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Abstract: Plums are one of the most popular stone fruits worldwide owing to their high nutritional
value. After harvest, plum fruit quality and flavor change during storage; however, little is known
about the changes in metabolites during this period. A comprehensive comparison of primary
metabolites in ‘Fengtang’ plum fruits during storage is performed using widely targeted primary
metabolomics. A total of 272 primary metabolites were identified by means of ultra-performance
liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) in the plums at different
storage periods. There was a significant increase in the relative amounts of twenty-eight lipids, twenty
amino acids and their derivatives, thirteen organic acids, ten saccharides and alcohols, six nucleotides
and their derivatives, and two vitamins. A Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of differential metabolites revealed that glucosinolate biosynthesis, starch and
sucrose metabolism, ascorbate and aldarate metabolism, lysine degradation, and other metabolic
pathways were significantly enriched; therefore, changes in these metabolic pathways may be key
to the quality and flavor change in ‘Fengtang’ plum fruits during storage. Our results provide a
theoretical foundation and technical support to evaluate ‘Fengtang’ plum fruit quality.

Keywords: ‘Fengtang’ plum; primary metabolites; storage period; metabolism

1. Introduction

The plum (Prunus salicina L.) is a perennial drupe fruit in the genus Prunus of the
Rosaceae family. Plum plantations and production in China rank first worldwide [1,2].
Plum fruits are rich in fiber, minerals, antioxidants, flavonoids, and glutathione, providing
a rich source of nutrients for humans [1,3]. Plums are a typical respiration climacteric fruit
that is harvested during high temperatures from July to August. However, plums exhibit
vigorous postharvest physiological metabolic changes, resulting in a short storage period
and shelf life, fast decay, and softening. Low-temperature storage is the most commonly
used measure to delay fruit quality decline and reduce fruit decay loss, which can effectively
inhibit physiological metabolic changes and prolong fruit life [3–5].

Primary metabolites, including sugars, amino acids, organic acids, and lipids, are
essential nutrients in fruits that play an indispensable role in their growth, development,
ripening, and senescence [6,7]. The composition and concentration of sugars and organic
acids primarily determine fruit flavor [5,8], and the composition and abundance of amino
acids affect fruit taste [9–11]. Although these studies have provided evidence that metabolic
changes in plum fruits affect the fruit quality during storage, they have mainly focused on
specific types of metabolites and offered only one perspective on the differences in quality.
Consequently, to understand the contribution of different metabolites to the changes in
plum quality during storage, it is necessary to conduct large-scale investigations to identify
and quantify these metabolites.

Ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-
MS/MS)-based widely targeted metabolomics is a commonly used technique to identify
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and analyze metabolites [7,12–14]. It has several advantages, such as high throughput,
rapid separation, high sensitivity, and comprehensive coverage. This technique has enabled
the identification of the metabolites of strawberries, loquats, and passionflowers [7,13,14].
However, few studies have employed a variety of targeted metabolomic approaches to
examine the components of plum fruits during low-temperature storage.

This study aims to investigate the changes in primary metabolites of ‘Fengtang’ plums
during storage, using widely targeted metabolomics, by evaluating the dynamic changes in
metabolite accumulation during UPLC-MS/MS analysis. A total of 272 primary metabolites,
including 72 amino acids and their derivatives, 65 lipids, 52 organic acids, 37 nucleotides
and their derivatives, 34 saccharides and alcohols, 12 vitamins, and 104 differential metabo-
lites were detected in the plums at different storage periods. Compared with the single
compound studied by predecessors [5–11], the primary metabolites of ‘Fengtang’ plum
fruits during storage were comprehensively compared using the widely targeted primary
metabolomics method. This study provides a further theoretical basis and reference for the
qualitative detection and evaluation of the taste and quality of ‘Fengtang’ plum fruit.

