNAi lines of the depicted cell surface receptors (ANOVA F[10,179] = 7.04, p = 3.3E-9 p< 0.05, modified

Bonferroni test, n are listed below the x-axis). Data underlying this figure can be found in S6 Data. FRETAU : PleasedefineFRETinFig6abbreviationlistifthisindeedisanabbreviation:, Förster Resonance Energy Transfer; l-LNv, large ventral

lateral neuron; PDF, pigment dispersing factor; PDFR, pigment dispersing factor receptor.

https://doi.org/10.1371/journal.pbio.3001324.g006
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Finally, we asked whether similar mechanisms were used by young and mature adults for

the activation of nejire. To identify cell surface receptors that might interact with nejire, we

once again consulted a database of genes known to be enriched in the LNvs [50]. We then con-

ducted a targeted RNAi screen to evaluate PDF sensitivity in young flies and mature adults fol-

lowing sleep restriction (Figs 6E and 6F and S6). Given that we only evaluated 1 RNAi line to

evaluate each receptor, these results should be viewed cautiously.

Nonetheless, these data suggest the possibility that DopEcR, Dop1R2, and InR may play a

role in the respecification of the PDFR in both young flies and mature adults during sleep

restriction.

Discussion

In Drosophila, PDF differentially coordinates the activity of diverse neuronal groups to opti-

mize behavioral output with the prevailing environmental conditions [16,51]. One of the most

successful topics in circadian neurobiology today has been the use of circuit mapping to deci-

pher the logic used by the clock to regulate such rhythmic behavior [10,11,13,52,53]. Indeed, a

number of studies highlight the role of PDF in coordinating the activity of downstream circuits

[16,41,54]. In this manuscript, we replicate previous finding that the Pdfr is not normally

expressed in the wake-promoting l-LNvs of healthy adults [13,29,30]. However, we now show

that high sleep pressure quickly reprograms the l-LNvs to express the Pdfr. The addition of a

new signaling input into the circuit, through expression of the Pdfr in the l-LNvs, is associated

with increased waking and early mating success. Importantly, these data demonstrate that the

constellation of neurons that express Pdfr is not constant and points to a novel type of plastic-

ity that can be used by the clock to coordinate behavioral output.

A growing number of studies indicate that sleep regulatory mechanisms are plastic and can

be harnessed to match an individual’s sleep need with environmental demands [21,46,55].

Although Hebbian and synaptic plasticity modulate circuit function in a variety of contexts,

these forms of plasticity may not be well suited to sculpt the balance of sleep and wake-promot-

ing circuits at specific times of day [56]. In contrast, receptor respecification is a form of plas-

ticity that may allow an individual to engage in adaptive waking behaviors at optimal circadian

times while still allowing the animals to obtain needed sleep at other times [19]. Indeed, our

data indicate that the PDFR is transiently expressed in wake-promoting clock neurons during

the first approximately 48 h of adult life when sleep drive is high. The associated increase in

waking is confined to a small portion of the circadian day and supports mating success and

mating competition. In contrast, the response properties of the l-LNvs to the global wake-pro-

moting transmitters Oa and DA remains unchanged [57]. Interestingly, when sleep is dis-

rupted in 5-day-old adults, the PDFR is once again expressed in the l-LNvs. Thus, targeted

receptor respecification may be an effective strategy that can be used to support important,

species-specific behaviors during conditions of high sleep drive without substantially disrupt-

ing the ability of the animal to obtain needed sleep.

Our data indicate that there is a strong relationship between sleep drive and the respecifica-

tion of the PDFR in a subset of clock neurons. That is, while the l-LNvs are unresponsive to

PDF in mature adults [30], the l-LNvs display robust responses to PDF following sleep depri-

vation, sleep restriction, and prolonged starvation. Importantly, no changes in the response

properties of the l-LNvs were observed when the animals were exposed to the mechanical stim-

ulus in the absence of sleep restriction. Interestingly, the response properties of the l-LNvs was

not visible until the second day of sleep restriction indicating that low amounts of sleep drive

are not sufficient to respecify the PDFR. Consistent with this hypothesis, short durations of

starvation induce episodes of waking that are not compensated by a sleep rebound [58] and do
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not change the response properties of the l-LNvs to PDF. In contrast, after approximately 20 h

of starvation, a time when flies begin to display a sleep rebound, the l-LNvs begin to respond

to PDF. These data suggest that the PDFR may be respecified in the l-LNvs to, for example,

help sleepy animals stay awake long enough to support a basal level of foraging. Indeed, knock-

ing down the Pdfr in clock neurons results in a larger sleep rebound following sleep restriction.

