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ABSTRACT
Newly emerged SARS-CoV-2 made recent pandemic situations across the globe is accountable for
countless unwanted death and insufferable panic associated with co-morbidities among mass people.
The scarcity of appropriate medical treatment and no effective vaccine or medicine against SARS-CoV-
2 has turned the situation worst. Therefore, in this study, we made a deep literature review to enlist
plant-derived natural compounds and considered their binding mechanism with the main protease of
SARS-CoV-2 through combinatorial bioinformatics approaches. Among all, a total of 14 compounds
were filtered where Carinol, Albanin, Myricetin were had better binding profile than the rest of the
compounds with having binding energy of –8.476, –8.036, –8.439 kcal/mol, respectively. Furthermore,
MM-GBSA calculations were also considered in this selection process to support docking studies.
Besides, 100ns molecular dynamics simulation endorsed the rigid nature, less conformational variation
and binding stiffness. As this study, represents a perfect model for SARS-CoV-2 main protease inhib-
ition through bioinformatics study, these potential drug candidates may assist the researchers to find
a superior and effective solution against COVID-19 after future experiments.

ARTICLE HISTORY
Received 25 June 2020
Accepted 10 July 2020

KEYWORDS
Protease inhibitors;
phytochemicals; virtual
screening; binding modes;
MD simulation

Introduction

The world has been thundered by a sudden epidemic attack
since December 2019, due to the outbreak of a novel strain
of virus known as SARS-CoV-2, commonly called COVID-19 or
coronavirus. The outbreak occurred in Wuhan, the capital of
Hubei province in China became pandemic and killed hun-
dreds of thousands of people globally (Wu et al., 2020;
Zhang et al., 2020; Zhou et al., 2020). Coronavirus belongs to
the family Coronaviridae that is single-stranded RNA virus (þ
ssRNA) and has similarity with SARS coronavirus. Family
Coronaviridae is classified into four genera: alpha, beta, delta
and gamma among which the members of alpha and beta
virus genera infect humans (de Wilde et al., 2018; Khan, Jha,
et al., 2020) . The genome of COVID-19 and SARS coronavirus
(SARS-CoV) is about 82% identical to each other and both
viruses belong to clade b of the genus betacoronavirus (Wu
et al., 2020; Zhou et al., 2020). Exact source from where this
disease has spread is not clear, yet it is guessed to be a zoo-
notic disease and spread through wild animals as the nearest
members SARS and MERS spread. In the nature, Chinese
horseshoe bats act as a reservoir of SARS-CoV (Lau et al.,
2005) and intermediate hosts of this virus are civet cats and

raccoon dogs (Guan et al., 2003). One of these animals might
spread coronavirus among humans. At the last update in 22
April 2020 WHO reported 2,402,250 coronavirus confirmed
cases and 163,097 confirmed death in 213 countries (https://
www.who.int/emergencies/diseases/novel-coronavirus-2019).

For the maturation of CoVs, a highly complex cascade of
proteolytic processing events is involved that control viral
gene expression and replication. CoV main protease also
(CoV Mpro) known as 3CL protease or 3CLpro, a three
domain (domains I to III) cysteine protease with a chymo-
trypsin-like two-domain fold at the N terminus mediate most
maturation cleavage events within the precursor polyprotein
of coronavirus (Gorbalenya et al., 1989; Lee et al., 1991;
Ziebuhr et al., 2000). From the structure of CoV Mpros it is
clear that there are two CoV Mpro molecules form an active
homodimer. One of these two is a Cys-His catalytic dyad
which is located in a cleft between domains I and II and the
other is N-terminal residues 1 to 7 (or N finger). These two
Mpro are considered to play an important role in proteolytic
activity (Anand et al., 2002, 2003; Xue et al., 2007; Yang
et al., 2003). The C-terminal domain III is reported to be
required for dimerization (Shi et al., 2004). The Mpro in
SARS-CoV2 is the key enzyme processing, assembling and
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multiplication of the virus. Interrupting the active of this
enzyme may disrupt the replication, multiplication of the
virus. Thereby, disrupting its life cycle without causing any
harm to the host, makes it an ideal target as the main inhibi-
tor of SARS-CoV2. As Mpro possess active site for inhibitor,
compound can interact at the active site of the enzyme,
result in interfering the replication process of the enzyme.
Due to interruption occur in replication and transcription
process, the virus cannot multiply (Daidone et al., 2012; Ton
et al., 2020; Wang, 2020)