2. Materials and Methods
2.1. Plant Materials

‘Fengtang’ plums, with a firmness of approximately 7.51–8.14 kg·cm−2, and total solu-
ble solids (TSS) of approximately 12.5–14.0%, were collected from a farmer’s cooperative
orchard in Zhenning County, Guizhou Province (105.52◦ E, 25.37◦ N) on 27 June 2020.
Within four hours of harvest, the fruits were transported to the laboratory at the Depart-
ment of Horticulture, College of Agronomy, Guizhou University. The fruits (containing
3 replicates, approximately 500 plums each) with uniform size and without insects or me-
chanical damage were selected for pre-cooling for 12 h and were then stored at 4 ± 0.5 ◦C.
The physiological characteristics related to fruit quality were assessed using randomly
selected fruits at 0, 10, 20, 30, 40, 50, and 60 d. The fruits stored for 0, 30, and 60 d were
selected for widely targeted metabolomics analysis. All samples were promptly frozen in
liquid nitrogen and stored in a −80 ◦C ultra-low temperature refrigerator (Thermo Fisher
Scientific, Suzhou, China) for the UPLC-MS/MS analysis.

2.2. Measurements of Fruit Firmness, Respiration Rate, TSS, and Titratable Acid (TA)

The peels (approximately 1 mm thickness) of the plums were removed to measure the
firmness of plum flesh at three different but equidistant peeling points on the equator of
each fruit using a penetrometer (GY-4) with a probe diameter of 3.5 mm (three replicates of
50 plums). The results are presented in kg·cm−2. The respiration rate was measured by
placing 10 fruits of uniform size in a 9.4 L desiccator containing a TEL7001 CO2 analyzer
(ONSET, Bourne, MA, USA) for 1 h at 4 ◦C. The CO2 concentration was measured 3 times
for 20 min, and the results are expressed as mg·kg−1·h. The TSS and TA were measured
using a hand-held digital refractometer (Model PAL-BX/ACID1, Atago Co. Ltd., Tokyo,
Japan) by dripping the fruit juice into the sample slot to determine the value of the TSS,
followed by diluting the juice with distilled water for 50 times to calculate the value of the
TA, values were expressed as Brix (percent) and percentage, respectively. The values of
firmness, respiration rate, TSS, and TA were determined in triplicate.

2.3. Sample Preparation and Metabolite Extraction

After peeling the pericarp, the primary metabolites were extracted and analyzed by
Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China) in triplicate (in each group).
The samples were freeze-dried in a vacuum freeze-dryer (Scientz-100F; Ningbo Scientz
Biotechnology, Ningbo, China). The freeze-dried samples were crushed using a mixer
mill (MM 400; Retsch GmbH, Haan, Germany) with zirconia beads for 1.5 min at 30 Hz.
Lyophilized powder (100 mg) was dissolved in 1.2 mL 70% methanol and vortexed for
30 s every 30 min for 6 times in total, and the samples were placed in a refrigerator at
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4 ◦C overnight. After centrifugation at 12,000 rpm for 10 min, the extracts were filtered
(SCAA-104, 0.22 µm pore size; ANPEL, Shanghai, China) before the UPLC-MS/MS analysis.

2.4. UPLC Conditions

A UPLC ESI-MS/MS system (UPLC, SHIMADZU Nexera X2, Shimadzu, Kyoto,
Japan; MS, 4500Q TRAP, Applied Biosystems, Waltham, MA, USA) was used for sample
extraction. The analytical conditions were as follows, UPLC: column, Agilent SB-C18
(1.8 µm, 2.1 mm × 100 mm). The mobile phase consisted of solvent A, pure water with
0.1% formic acid, and solvent B, acetonitrile with 0.1% formic acid. Sample measurements
were performed with a gradient program that employed the starting conditions of 95% A,
5% B. Within 9 min, a linear gradient to 5% A 95% B was programmed, and a composition
of 5% A, 95% B was kept for 1 min. Subsequently, a composition of 95% A, 5.0% B was
adjusted within 1.10 min and kept for 2.9 min. The flow velocity was set at 0.35 mL per
minute. The column oven was set to 40 ◦C. The injection volume was 4 µL. The effluent
was alternatively connected to an ESI-triple quadrupole-linear ion trap (Q TRAP)-MS.

2.5. ESI-Q TRAP-MS/MS

LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear
ion trap mass spectrometer (Q TRAP), AB4500 Q TRAP UPLC/MS/MS System, equipped
with an ESI Turbo Ion-Spray interface, operating in positive and negative ion modes and
controlled by Analyst 1.6.3 software (AB Sciex, Toronto, ON, Canada). The ESI source
operation parameters were as follows: ion source, turbo spray; source temperature 550 ◦C;
ion spray voltage (IS) 5500 V (positive ion mode)/−4500 V (negative ion mode); ion
source gas I (GSI), gas II (GSII), and curtain gas (CUR) were set at 50, 60, and 25.0 psi,
respectively; the collision-activated dissociation (CAD) was high. Instrument tuning and
mass calibration were performed with 10 and 100 µmol/L polypropylene glycol solutions
in QQQ and LIT modes, respectively. QQQ scans were acquired as MRM experiments
with collision gas (nitrogen) set to medium. DP and CE for individual MRM transitions
were done with further DP and CE optimization. A specific set of MRM transitions were
monitored for each period according to the metabolites eluted within this period.