Increased sleep in many circumstances may be maladaptive since it would likely limit the

opportunity to forage or mate [59]. Together, these data support the hypothesis that the PDFR

is expressed to assist waking behaviors during conditions of high sleep drive.

Given that high sleep drive can negatively impact male sexual behavior (Chen and col-

leagues [55AU : PleasenotethatcitationChenandcolleagues; 2017inthesentenceGiventhathighsleepdrivecannegativelyimpactmalesexual:::hasbeenlinkedtoreferenceno:55inthemainreferenceslist:Pleaseconfirmthatthisiscorrect:]), it is curious that the PDFR is not typically expressed in the l-LNvs of healthy

adults. However, previous studies have shown that genes that confer resilience to specific envi-

ronmental challenges can be deleterious in other circumstances (Donlea and colleagues [45AU : PleasenotethatcitationDonleaandcolleagues; 2012inthesentenceHowever; previousstudieshaveshownthatgenesthatconferresilience:::hasbeenlinkedtoreferenceno:45inthemainreferenceslist:Pleaseconfirmthatthisiscorrect:]).

Indeed, the exogenous expression of PDFR in the l-LNvs during adulthood reduced survival

during prolonged starvation. These data suggest that the normal down-regulation of PDFR

expression in l-LNvs of healthy adults may be advantageous in that it removes potentially

excessive behavioral drives that could deplete valuable resources. Indeed, genetically prevent-

ing PDFR expression in l-LNvs during starvation extended survival.

Although sleep drive does not change the response properties of the l-LNvs to DA, our data

suggest that changes in dopaminergic tone may play a role in the respecification of the PDFR

in the l-LNvs. Specifically, knocking down specific DA receptors in the l-LNvs prevents the

respecification of the PDFR in both young flies and sleep-restricted 5-day-old adults. Although

the precise dopaminergic neurons have not yet been identified, the PPL2 dopaminergic neu-

rons project to the l-LNvs to promote wakefulness [40,41] and may play a role in the expres-

sion of the PDFR in l-LNvs. In addition to DA receptors, our data identify a role of the

transcription factor nejire (cAMP response element-binding protein) in promoting the expres-

sion of the PDFR during conditions of high sleep drive. Interestingly, nejire plays a role in cir-

cadian function where it has been suggested to allow cross-talk between circadian

transcription and the transcriptional regulation of other important processes such as sleep,

metabolism, and memory formation [60,61].

Previous studies have shown that activity-dependent respecification of receptors in mam-

mals can occur in adult neurons in response to>1 week of sustained increases in sensory

activity [18,19]. The most common forms of respecification alter the polarity of the synapse to

alter the function of the circuit [19]. Our data suggest an additional type of respecification in

which an input pathway into a circuit can be turned on and off, without changing the sign of

the synapse (excitatory/inhibitory). Presumably, turning on an input pathway may be a rapid

first step to balance the impact of sustained activity in opposing circuits (e.g., sleep versus

wake). However, enhancing the activity of a circuit may create a positive feedback loop, which

can destabilize the system and lead to adverse consequences. Indeed, while the respecification

of the PDFR in the l-LNvs can improve mating success during high sleep drive, it also results

in early lethality during starvation. Understanding how sleep drive modulates respecification

plasticity in other sleep regulatory circuits may provide critical insight into the role that sleep

plays in maintaining adaptive behavior in an ever changing environment.

Materials and methods

Flies

Flies were cultured at 25˚C with 50% to 60% relative humidity and kept on a diet of yeast, dark

corn syrup, and agar. Newly eclosed males were collected and entrained 4 to 7 days in a

12-h:12-h light:dark (LD) cycle, unless otherwise specified. RNAi stocks were obtained from
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VDRC and TRiP stock centers. DopEcR RNAiJF03415, Dop1R1RNAiHM04077, Dop1R2 RNAiHMC06293,

D2RRNAiHMC02988, InRRNAiHMS03166, NPFRRNAiJF01959, OambRNAiJF01673, TkR86CRNAiJF02160,

Oa2RNAiHMJ22156, CryRNAiJF01880, Mael RNAiHMS00102, dimm RNAiHMS01742, mamo RNAiHMC03325,

cac RNAiHM04020, achintyaRNAiHMS01127, SuURRNAiGL01080, nejireRNAihp12, nejireRNAihp12.3. Other

stocks used were c929(dimm)-GAL4; PDF-GAL4; lLNv GRSS000645-GAL4 (G. Rubin, H. Dione,