Still, now no effective drugs are available in the market
therefore it is the supreme need to work heart and soul to
develop drugs for the treatment of coronavirus. Computer-
aided drug design (CADD) can contribute a great help in this
regard which is frequently used to estimate the probable
inhibitors that could prevent the activity of an enzyme. The
valuable time and cost can be reduced significantly by CADD
in order to develop a new drug. The most important and
crucial factor in CADD is the determination of the ligand-
binding energy (Yu & MacKerell, 2017)

Method and materials

Protein preparation

The three dimensional structure of the main protease enzyme
was retrieved from protein data bank (Berman et al., 2000) and
subjected to preparation using the protein preparation wizard
of Schr€odinger suite (Sastry et al., 2013). All the waters were
removed beyond 5.0Å from het groups and the protein was
pre-processed by; assigning bond orders, adding Hydrogens
and creating disulfide bonds, converting selenomethionines to
methionines whereby it is applicable. H-bond networks were
optimized, and protonation states were generated at pH 7.0.
Finally, The energy minimization process was done by employ-
ing OPLS3e force field (Roos et al., 2019).

Ligand preparation

About 1480 compounds were enlisted form plants through lit-
erature search as Supporting Information file 1 and 2. The
compounds were selected on the basis of experimental evi-
dence of different enzymatic and antiviral assay. The abundance
and availability of the plants throughout the world especially
south Asian region also considered while screening. The com-
pounds were extracted from PubChem Database (Kim et al.,
2016) and prepared by using default parameter of Ligprep
module of Schr€odinger suite (Schr€odinger, 2020). Epik was used
for generating the possible states of compounds at target pH
7.0±2, and the high energy ionization/tautomer states were
removed for the likelihood of reliability in biological condition
(Riza et al., 2019; Shelley et al., 2007). Before, undergoing virtual
screening, Qikprop simulation was run (Schr€odinger, 2019), to
filter ligands based on Lipinski’s rules (Lipinski, 2004).

Virtual screening

To identify potent inhibitor of main protease of SARS-CoV-2
virtual screening against natural compounds were done. The
virtual screening workflow (VSW) of Glide program was
employed for primary screening. Generally, the VSW is com-
bined with three different docking scoring protocols such as
high throughput virtual screening (HTVS), standard precision
(SP) and extra precision (XP). The HTVS protocol docks each
ligand to receptor and generates one pose, where it retains
all the states of scoring, but the SP protocol is bit stricter at
its scoring function, instead it retains only good scoring
states (Friesner et al., 2004), facilitating to filter out the false
positive results. However, the XP protocol uses very sophisti-
cated procedure, and it only retains the best scoring states
(Friesner et al., 2006; Repasky et al., 2007). In order to have
the accuracy of pose ranking and final selectivity, the poses
generated by XP was limited to three for each ligand, and
those were allowed to be post-processed through MM-GBSA.
The 50% of total compounds were passed from HTVS to SP.
Thereafter, the 30% of total compounds from SP, were fil-
tered to XP. Then, only 10% of compounds were kept before
going for MM-GBSA rescoring (Chen et al., 2016; Mahmud
et al., 2019). Finally, the best three ligands were selected and
those were considered further, to observe their stability and
dynamic nature in biological condition.