2.6. Metabolite Identification and Quantification

For the qualitative analysis of metabolites, the primary and secondary MS data were
used to annotate metabolites based on the self-built metware database (MWDB) (Wuhan
Metware Biotechnology Co., Ltd., Wuhan, China) (http://www.metware.cn/, accessed on
1 December 2020) and public metabolite databases (MassBank (http://www.massbank.jp),
KNAPSAcK (http://kanaya.naist.jp/KNApSAcK, accessed on 1 December 2020), Human
Metabolome Database (HMDB; http://www.hmdb.ca, accessed on 1 December 2020),
MoTo DB (http://www.ab.wur.nl/moto, accessed on 1 December 2020), and METLIN
(http://metlin.scripps.edu/index.php, accessed on 1 December 2020)). During the analysis,
the isotope signals–the repeated signals containing K+, Na+, and NH4

+ ions–and the
repeated signals of fragment ions that are other substances with larger molecular weight
were removed. The quantification of metabolites was performed by multiple MRM analyses
using triple quadrupole mass spectrometry.

In the MRM mode, the quadrupole first selected the precursor ions of the target
substance, and excluded ions corresponding to other molecular weight substances to pre-
liminarily eliminate interference. After the precursor ions were induced to ionize in the
collision chamber, they broke into many fragment ions. The fragment ions were filtered
by QQQ to select a required characteristic of fragment ion, to eliminate the interference
of non-target ions so that the quantification was more accurate and repeatability, better.
If the compound had the same precursor ion, qualifier, and quantifier at the same re-
tention time (RT), the qualitative process had two situations: If the secondary spectra
(Q3/Q4/Q5/Q6/Q7) and other information of the two metabolites were consistent, they
belonged to an isomer at the mass spectrum level. Mass spectrometry cannot distinguish

http://www.metware.cn/
http://www.massbank.jp
http://kanaya.naist.jp/KNApSAcK
http://www. hmdb.ca
http://www.ab.wur.nl/moto
http://metlin.scripps.edu/index.php
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isomers. If the secondary spectrum information of the two metabolites was different, we
chose the differential ion as the characteristic ion and its quantitative ion.

Mixtures of the QC samples were prepared by mixing equal amounts of plum fruit
from different storage periods. The repeatability of the samples used for the analysis
was determined using the same treatment method. One QC sample was inserted in
every ten samples during the instrumental analysis to ensure that the analysis procedure
was repeatable.

2.7. Statistical Analysis

The mass spectrometry data were processed using Analyst 1.6.3. The metabolites were
measured by the multiple reaction monitoring mode (MRM) analysis of triple quadrupole
mass spectrometry, based on secondary spectrum information from the MWDB (metware
database), which is a public database of metabolic information produced by Wuhan Met-
ware Biotechnology Co. Ltd. A multivariate statistical analysis was used to perform
a principal component analysis (PCA) of the samples [14–16]. The orthogonal projec-
tions to latent structures discriminant analysis (OPLS-DA) model was used to analyze
the metabolomic data [17]. The PCA and OPLS-DA were performed using the R package
(www.r-project.org, accessed on 1 December 2020). PCA was used to recombine the original
variables into new, mutually independent variables through orthogonal transformations.

The OPLS-DA and PCA were conducted to analyze and verify the differences and reli-
ability of metabolites in the samples. Differential metabolites were calculated by combining
p-values (t-test) or fold changes of the univariate analysis with VIP (variable importance
plot) scores for the OPLS-DA model. Metabolites with VIP ≥ 1 and fold changes ≥ 2 or
fold changes ≤ 0.5 were considered differential metabolites for group discrimination. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and pathway
enrichment analysis of the differential metabolites was performed to identify enriched
metabolic pathways.