A. Nern); UAS-nejirewt-V5, pdf01, w1118 [37]. All other UAS lines and GAL4 lines have been

described previously: Pdfr-null mutant (Pdfr5304); UAS-Pdfrwt; w; UAS-Epac1camps50A [30],
w, Pdf-GAL4(M) and UAS-PdfrRNAi-42508 [62]. c929-GAL4; cry-GAL80/UAS-GFP flies and P
[acman] pdfr-myc70 flies [29] were used for immunolabeling.

Sleep

Sleep was measured as described previously [26]. In short, individual flies were placed into

approximately 65 mm tubes, which were then placed into Trikinetics Drosophila Activity

Monitoring System (www.Trikinetics.com, Waltham, Massachusetts). Locomotor activity was

monitored using an infrared beam and was assessed using 1-min time bins. Sleep has been

defined as periods of quiescence lasting 5 min or longer [26].

Mating success

Mating success assay consisted of putting 1 virgin female in a vial with a single male of the

genotype to be evaluated. Each pair of flies was placed into a vial at ZT4 on the day of eclosion,

and then the male was removed at ZT24. Mating success was determined days later through

visual inspection of viable offspring (pupae, larvae, etc.). Females from vials that produced no

offspring were subsequently provided several males to test for her reproduction viability.

Mating competition

A mating competition assay was also carried out using 2 males who compete for 1 female. In

each tube, 1 white-eyed male and 1 red-eyed male of varying PDFR levels competed to mate

with a white-eyed female. The 2 competing males were added to a vial simultaneously with a

mature virgin female, just prior to the WMZ (ZT10) and left in the vial until the end of WMZ

(ZT12). Successful mating of the red-eyed male was determined by female progeny with eye

color. Twenty competitions were set up for each genotype and repeated 3 times. Only competi-

tions resulting in progeny were used for analysis.

Sleep restriction

Disruption of sleep was performed similarly as previously described [38,63]. Flies were placed

into individual 65 mm tubes and a sleep-nullifying apparatus (SNAP), which mechanically dis-

rupted sleep for 1 min every 15 min for 24 to 48 hours, which both reduced and fragmented

sleep. For sleep deprivation, the SNAP was activated once every 8 s for the duration of the

experiment. Sleep homeostasis was calculated for each individual as a ratio of the minutes of

sleep gained above baseline during the 48 h of recovery divided by the total minutes of sleep

lost during 12 h of sleep deprivation.

Starvation

For starvation experiments, adult flies loaded into Trikinetics tubes containing 1% agar, which

provides water but not nutrients. Flies’ behavior was monitored until being evaluated for imag-

ing or for survival experiments. The duration of starvation is noted in the text.
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Physiology

Methods generally followed those of Klose and colleagues [31AU : PleasenotethatcitationKloseandcolleagues; 2016inthesentenceMethodsgenerallyfollowedthoseofKloseandcolleagues½31�:hasbeenlinkedtoreferenceno:31inthemainreferenceslist:Pleaseconfirmthatthisiscorrect:]. Flies were removed from DAM

monitors, and glass tubes were placed on ice for approximately 5 min. Three to 4 flies were pinned

onto a sylgaard dissection dish and were dissected in cold calcium-free HL3 (Stewart and col-

leagues [64]). Dissected brains were transferred onto a polylysine treated dish (35 3 10 mm Falcon

polystyrene) containing 3 ml of 1.5 mM calcium HL3. Two to 4 brains were assayed concurrently,

typically a mutant line and its genetic controls. Image capture and x,y,z stage movements were

controlled using SLIDEBOOK 5.0 (IntelligentAU : PleaseprovidemanufacturerlocationdetailsforIntelligentImagingInnovationsinthesentenceImagecaptureandx; y; zstagemovementswerecontrolledusingSLIDEBOOK:::Imaging Innovations, Denver, CO, USA), which

controlled a Prior H105Plan Power Stage through a Prior ProScanII. Multiple YFP/CFP ratio

measurements were recorded in sequence from region of interest (ROI) in each hemi-segment of

each brain in the dish. Each ROI comprised 2 to 4 l-LNvs. Following baseline measurements, 1 ml

of saline containing various concentrations of either PDF, DA, or OA (SigmaAU : PleaseprovidemanufacturerlocationdetailsforSigma � AldrichinthesentenceFollowingbaselinemeasurements; 1mlofsalinecontainingvariousconcentrations:::-Aldrich, St. Louis,

MO, USA) was added to the bath (dilution factor of 1/4). We tested normality in the data using

the Shapiro–Wilk test in SigmaPlot (Systat SoftwareAU : PleaseprovidemanufacturerlocationdetailsforSystatSoftwareinthesentenceWetestednormalityinthedatausingtheShapiro � Wilk:::, San Jose, CA, USA); maximum amplitude

values were used to perform ANOVA analyses followed by post hoc Tukey tests.