ADMET prediction

The pharmacological properties of the lead compounds were
explored through pkCSM (Pires et al., 2015) and admetSAR
(Cheng et al., 2012) server and QikProp (Jorgensen, 2016) to
evaluate drug likeness properties. To design rational drugs,
Lipinski rule of five (Lipinski, 2004) need to be assessed care-
fully and, therefore, SwissAdme server used to check Lipinski
rules. The structure data file and simplified molecular data
input format were used as an input system to evaluate
absorption, distribution, metabolism, excretion and toxicity
(ADMET) value.

Molecular dynamics simulation

Molecular dynamics simulation was carried out through
YASARA software (Krieger et al., 2004). The drug-protein
complex were initially cleaned, hydrogen bonding networks
were optimized, and AMBER14 force field (Case et al., 2006)
was applied. The Particle Mesh Ewald method was applied to
calculate long range electrostatic potential with a distance of
8 Å. The physiological condition of the system was defined
as (310 K, pH 7.4, 0.9% NaCl). The TIP3P (Transferable
Intermolecular Potential 3 Points) was applied with NA/Cl
ions and system density was 1.012 gm/cm3(Krieger et al.,
2006). The Berendsen thermostat was used to control simula-
tion temperature, where the pressure was kept constant dur-
ing the simulation. By applying a multiple time step
algorithm, the simulation time step was selected as 2.0 fs.
Initially, the energy minimization of each system was per-
formed by steepest gradient approach (5000 cycles; Krieger

2 S. MAHMUD ET AL.



& Vriend, 2015). Finally, 100 ns of MD simulation was run, as
where the snapshot interval was set to 100ps for analyzing
the trajectory data. Therefore, all of the trajectories were con-
catenated to calculate and plot root mean square deviation
(RMSD), root mean square fluctuation (RMSF), radius of gyr-
ation (Rg) and solvent accessible surface area (SASA) data.

Principle component analysis (PCA)

The PCA has been performed to understand variation of con-
formational changing upon ligand binding. We performed PCA
in two different methods; one is utilizing trajectory coordinates
to understand the transition sate before and after ligand bind-
ing, while another one is applied, to all the structures related
variables for understating the quality of conformers and overall
variation among protein-ligand complexes, compared to apo
and control drug-protein complex. We used Bio3d program,
implementing into R program and pc man package for PCA.

Result

Molecular docking analysis

After the competition of virtual screening, about 14 com-
pounds were found to be potential, as they were passed
through rigorous screening process and found to interact
with the catalytic dyad of the main protease of SARS-CoV-2.
However, all the poses of compounds generated by XP was
further processed with MM-GBSA, to reach more accurate
approximation. Therefore, Top 3 candidates, which showed
the best binding affinity (DG Bind) with the catalytic dyad of
main protease, were chosen. The docking result and binding
affinity estimation of 14 compounds are shown in the Table
1, and the interaction details of top three compounds with
the active site residues are shown in Table 2. Figure 1 illus-
trates different bunding modes of protein-ligand complexes.

ADMET

To be a potent drug candidate against biological target, several
parameters such as Lipinski rule of five; molecular weight,
hydrogen bond donor, hydrogen bond acceptor, must be fol-
lowed (Mahmud et al., 2019). The screened main protease
inhibitors have better oral absorption and blood brain barrier

permeability which is required for a drug candidate. All three
compound have no carcinogenic profile and no toxicity found
in hepatotoxicity and AMES toxicity evaluation. ATP binding
cassette transporter, P-glycoprotein act as a biological barrier
by extruding foreign particles from the cell. From the Table 3, it
was observed that all screened compound derived from virtual
screening inhibit p-glycoprotein.

Molecular dynamics

The RMSD profile of all the docked complexes were meas-
ured to understand their stability in biological environment.
Furthermore, Apo and the control co-crystalized structures
were simulated for better contrast, on how the newly pro-
posed inhibitors might affect protein structure.

Table 1. Docking result (kcal/mol) and binding affinity (kcal/mol) estimation of top 14 candidates.