3. Results
3.1. Changes in Firmness, Respiration Rate, TSS Content, and TA Content in
‘Fengtang’ Plum Fruits

Firmness, respiration rate, TSS, and TA content are essential indicators of fruit qual-
ity [18]. In the present study, the fruit firmness gradually decreased during storage. The
firmness of the fruit was 7.87 kg·cm−2 at 0 d, which was reduced to 4.13 kg·cm−2 at 60 d
(Figure 1A). The respiration rate increased significantly during storage, reaching a maxi-
mum of 14.25 mg·kg−1·h−1 on 40 d, which then decreased gradually (Figure 1B). The TSS
content also increased during storage from 13.19% on 0 d to 15.00% on 60 d (Figure 1C). In
contrast, the TA content decreased significantly during storage, from 1.1% on d 0 to 0.41%
on 60 d (Figure 1D). Moreover, the differences in the indexes indicated that there were
differences in metabolites during storage.
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Figure 1. Physiological characteristics of ‘Fengtang’ plum fruits: (A) Firmness, (B) Respiration rate,
(C) TSS, and (D) TA.

3.2. Analysis of the Primary Metabolites in ‘Fengtang’ Plum Fruits

A total of 272 primary metabolites were detected using UPLC-MS/MS, including
72 amino acids and their derivatives, 65 lipids, 52 organic acids, 37 nucleotides and their
derivatives, 34 saccharides and alcohols, and 12 vitamins (Table S1).

The total ion flow diagram (TIC) of the essential control of the plum sample in positive
and negative ion modes overlapped (Figure 2A). The results show that the peaks and
retention times of each sample overlapped, indicating that the systematic error of the
experimental instrument is within the controllable range and that further analysis of the
metabolomic data is reliable. In addition, 272 primary metabolites were analyzed using
PCA. PC1 and PC2 were 53.29% and 18.34%, respectively, and the contribution of the
two principal components was 71.63%; this suggests that the representative properties
of approximately 71.63% of the metabolites were well aggregated, according to the 2D
PCA scatter plots in Figure 2B. The QC samples were mixed, and the separation trend of
metabolites among the three groups (0-, 30-, and 60-d) was apparent. The samples in each
group were not separated, and the sample data were reliable to be used for subsequent
analysis of differential metabolites.
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The primary metabolites of ‘Fengtang’ plum fruits were studied using a clustered
heatmap, and variations in the primary metabolites over time. The results revealed dif-
ferential primary metabolites in the fruits during the different storage periods, most of
which showed an increasing trend (Figure 2C). Furthermore, the accumulation of primary
metabolites in fruits may influence fruit quality and flavor.

3.3. Screening of Differential Metabolites in ‘Fengtang’ Plum Fruits

To identify the differential metabolites in ‘Fengtang’ plum fruits at different storage
periods, the differential metabolites among the groups were screened according to the
following criteria: VIP ≥ 1, fold changes ≥ 2, fold changes ≤ 0.5, and p < 0.05 (for t-test).

There were 58 differential metabolites between the 0- and 30-day groups; 41 were
upregulated and 17 were downregulated. There were 36 differential metabolites between
the 30- and 60-day groups; 29 were upregulated and 7 were downregulated. Moreover,
83 differential metabolites were identified between the 0- and 60-day groups; 64 were up-
regulated and 19 were downregulated (Figure 3A–C). The Venn diagram of the differential
metabolites among the groups is shown in Figure 3D. The diagram shows eight differential
metabolites, including four amino acids and derivatives (L-methionine, L-lysine-butanoic
acid, N-acetyl-L-tryptophan, and S-(5′-adenosy)-L-homocysteine), two lipids (LysoPC 15:1,
and LY16:2), pyridoxal, and L-(sn-glycero-3-phosphoserine) 1D-myo-inositol. These eight
differential metabolites accumulated during storage (Table S2). Moreover, different metabo-
lite profiles may be the main reason for the varying fruit quality and flavors in the course
of storage.
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3.4. Differential Accumulation of Amino Acids and Their Derivatives in ‘Fengtang’ Plum Fruits
during Storage