Immunocytochemistry

Whole flies were fixed in 4% PFA for several hours, and brains were then dissected in ice-cold

PBS and incubated overnight with the following primary antibodies: mouse anti-PDF, (5F10,

1,10 dilution, Hybridoma Bank, University of Iowa), chicken anti-myc (GFP-1020; 1:1,000),

and anti-GFP. Secondary antibodies were Alexa 488 and 633 conjugated at a dilution 1:200.

Brains were mounted on polylysine-treated slides in Vectashield H-1000 mounting medium.

Confocal stacks were acquired with a 0.5-μm slice thickness using an Olympus FV1200 laser

scanning confocal microscope and processed using ImageJ.

Statistics

All comparisons were done using a Student t test or, if appropriate, ANOVA and subsequent

planned comparisons using modified Bonferroni test unless otherwise stated. All statistically

different groups are defined as �p< 0.05.

Supporting information

S1 Fig. (A, B) Response of l-LNvs to DA and Oa in Pdf-GAL4>UAS-Epac1 flies from day 0 to

day 5+ (n = 4–15 hemiAU : Pleasenotethathermi � segmenthasbeenchangedtohemi � segmentthroughoutthearticletoenforceconsistencyofthespellingofthisword:Pleaseconfirmthatthisiscorrect:-segments per age, ANOVA F[5,36] = 6.08, p = 0.96 and ANOVA F[5,54]

= 8.93, p = 0.90, respectively). (C) Normalized FRET ratio in s-LNvs before and during PDF

exposure on day 0 (n = 6) and day 5 (n = 7). (D) PDF response amplitude in s-LNvs on day 0

to day 5+ (ANOVA F[5,76] = 13.31, p = 3.75E-9 n = 8–20 hemi-segments per age). �p< 0.05,

modified Bonferroni test. Data underlying this figure can be found in S7 Data. DAAU : AbbreviationlistshavebeencompiledforthoseusedinS1 � S6Figs:Pleaseverifythatallentriesarecorrect:, dopamine;

FRETAU : PleasedefineFRETinS1Figabbreviationlistifthisindeedisanabbreviation:, Förster Resonance Energy Transfer; l-LNv, large ventral lateral neuron; Oa, octopa-

mine; PDF, pigment dispersing factor; s-LNv, small ventral lateral neuron.

(TIF)

S2 Fig. (A) Immunohistochemistry for PDF and GFP reveals the expression of GFP in the

l-LNvs of c929-GAL4/UAS-gfp flies but not in the brains of c929-GAL4/UAS-gfp; Cry-Gal80
flies. (B) Pdfr5504; PDF>/UAS-PdfrWT flies exhibit more waking during the WMZ than

Pdfr5304; Pdf-GAL4/+ and Pdfr5304;UAS-PdfrWT/+ parental controls (ANOVA F[2,91] = 4.63,

p = 0.01 n = 41–64 flies/genotype) flies. Data underlying this figure can be found in S8 Data.

GFP, green fluorescent protein; l-LNv, large ventral lateral neuron; PDF, pigment dispersing

PLOS BIOLOGY Sleep-drive respecifies pigment dispersing factor receptor

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001324 June 30, 2021 15 / 22

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001324.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001324.s002
https://doi.org/10.1371/journal.pbio.3001324


factor; WMZ, wake maintenance zone.

(TIF)

S3 Fig. CD8 GFP expression using l-LNv–specific split Gal4 driver GRSS000645. (A) CNS

with overlay traced reveals cell bodies and optic lobe projections of l-LNvs in the left hemi-seg-

ment of a brain. (B) Four cell bodies and projections of l-LNvs of right hemi-segment. Z-stack

projections with 2 μm steps. Scale bar: 15 μm. GFP, green fluorescent protein; l-LNv, large ven-

tral lateral neuron.

