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Functional biomarkers for chronic periodontitis and insights
into the roles of Prevotella nigrescens and Fusobacterium
nucleatum; a metatranscriptome analysis
Szymon P Szafrański1, Zhi-Luo Deng1, Jürgen Tomasch1, Michael Jarek2, Sabin Bhuju2, Christa Meisinger3, Jan Kühnisch4,
Helena Sztajer1,5 and Irene Wagner-Döbler1,5

BACKGROUND/OBJECTIVES: Periodontitis is the most prevalent inflammatory disease worldwide and is caused by a dysbiotic
subgingival biofilm. Here we used metatranscriptomics to determine the functional shift from health to periodontitis, the response
of individual species to dysbiosis and to discover biomarkers.
METHODS: Sixteen individuals were studied, from which six were diagnosed with chronic periodontitis. Illumina sequencing of the
total messenger RNA (mRNA) yielded ~ 42 million reads per sample. A total of 324 human oral taxon phylotypes and 366,055 open
reading frames from the HOMD database reference genomes were detected.
RESULTS: The transcriptionally active community shifted from Bacilli and Actinobacteria in health to Bacteroidia,
Deltaproteobacteria, Spirochaetes and Synergistetes in periodontitis. Clusters of orthologous groups (COGs) related to carbohydrate
transport and catabolism dominated in health, whereas protein degradation and amino acid catabolism dominated in disease. The
LEfSe, random forest and support vector machine methods were applied to the 2,000 most highly expressed genes and discovered
the three best functional biomarkers, namely haem binding protein HmuY from Porphyromonas gingivalis, flagellar filament core
protein FlaB3 from Treponema denticola, and repeat protein of unknown function from Filifactor alocis. They predicted the diagnosis
correctly for 14 from 16 individuals, and when applied to an independent study misclassified one out of six subjects only. Prevotella
nigrescens shifted from commensalism to virulence by upregulating the expression of metalloproteases and the haem transporter.
Expression of genes for the synthesis of the cytotoxic short-chain fatty acid butyrate was observed by Fusobacterium nucleatum
under all conditions. Four additional species contributed to butyrate synthesis in periodontitis and they used an additional
pathway.
CONCLUSION: Gene biomarkers of periodontitis are highly predictive. The pro-inflammatory role of F. nucelatum is not related to
butyrate synthesis.
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INTRODUCTION
The microbiome of the oral cavity is the second most diverse one
of the human body after the gut.1 Both have a profound influence
on human health and their homeostasis can be influenced by
toxins, diet, genetic factors and lifestyle, among others, potentially
leading to dysbiotic communities and negative disease outcomes.2

Understanding the mechanisms leading to such ecological
catastrophes is challenging in view of the enormous complexity
of the microbiomes.3 However, the oral cavity is much more
accessible than the gut, and just like many gut-related disorders,
periodontitis results from a complex interaction between the
microbiota and the host immune system. Therefore, studies of the
role of the microbiota in periodontitis can not only help under-
stand a potentially dangerous polymicrobial biofilm disease, but
might reveal mechanisms that have a much broader relevance.
Periodontitis is a chronic inflammation of the gum that causes

destruction of the alveolar bone and its final stage tooth loss.
Globally, chronic periodontitis affects more than 10% of the

human population4 and it is linked with systemic illnesses like
cardiovascular disease and diabetes.5,6 It is a polymicrobial disease
which results from the interplay between the subgingival biofilm
and the host immune system.7 A checkerboard DNA–DNA
hybridisation study of more than 13,000 plaque samples identified
the so-called ‘red complex’ bacteria Porphyromonas gingivalis,
Tannerella forsythia and Treponema denticola to be highly
correlated with the clinical measures of periodontitis.8 Virulence
factors of these species were studied in great detail and especially
the role of P. gingivalis as a ‘key-stone’ pathogen has been well
established.9 Next generation sequencing techniques have now
described the bacterial communities in great depth and thus shifts
in the abundances of many species were observed in periodontal
disease.10–12 The identification of numerous additional species
associated with disease resulted in the ‘polymicrobial synergy and
dysbiosis’ model where synergistic activities of the whole
community provoked by key-stone pathogens interfere with host
immune defence and cause tissue destruction.13
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Metagenomic studies are important to reveal the genetic
potential of bacterial communities. However, microbes in the oral
cavity are adapted to fluctuating environments and have multiple
ways of generating energy and interacting with one another. This
is reflected in the functional redundancy of their genomes, and
therefore the actual activities of the microbes in vivo cannot be
deduced from metagenome surveys. In the polymicrobial biofilm,
the activity of individual species is strongly influenced by other
microbes in the community. For example, the pathogenicity of
Streptococcus mutans was switched on by co-cultivation with
Candida albicans; moreover, those two periodontal pathogens
utilised the medium much more efficiently when cultivated
together in vitro.14 The exact growth conditions in the inflamed
periodontal pocket, e.g., oxygen concentration, host proteins,
microbial metabolites, etc. are largely unknown and are also
expected to profoundly influence the activity of the microbes. As
cultivation-based studies are hampered by the artificial conditions
that need to be applied and by the sheer number of species
interactions that would have to be studied, analysing the total
messenger RNA (mRNA) of the periodontal pocket microbial
communities allows for the first time to observe the transcriptional
activity of the community as a whole under in vivo conditions.
Only few such studies have yet been conducted, but they already
provided important information. Duran-Pinedo et al.15 showed
that expression of genes for iron acquisition, synthesis of lipid A
and flagella synthesis was increased in periodontitis. Interestingly,
the authors found that the majority of virulence factors
upregulated in disease originated from organisms which are not
considered major periodontal pathogens. Thus, so-called ‘com-
mensals’ were turned into pathogens in the dysbiotic community,
strongly supporting the polymicrobial synergy and dysbiosis
model. This was confirmed in a study of disease progression,
where changes in the metatrascriptome between stable and
progressive periodontitis sites were compared; again some of the
health-associated bacteria were highly active in transcribing
virulence factors.16 Jorth et al.17 studied the periodontal commu-
nities of aggressive periodontitis and found that community
composition varied between patients, and gene expression also
varied between patients, but functional profiles were conserved;
specifically, pathways for fermentation of lysine to butyrate,
histidine catabolism, nucleotide biosynthesis and pyruvate
fermentation were upregulated in aggressive periodontitis. The
authors hypothesised that Fusobacterium nucleatum might be a
new key-stone periodontal pathogen which promotes disease by
producing butyrate.
It is a big challenge to extract biologically meaningful