The relative amounts of amino acids and their derivatives in ‘Fengtang’ plum fruits
were determined to study the variations in amino acids and derivatives over storage
duration. We detected 72 amino acids and their derivatives, of which 27 were differential
metabolites (Table S2). Figure 4A shows a heatmap of the accumulation of amino acids
and their derivatives in ‘Fengtang’ plum fruits during different storage periods. These
findings indicate that most amino acids and their derivatives increase with storage duration.
The levels of the seven amino acids and their derivatives (S-(methyl)glutathione, L-Valyl-
L-leucine, L-homocysteine, N-monomethyl-L-arginine, L-arginine, N-propionylglycine,
and L-phenylalanine) were higher at 0 d than at 30 and 60 d. The relative contents of
L-prolyl-L-leucine and glutathione in ‘Fengtang’ plum fruits at 30 d were higher than those
at 0 and 60 d. The other 18 amino acids and their derivatives accumulated during storage.
Therefore, the accumulation of different amino acids and their derivatives leads to varying
fruit quality in the course of storage.
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3.5. Differential Accumulation of Lipids in ‘Fengtang’ Plum Fruits during Storage

As shown in Figure 4B, a total of 26 differentially accumulated lipids were screened,
out of which 24 lipids accumulated during storage; however, the relative contents of these
lipids were not significantly different between the 30- and 60-day groups (Table S2). The
relative contents of two lipids, LysoPC 17:1 and LysoPC 19:2, in ‘Fengtang’ plum fruits at
60 d were lower than those at 0 and 30 d.

3.6. Differential Accumulation of Organic Acids, Saccharides and Alcohols, Nucleotides and Their
Derivatives, and Vitamins in ‘Fengtang’ Plum Fruits during Storage

Among the identified differential metabolites, 19 organic acids, including 13 organic
acids such as succinic anhydride, succinic acid, methylmalonic acid, aminomalonic acid,
L-tartaric acid, and DL-glyceraldehyde 3-phosphate acid were significantly accumulated
on 60 d (Figure 5A).

Four saccharides and alcohols (D-arabinono-1,4-lactone, D-galactaric acid, glucarate O-
phosphoric acid, and D(+)-melezitose O-rhamnoside) were significantly higher at 0 d than
at other storage periods. The amounts of ten saccharides and alcohols, such as D-ribose,
solatriose, and D-melezitose accumulated during storage (Figure 5B).
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During storage, the differential metabolites of ‘Fengtang’ plum fruits included thirteen
nucleotides and their derivatives as well as five vitamins (Figure 5C,D). The relative con-
centrations of nicotinic, L-ascorbic acid, and N-(β-D-glucosyl)nicotinate were significantly
higher at 0 d than at 30 and 60 d, whereas the contents of pyridoxal and riboflavin were
significantly lower (Table S2). Moreover, the different metabolite profiles may be the main
reasons for the varying fruit quality and flavor in the course of storage.

3.7. KEGG Functional Annotation and Enrichment Analysis of the Differential Metabolites in
‘Fengtang’ Plum Fruits

To understand the changes in the metabolism of the differential metabolites in ‘Feng-
tang’ plum fruits during storage, a KEGG functional annotation and pathway enrichment
analysis of the differential metabolites were performed. The analysis revealed that of the
58 differential metabolites between the 0- and 30-day groups, 21 were annotated in KEGG
and 34 to metabolic pathways; glucosinolate biosynthesis, starch and sucrose metabolism,
purine metabolism, and scopolamine piperidine and pyridine alkaloid biosynthesis were
significantly enriched (p < 0.05, Figure 6A). The 36 differential metabolites between the 30-
and 60-day groups were annotated to 50 metabolic pathways, and only two metabolic path-
ways, ascorbate and aldarate metabolism and glyoxylate and dicarboxylate metabolism,
were significantly enriched (p < 0.05, Figure 6B). Out of the 83 differential metabolites
between the 0- and 60-day groups, 59 were annotated to metabolic pathways. Among
these, seven metabolic pathways were significantly enriched: glucosinolate biosynthesis,
metabolic pathways, biosynthesis of cofactors, aminoacyl-tRNA biosynthesis, ascorbate,
and aldarate metabolism, lysine degradation, and tropane piperidine and pyridine alkaloid
biosynthesis (Figure 6C). Consequently, the different metabolic pathways could be another
major reason for the varying fruit quality and flavor during storage.
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3.8. Correlation Analysis between Primary Metabolites and Fruit Quality in ‘Fengtang’
Plum Fruits

The relationship between differential metabolites and quality indices was evaluated
through correlation analysis; one hundred and four differential metabolites and four
quality indices were studied (Figure 7). The results showed that most amino acids and
their derivatives were negatively associated with firmness and TA content, and positively
associated with the TSS and respiration rate. In contrast, seven amino acids and derivatives
(N-propionylglycine, L-phenylalanine, L-arginine, N-monomethyl-L-arginine, L-valyl-
L-leucine, L-homocysteine, and S-(methyl)glutathione) were positively associated with
firmness and TA content and negatively associated with the TSS content and respiration
rate (Figure 7A).
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In addition to LysoPC 19:2, other lipid metabolites were negatively associated with
firmness and TA content and positively associated with respiration rate; moreover, all lipids
were positively associated with the TSS content (Figure 7B).