(TIF)

S4 Fig. (A) Sleep was reduced in both pdf01 mutants and w1118 genetic controls during the

first 18 h of starvation (data presented as change from baseline; (n = 20–22 flies/genotype,

p> 0.05). (B) During the first 18 h of starvation, waking activity was significantly lower in

pdf01 mutants compared to w1118 controls (p< 0.05). (C) Kaplan–Meier analysis reveals % sur-

vival during starvation in pdf01 (n = 25) flies and w1118 (n = 24) controls (χ2 = 6.20, df = 1,

p = 0.01). Data underlying this figure can be found in S9 Data. nAU : Pleasedefinen:s:inS4Figabbreviationlistifthisindeedisanabbreviation:.s., not significant.

(TIF)

S5 Fig. (A) Sleep (minutes) during 48 h of starvation in Dcr2; c929-GAL4/UAS-pdfrRNAi flies

(n = 24), Dcr2; c929-GAL4/+ (n = 18), and +/UAS-PdfrRNAi (n = 32) control flies. ZT, Zeitgeber

time.

(TIF)

S6 Fig. (A) The amplitude of l-LNv responses to DA on day 0 in Pdf-GAL4>UAS-Epac1 flies

coexpressing RNAi lines for the depicted transcription factors (ANOVA F[8,92] = 1.04,

p = 0.42; n is as indicated beneath each bin). (B) The amplitude of s-LNvs responses in Pdf-
GAL4>UAS-Epac1 flies coexpressing RNAi lines for the depicted transcription factors neu-

rons on day 0 (ANOVA F[8,112] = 9.36, p = 1.19E-9). (C) The amplitude of s-LNvs responses to

DA on day 0 in Pdf-GAL4>UAS-Epac1 flies coexpressing RNAi lines for the depicted cell sur-

face receptors (ANOVA F[10,108] = 0.79, p = 0.63; n is as indicated beneath each bin). (D) The

amplitude of l-LNvs responses to DA following sleep restriction in 5-day-old Pdf-
GAL4>UAS-Epac1 flies coexpressing RNAi lines for the depicted cell surface receptors

(ANOVA F[10,159] = 0.42, p = 0.94; n is as indicated beneath each bin). Data underlying this fig-

ure can be found in S9 Data. DA, dopamine; l-LNv, large ventral lateral neuron; PDF, pigment

dispersing factor; RNAi, RNA interference; s-LNv, small ventral lateral neuron.

(TIF)

S1 Data. (A, B) Sleep in minutes/hours for 0-, 1-, and 3-day-old flies maintained on a 12:12

LD schedule. (C–E) FRET ratio measurements in Pdf-GAL4>UAS-Epac1 flies in response to

DA, Oa, and PDF. (F) The amplitude of l-LNv responses to PDF. DAAU : AbbreviationlistshavebeencompiledforthoseusedinS1; S5 � S7; andS10Data:Pleaseverifythatallentriesarecorrect:, dopamine; FRETAU : PleasedefineFRETinS1; S5; andS7Dataabbreviationlistsifthisisindeedanabbreviation:,

Förster Resonance Energy Transfer; LD, light:dark; l-LNv, large ventral lateral neuron; Oa,

octopamine; PDF, pigment dispersing factor.

(XLSX)

S2 Data. (A) Sleep in minutes/hours in Pdfr5504, Cs, Pdfr5504; c929-GAL4; UAS-Pdfr (rescue,

green), Pdfr5504; UAS-Pdfr/+, Pdfr5504; c929-GAL4/+; Cry-Gal80/+, and Pdfr5504; c929-GAL4/

UAS-Pdfr; Cry-Gal80.

(XLSX)

S3 Data. Role for PDFR in l-LNvs in mating success. (A–C) % of vials with offspring for Cs,
Dcr2; c929-GAL4/UAS-PdfrRNAi, Dcr2; c929-GAL4/+, +/UAS-PdfrRNAi, Pdfr5504; c92-GAL4;

UAS-PdfrWT, Pdfr5504; UAS-PdfrWT/+, Pdfr5504; c929-GAL4/+; CryGal80/+, and Pdfr5504; c929-
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GAL4/UAS-Pdfr; Cry-Gal80. (D) Mating competition assay scheme on day 1. (E–G) % of vials

with red eyes.