PubChem CID Glide ligand efficiency XP GScore Glide evdw Glide ecoul Glide energy Glide emodel MMGBSA DG bind

5280343 –0.404 –8.916 –33.982 –8.344 –42.327 –55.652 –40.39
586373 –0.314 –8.476 –33.129 –12.172 –45.301 –59.218 –46.37
5281672 –0.365 –8.439 –36.917 –7.311 –44.228 –54.131 –46.96
5280681 –0.354 –8.178 –34.079 –9.163 –43.243 –62.916 –42.02
5481961 –0.308 –8.036 –35.007 –10.879 –45.886 –60.092 –49.66
6476139 –0.303 –7.891 –31.452 –11.422 –42.874 –51.915 –45.86
57161864 –0.464 –7.996 –18.869 –10.685 –29.555 –36.942 –26.61
439533 –0.356 –7.861 –36.554 –7.974 –44.528 –53.124 –41.94
25243950 –0.32 –7.678 –30.95 –12.212 –43.161 –52.839 –37.1
5281670 –0.345 –7.852 –34.803 –5.631 –40.434 –52.901 –34.34
44258704 –0.316 –7.586 –32.402 –7.714 –40.115 –51.303 –46.07
5281855 –0.341 –7.565 –31.108 –6.149 –37.257 –49.183 –42.26
5280863 –0.356 –7.505 –33.638 –7.44 –41.078 –52.278 –38.73
5281605 –0.373 –7.505 –26.253 –7.789 –34.042 –48.068 –41.86

Table 2. Non bond interaction between SARS-CoV-2 main protease and top
3 compound.

PubChem
CID

Residues in
contact Interaction type

Distance
in Å

5281672 ASP187 Conventional Hydrogen Bond 2.96
THR26 Conventional Hydrogen Bond 1.98
THR26 Conventional Hydrogen Bond 1.91
MET165 Carbon Hydrogen Bond 2.75
GLN189 Pi-Donor Hydrogen Bond 3.2
MET49 Pi-alkyl 5.2
CYS145 Pi-alkyl 5.22
MET49 Pi-alkyl 4.39
CYS145 Pi-alkyl 4.77

5481961 GLY143 Conventional hydrogen bond 2.12
GLU166 Conventional hydrogen bond 2.33
ASN142 Conventional hydrogen bond 1.98
THR26 Conventional hydrogen bond 1.76
MET49 Alkyl 3.81
HIS41 Pi-alkyl 3.91
CYS145 Pi-alkyl 5.27
LEU27 Pi-alkyl 5.45
CYS145 Pi-alkyl 4.26

586373 GLY143 Conventional hydrogen bond 2.37
GLU166 Conventional hydrogen bond 2.17
GLN189 Conventional hydrogen bond 3.02
CYS145 Conventional hydrogen bond 2.54
ARG188 Conventional hydrogen bond 2.24
THR26 Conventional hydrogen bond 1.86
THR25 Carbon hydrogen bond 2.99
GLU166 Carbon hydrogen bond 2.54
THR25 Carbon hydrogen bond 2.62
CYS145 Pi-sulfur 5.33
MET165 Pi-alkyl 4.23
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From Figure 2(a), it is observed that alpha ketoamide and
its protein complex shows a bit lower RMSD profile than apo
structure. Moreover, Carinol-Mpro complex had similar trend
like apo till 10 ns and thereafter slightly flexibility observed
till 25 ns and stabilized consequently.

Although Albanin-Mpro complex was seen to have flexible
nature at the initial phase of dynamics, it reached at stable state
at 20ns. This complex had almost similar trend as apo structure
for the next phase of the simulation. In addition, Myricetin-Mpro
complex had higher RMSD value from the beginning of simula-
tion and it was reached at highest peak at 40ns. Soon this com-
plex reached in stable condition with very lower degree of
fluctuations during the rest of the simulation time.