Among the nineteen organic acid metabolites, six organic acid metabolites were
positively associated with firmness and TA content and negatively associated with the
TSS content and respiratory rate. Conversely, the other 13 organic acids were negatively
associated with firmness and TA content and positively associated with the TSS content
and respiration rate (Figure 7C).

Four saccharides and alcohols (D-arabinono-1,4-lactone, D-galactaric acid, glucarate-
o-phosphoric acid, and D(+)-melezitose-o-rhamnoside) were positively associated with
firmness and TA content and negatively associated with the TSS content and respiratory
rate (Figure 7D). Among other differential metabolites, some were negatively associated
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with firmness and TA content. Moreover, nicotinic acid and L-ascorbic acid were positively
associated with firmness and TA content (Figure 7E). Consequently, differences in the
contents of metabolites associated with firmness, respiration rate, the TSS, and TA during
storage could be another key reason for differences in fruit quality and flavor.

4. Discussion

Firmness, respiration rate, TSS, and TA content are essential indicators of fruit qual-
ity [18,19]. The firmness in plum fruit at 40 and 50 d was higher than that in fruit at
30 d, which may be caused by low-temperature stress. Low-temperature stress affects the
metabolism of the fruit cell wall substances, resulting in fruit failure to soften normally
as well as the fruit being spongy or lignified [20,21]. However, the fruit senescence at
the later stage of storage makes fruit firmness drop sharply. Primary metabolites such as
sugars, organic acids, and amino acids are essential nutrients in fruits. During storage, the
contents of these metabolites in plums vary, affecting the flavor and quality of the fruits.
Previous studies on the changes in the metabolites of plum fruits during storage have
focused on one or more specific metabolites such as sugars (glucose, fructose, sorbitol, and
sucrose) [8,22], organic acids (malic, citric, succinic, and oxalic acids) [5,23], and amino and
ascorbic acids [24,25]. However, the metabolomic differences in ‘Fengtang’ plum fruits
during storage have not been reported. In this study, UPLC-MS/MS was used to analyze
the quality and flavor changes of ‘Fengtang’ plum fruits during storage, and six classes
of three-hundred and seven primary metabolites were detected. The primary metabolites
were divided into amino acids and their derivatives, nucleotides and their derivatives,
lipids, organic acids, saccharides, alcohols, and vitamins. These metabolites are involved in
several metabolic pathways, such as glycometabolism, amino acid metabolism, the pentose
phosphate pathway, the glycolytic process, the tricarboxylic acid cycle, and the glyoxylate
cycle. Therefore, this study reveals the differences in quality and taste of ‘Fengtang’ plum
fruits during different storage periods on a metabolic level.

The content and composition of sugars and acids in the fruit can be used as an essential
index to evaluate fruit flavor [2]; the sugar-to-acid ratio is usually used to assess the fruit’s
taste and quality [26,27]. In this study, the TSS content gradually increased during storage,
whereas the TA content steadily declined; this result was consistent with Wang et al. [5] and
Xu et al. [8]. In our study, 34 saccharides and alcohols were detected in ‘Fengtang’ plum
fruits during storage, of which 14 considerably differed during storage time. Moreover,
D-fructose, D-glucose, D-mannose, and D-galactose were the most abundant (Table S1),
which is consistent with previous studies [5,11,28–30]. In addition, the relative contents of
solatriose, D-(−)-Threose, and D-glucosamine 1-phosphate at 0 d were significantly lower
than those at 30 and 60 d, which may partly explain the increased sweetness of the fruit
during storage. Therefore, the flavor of the ‘Fengtang’ plum fruits at 0 d was worse than
those at other periods.