(XLSX)

S4 Data. (A) Daytime sleep in l-LNv-GAL4>; UAS-PdfrWT/+, l-LNv-GAL4/+, UAS-PdfrWT/
+ Dcr2; c929-GAL4/UAS-Pdfr, c929-GAL4/+, and UAS-Pdfr/+ flies (C) % of surviving flies

each hour during starvation in l-LNv-GAL4>; UAS-PdfrWT/+, l-LNv-GAL4/+, UAS-PdfrWT/+.

(XLSX)

S5 Data. (A) Traces of normalized FRET ratio during PDF application in l-LNvs from starved

and fed Pdf-GAL4>UAS-Epac1 flies. (B)The amplitude of l-LNv responses to PDF in 5-day-

old Pdf-GAL4>UAS-Epac1 flies following 21–24 h of starvation. Data are shown for 8 h bins. (C)

Sleep in minute/hour in Cs flies maintained on a 12:12 LD schedule during sleep restriction day

2 and during recovery. (D) Traces of normalized FRET ratio during PDF application in l-LNvs

recorded from Pdf-GAL4>UAS-Epac1 flies during sleep restriction sleep deprivation and bang.

(F) The amplitude of l-LNv responses to PDF in l-LNvs during baseline, sleep restriction, and

recovery. (G) Sleep rebound expressed as a difference with baseline sleep in Dcr2; c929-GAL4/
UAS-PdfrRNAi, Dcr2; c929-GAL4/+, and UAS-PdfrRNAi/+ flies. FRET, Förster Resonance Energy

Transfer; LD, light:dark; l-LNv, large ventral lateral neuron; PDF, pigment dispersing factor.

(XLSX)

S6 Data. (A)The amplitude of l-LNv responses to PDF on day 0 in Pdf-GAL4>UAS-Epac1
flies crossed to UAS-RNAi lines of the labeled transcription factors. (B) Trace of PDF

responses in Pdf-GAL4>UAS-Epac1 during baseline, in sleep-restricted flies, and Pdf-
GAL4>UAS-Epac1 flies expressing UAS-nejRNAi. (C, D) The amplitude of l-LNv responses in

Pdf-GAL4>UAS-Epac1/UAS-nejWT and age-matched Pdf-GAL4>UAS-Epac1 flies. (E) The

amplitude of l-LNv responses to PDF Pdf-GAL4>UAS-Epac1 flies crossed to UAS-RNAi lines

of the listed cell surface receptors. (F) The amplitude of l-LNv responses to PDF in sleep

restricted. l-LNv, large ventral lateral neuron; PDF, pigment dispersing factor.

(XLSX)

S7 Data. (A, B) Response of l-LNvs to DA and Oa in Pdf-GAL4>UAS-Epac1 flies from day 0

to day 5+. (C) Normalized FRET ratio in s-LNvs before and during PDF exposure on day 0

and day 5. (D) PDF response amplitude in s-LNvs on day 0 to day 5+. DA, dopamine; FRET,

Förster Resonance Energy Transfer; l-LNv, large ventral lateral neuron; Oa, octopamine; PDF,

pigment dispersing factor; s-LNv, small ventral lateral neuron.

(XLSX)

S8 Data. (B) Sleep during the waking during the WMZ in Pdfr5304; Pdf-GAL4/+ Pdfr5304;
UAS-PdfrWT/+ and Pdfr5504; PDF>/UAS-PdfrWT flies. WMZ, wake maintenance zone.

(XLSX)

S9 Data. (A) Sleep in pdf01 mutants and w1118 flies during the first 18 h of starvation (data pre-

sented as change from baseline. (B) Waking activity during the first 18 h of starvation. (C) Sur-

viving flies each hour during starvation.

(XLSX)

S10 Data. (A) The amplitude of l-LNv responses to DA on day 0 in Pdf-GAL4>UAS-Epac1
flies coexpressing RNAi lines for the listed transcription factors. (B) The amplitude of s-LNvs

responses in Pdf-GAL4>UAS-Epac1 flies coexpressing RNAi lines for the listed transcription

factors neurons on day 0. (C) The amplitude of s-LNvs responses to DA on day 0 in in Pdf-
GAL4>UAS-Epac1 flies coexpressing RNAi lines for the depicted cell surface receptors. (D)
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The amplitude of l-LNvs responses to DA following sleep restriction in 5-day-old Pdf-
GAL4>UAS-Epac1 flies coexpressing RNAi lines for the listed cell surface receptors. DA,

dopamine; l-LNv, large ventral lateral neuron; RNAi, RNA interference; s-LNv, small ventral

lateral neuron.

(XLSX)
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