The RMSF value of the protein complex represents fluctu-
ated protein region during molecular dynamics simulation.
As seen from Figure 2(b), the overall residues; Ser46, Glu47,
Leu50, Pro52 from beta turn region, Asn151, Ile152 from B
strand and Asp153, Tyr154, Asp155 from beta hairpin region,
Met276, Asn277, Gly278, Arg279, Thr280, Ser301, Gly302,
Val303, Thr304, Phe305, Gln306 from beta turn region, had
high level of fluctuations compared to the other amino acid
residues. However, apo protein structure had less fluctuation
than control which indicates that the main protease protein
structure of SARS-CoV-2 protein is less flexible without lig-
and. The RMSFs of the Albanin-Mpro complex and Carinol-
Mpro complex had similar drift as apo and control one, as

Figure 1. The figure illustrates different binding modes of selected compounds within the active and catalytic sites of main protease. The alphabetical orders indi-
cate the respective complex of alpha-ketoamide, Carinol, Albanin and Myricetin, respectively. The block and line colors at receptor-ligand interactions such as
green, light sky and pink define conventional hydrogen bonding, C-H bonding and hydrophobic interactions, respectively.
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where the Myricetin-Mpro complex had higher RMSF value
for almost all the amino acid residues. This behavior indi-
cates, Myricetin-Mpro complex had flexible nature compared
to all other complexes.

Moreover, SASA was checked to understand the change
in protein surface area. From Figure 2(c), it can be under-
stood that, the ligand Myricetin-Mpro complex had shrunken
its surface area than apo and control structure. Additionally,
the surface area of apo protein, control protein and Albanin-
Mpro complex did not change too much and remained at
stable state during MD simulation. On the other hand, the

Myricetin-Mpro complex was seen to have little increased its
surface area from 0 to 40 ns, then it got down a bit. This
complex had almost similar trend for rest of the simulation
time and did not deviate too much.

On top of that, the degree of compactness and stability was
evaluated through Rg. It can be observed from the Figure 2(d)
that, apo structure had almost similar Rg value from 0 to
100ns, which indicates that the protein structure almost stable.
However, Albanin-Mpro complex had lower Rg value than apo
structure, which means the higher level of rigidity. On the other
hand, Myricetin-Mpro complex and Carinol-Mpro complex had
similar profile like control protein complex.

Principle component analysis

PCA is an essential approach for projecting multi-dimensional
data into 2D and 3D space as well as understanding the vari-
ation of given sets of data. Figure 3 projects PCA from all tra-
jectories including coordinates and structurally relevant data
such as: RMSD, Rg and SASA. Note that, we could perform PCA
for alpha carbon atoms only, throughout the trajectories, but
we also considered data as aforementioned to see, if they
would have any correlation among themselves.

It is clear from PCA analysis (Figure 3) that the separation
the of most conformers of Apo shift positively with reduced
variance as 29%, and the separation of Alpha ketoamide-Mpro
complex seems to be highly distributed around, indicating its
conformation stability throughout the trajectory. Abd it

Table 3. Pharmacological properties of the screened compound assessed
through admetSAR and PkCSM tools.

Parameter Carinol Myricetin Albanin

CNS –2 –2 –2
MW 378.421 318.29 354.359
SASA 643.934 530.521 602.242
Donor HB 5 5 3
Acceptor HB 7.25 6 4.5
QPlog Poct 22.094 20.824 19.224
LogHERG –4.594 –5.008 –5.152
Human Oral absorption 77.046 26.816 75.848
Caco2 permeability –0.174 0.095 –0.449
P-glycoprotein inhibitor No No No
BBB permeability –0.1489 –1.493 –1.034
Hepatotoxicity No No No
Carcinogenicity 0.8714(–) 1.00(–) 0.957(–)
AMES toxicity No No No

Here, MW: molecular weight; SASA: solvent accessible surface area; CNS: cen-
tral nervous system activity; LogHERG: predicted Ic50 value for blockage of
HERG Kþ channels; LogPo/w: predicted octanol/water partition coefficient.