Furthermore, L-malic acid, isocitrate, citric acid, succinic acid, succinic anhydride,
and L-tartaric acid were the most abundant organic acids (Table S1). A total of 52 organic
acids were detected; the amounts of 19 of these organic acids significantly changed during
storage, and 13 significantly accumulated during storage. Previous studies found that
the taste of plum fruits changed dramatically during storage, in which soluble solids
accumulated and the content of organic acids decreased [5,31]. The relative contents of
succinic anhydride, succinic acid, and L-tartaric acid on 0 d were substantially lower than
those at 30 and 60 d; however, the relative amounts of L-malic acid and isocitrate declined
during storage. Therefore, the acidic taste of the fruit decreased during storage, which
made the flavor and quality of the fruit better than at 0 d of storage.

The type and content of amino acids, including glutamic acid, aspartic acid, and
lysine are among the leading indicators for evaluating fruit taste. Alanine, glycine, serine,
and proline are sweet amino acids. Thyroid acids, L-cysteine, and L-phenylalanine are
aromatic amino acids. Arginine, valine, leucine, L-isoleucine, and tryptophan are bitter
amino acids [32]. Previous studies have identified 15–17 amino acids in plum fruits [11,33].
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In this study, 72 amino acids and their derivatives were detected in ‘Fengtang’ plum fruits,
and the amounts of 27 of the 72 amino acids were markedly changed during storage. The
two fresh and sweet amino acids, L-serine and L-lysine, increased significantly during
storage, which increased the sweet taste of the fruit; however, the levels of L-phenylalanine,
L-arginine, and other bitter amino acids decreased during storage. The changes in these
metabolites made the fruits of 30 and 60 d better than those of 0 d in flavor.

In addition, 65 lipids, 37 nucleotides and derivatives, and 12 vitamins were detected
during storage. The amounts of twenty-six lipids, thirteen nucleotides and their derivatives,
and five vitamins changed significantly during storage. Lipids are the main volatile organic
compounds in ‘Fengtang’ plum fruits and the precursor metabolite of esters. During storage,
many lipids accumulate in ‘Fengtang’ plum fruits, thereby increasing the concentrations
of volatile substances. Lipids are precursors of flavor substances, and vitamins have
antioxidant effects. Therefore, significant changes in these substances during storage
also lead to changes in fruit quality. Moreover, the KEGG enrichment analysis revealed
that glucosinolate biosynthesis, starch and sucrose metabolism, ascorbate and aldarate
metabolism, lysine degradation, and other metabolic pathways were significantly enriched
in stored ‘Fengtang’ plum fruits. The number of metabolites in these metabolic pathways
changed significantly during storage, potentially leading to differences in flavor and quality
of the ‘Fengtang’ plum fruits. The results of the present study provide a theoretical basis and
reference for the qualitative detection and evaluation of the taste and quality in ‘Fengtang’
plum fruits.

A key concern with regard to the findings of the present study is that the accumulation
of metabolites, including primary metabolites and secondary metabolites, influences fruit
quality and flavor. Primary metabolites are essential for maintaining vital cell activities
and are the precursor substances of secondary metabolites, such as sugars and amino acids.
Therefore, further studies are required to investigate the effects of metabolite accumulation
on fruit quality and flavor.

5. Conclusions

In this study, widely targeted metabolomics (UPLC-MS/MS) was used to identify
and screen the primary metabolites in ‘Fengtang’ plum fruits during different storage
periods. This work provides comprehensive information on both metabolite compositions
and abundances in plum, an important commercial fruit. In this study, 104 differential
metabolites made the fruit quality and flavor better at 30 and 60 d than at 0 d. The fruit
of 60 d had chilling injury and senescence, and the fruit firmness of 60 d was lower than
that of 30 d. In conclusion, the fruit quality after 30 d was better than that following 0 and
60 d of storage. The changes in primary metabolites may be the fundamental reason for
the differences in fruit flavor and quality in ‘Fengtang’ plum fruits during storage. These
findings provide insight into the improvement of the theoretical basis and reference for the
qualitative detection and evaluation of taste and quality in ‘Fengtang’ plum fruit. However,
further molecular evidence, to support the effect of differential metabolites on fruit quality
and flavor, needs to be confirmed in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11182830/s1, Table S1: Primary metabolites at different storage
periods in ‘Fengtang’ plum fruits by UPLC-MS/MS. Table S2: Differential metabolites in ‘Fengtang’
plum fruits during storage.
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