Figure 2. Time series analysis of all the simulated systems. The alphabetical orders from (a) to (d) indicate RMSD analysis of alpha carbon atoms (a), flexibility ana-
lysis of amino acid residue (b), protein volume with expansion analysis(c) and degree of rigidity and compactness analysis (d).
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achieved higher scores on PC1 (51.64%). Conversely, the con-
formational distribution of Carinol-Mpro complex, is seemed to
shift positive, as compared to Apo structure. On the other
hand, the conformational distributions of Albanin-Mpro com-
plex is seemed to be bit similar to that of Alpha ketoamide-
Mpro complex. The most PCA1 score (57.79%) was seemed to
be covered by Myricetin-Mpro complex, where the conform-
ational distribution look like more positive directions as seen
for Apo and Carinol-Mpro complex.

Finally, PCA of few trajectories’ data was analyzed, to
grasp structural properties of all systems. The data shows the
distribution of Albanin complex is near to Apo, while the

other complexes are seemed overlap a bit onto each other.
The overlapping confers the similar conformational states
resembling to their dynamic properties and behavior.

Discussion

Computer aided drug design and virtual screening has
become essential tool to identify new lead compound. This
combinatorial process allows us to reduce experimental time
and cost by narrowing down biological target. Additionally,
molecular dynamics, molecular docking, virtual screening
have become essential part in computer aided drug design
for their reliability and accurate prediction probability

Figure 3. Principle component analysis of (a) Apo, (b) Alpha ketoamide-Mpro complex, (c) Carinol-Mpro complex, (d) Albanin-Mpro complex and (e) Myricetin-
Mpro complex. Each dot denotes its conformation of the protein throughout the X and Y axis. The spread of blue and red color dots described the degree of con-
formational changes in the simulation, where the color spectrum from blue to white to red is equivalent to simulation time. The blue specifies the initial timestep,
white specifies intermediate, and the final timestep is represented by red color. (f) PCA of trajectory data (RMSD, Rg and SASA) of all systems.
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(Mahmud et al., 2019; Talele et al., 2010). Recently, number
of virtual screening process based on plant derived com-
pound have been successful to predict the potential blocker
of the biological target (Mahmud et al., 2019, 2020).

The main protease of SARS-CoV-2 has become an attract-
ive target for different therapeutic approaches. It is com-
prised of three domains; Domain I (residues 10 to 99),
Domain II (residues 100 to 182) and Domain III (residues 198
to 303; Bacha et al., 2004; Shi & Song, 2006; Zhang et al.,
2020 ). Among three domains, two catalytic residues such as
Cys145 and His41, are reported to initiate activation through
dimerization mechanism. Thus, blocking the catalytic site can
be logical to inhibit the function of the main protease
(Zhang et al., 2020). Beside this, the substrate-binding pocket
consists of His41, Phe140, Asn142, Gly143, Ser144, Cys145,
Tyr161, His163, Glu166 and His172 residues which can be
alternatively targeted to inhibit the activity of main protease
(Khan, Jha, et al., 2020). Alongside the catalytic center, there
are two other deeply buried subsites (S1 & S2) and three
shallow subsites(S3-S5), where the S1 include His163, Glu166,
Cys145, Gly143, His172, Phe140 amino acid residues and S2
include Cys145, His41 and Thr25 amino acid residues; mainly
involved in hydrophobic and electrostatic interactions. The
Shallow subsites consist of Met49, His41, Met165, Glu166
and Gln189 amino acid residues; can endure different func-
tionalities (Khan, Zia, et al., 2020).

Our study suggests that, the best three candidates inter-
acted with both or at least one catalytic residue. The com-
pound 5281672 (PubChem CID) or Myricetin was stabilized
by several hydrogen bonds and hydrophobic bonds, in which
it formed two hydrophobic bonds with catalytic residue
Cys145, having the distance of 5.22 Å and 4.77 Å, along with
two hydrophobic bonds with the shallow subsite MET49,
having the distance of 5.2 Å and 4.39 Å. The compound also
formed several hydrogen bonds with the shallow subsite
Met165 and Gln189 at the distance of 2.75 Å, and 3.20 Å.
Furthermore, it formed three hydrogen bonds with Asp187
at the distance of 2.96 Å, Thr26 at the distance of 1.98 and
1.91 Å, respectively (Khan, Zia, et al., 2020; Pant et al., 2020).

Besides, the compound 5481961 (PubChem CID) or
Albanin was also stabilized by one hydrophobic bond with
catalytic residue His41 at a distance of 3.91 Å and two hydro-
phobic bonds with catalytic residue Cys145 at the distance
of 5.27 Å and 4.26 Å. More importantly, it also formed one
hydrophobic bond with the shallow subsite Met49, at the
distance 3.81 Å, one hydrogen bond with the buried subsite
residue Gly143 at the distance of 2.12 Å, and one hydropho-
bic bond with both shallow and buried subsite Glu166 at the
distance of 2.33 Å. Interestingly, the interaction with Glu166
could satisfy our target, since it acts as a key residue in
dimerization (Zhang et al., 2020). Furthermore, it also formed
two important hydrogen bonds with Asn142 at 1.98 Å, and
Thr26 at 1.76 Å. Additionally, one hydrophobic bonds with
Leu27 having the distance 5.45 Å (Khan, Zia, et al., 2020).

The interaction with the compound 586373 (PubChem CID)
or Carinol was also studied, which was found to be stabilized
by forming one hydrogen bond with catalytic residue Cys145
at 2.54Å, and one pi-sulfur interaction with catalytic residue

Cys145 at 5.33Å. Apart from that, it forms one hydrophobic
bond with the shallow subsite Met165, at 4.23Å and one
hydrogen bond with the shallow subsite Gln189, at 3.02Å.
Interestingly, it was also found to interact with the buried sub-
site Thr25 at 2.62Å and 2.99Å. Importantly, it forms two hydro-
gen bonds with buried subsite residues Glu166 at 2.54Å and
2.17Å. However, several important hydrogen bonds were seen
to be formed with Thr26 at 2.62Å, and ARG188 at 2.24Å,
respectively (Khan, Zia, et al., 2020; Pant et al., 2020).

After the development in late 1970s, molecular dynamics
simulation suppress the limitation of computational prediction
based on Newtonian physics (George Priya Doss et al., 2014;;
McCammon et al., 1977; Priya Doss et al., 2014). Research from
previous studies suggest that, combinatorial dynamics and dock-
ing approaches can be employed to get structural information
as well as impact of protein structure stability upon ligand bind-
ing (Dasgupta et al., 2003; Nagasundaram & George Priya Doss,
2013). Also, different studies give indications that concordance
between experimental and computational studies (Abu-Aisheh
et al., 2019; Chandra Babu et al., 2017). However, we run
molecular dynamics simulation for both of Apo and ligand
bound complexes to understand the structural change of the
protein upon ligand binding. The molecular dynamics study
revealed that in Figure 2, the RMSD of the protein complex sta-
bilized after ligand binding. However, from figure. It was also
observed that RMSF, SASA, Rg changed after ligand attached to
the protein structure as conformational change due to ligand
attaching to the protein might happen (Gilis & Rooman, 1996;
Mahmud et al., 2019; Villanueva et al., 2004). These computa-
tional calculation and data may offer necessary information to
design rational drug candidates against main protease of SARS-
CoV-2.

Conclusion

In summary, we tried to evaluate phytochemicals derived
from plants by targeting the main protease of SARS-CoV-2.
The binding information and interaction nature were found
to be suitable for obstructing the target main protease.
Moreover, the phytochemicals derived from virtual screening
found to be non-toxic and appropriate pharmacological
properties. Therefore, binding conformation and stability
were confirmed with the aid of molecular dynamics simula-
tion. Therefore, these outcomes especially came from com-
putational based drug designing process, hence further
assessment and validation is required from the wet lab to
find out effective and better treatment against Covid-19.
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