information from the wealth of omics data currently generated
and to translate it into clinically useful knowledge and tools. One
approach is the search for biomarkers. Functional biomarkers
might allow following disease progression and investigate the
question of ‘hen and egg’. In the context of individualised
medicine, they might detect shifts in the periodontal community
before clinical symptoms are observed, which are generally
unsensitive and late in disease progression, and therefore
intervention could be early and much more successful. Such
biomarkers are not available. Current potential biomarkers for
periodontitis rely on general markers of the host inflammatory
response; however, the presence of several periodontal patho-
gens, particularly P. gingivalis, or their proteins in saliva has been
shown to be correlated with periodontitis.18,19

Here we studied the periodontal metatranscriptomes of 16
individuals, 6 of which had been diagnosed with chronic
periodontitis. We show clear disease- and health-associated
functional profiles and narrow down the changes in the gene
expression profiles to three highly discriminative functional
biomarker genes. Metatranscriptome studies differ widely in the
applied methods, from sampling over preservation, RNA extrac-
tion, RNA amplification and sequencing method to bioinformatics

analysis.15–17 Therefore, we used the raw data from the patients
investigated by Jorth et al.,17 which were obtained in a completely
independent study to validate our biomarkers. Finally, we took a
closer look at the mechanisms shaping metatranscriptome
patterns. We compared gene expression of the commensal
Pr. nigrescens in health and disease and analysed in depth the
pathways and microbial species that contributed to butyrate
synthesis, challenging the previous hypothesis on the possible
role of F. nucleatum.

MATERIALS AND METHODS
Participants and ethics statement
The present study was part of the pre-test 1 phase of the ‘German National
Cohort’.20 The German National Cohort is an epidemiological study that
will recruit 200,000 individuals (aged 20–69) and monitor their health for a
period of 30 years to study the development of chronic diseases and to
develop strategies for their early detection and prevention. In the pre-test
1 phase, the feasibility of methods that might be used later in the main
study was tested. Here we studied periodontal metatranscriptomes of the
same individuals whose periodontal community composition had been
determined previously by 16S ribosomal RNA (rRNA) gene amplicon
sequencing.12 The study protocol was approved by the local ethics
committee (Bayerische Landesärtzekammer, Munich, Germany), and
written consent was obtained from all the participants. Average
demographic and clinical characteristics of the studied individuals are
shown in Supplementary Table S1 and data on each individual participant
are provided in Supplementary Table S2.

Clinical examination and sample collection
Clinical examination and sample collection were performed as described,12

except that paper points were incubated in RNAprotect (Qiagen, Hilden,
Germany) for 5 min at room temperature immediately after sampling and
subsequently stored at − 80 °C until RNA extraction. Two paper points were
sampled per site and multiple sites were sampled in one individual. From
each pair of paper points, one was used for the RNA isolation (this study)
and one for the DNA extraction.12 Paper points originating from the same
individual were pooled together before RNA extraction.

RNA extraction and mRNA sequencing
Chemicals were obtained from Sigma-Aldrich (Sigma-Aldrich, Taufkirchen,
Germany) and the kits were used according to the manufacturer’s
instructions, if not stated otherwise. All glassware and other instruments
were RNase-decontaminated using RNase ZAP solution (Ambion, Austin,
TX, USA). The paper points were thawed and shredded with sterile scissors.
The fragmented paper points were incubated in lysis buffer containing
10mM Tris, 1 mM EDTA, pH 8.0, 2.5 mg/ml lysozyme and 50 U/ml
mutanolysin at 25 °C for 1.5 h on a shaking incubator at 350 r.p.m. A total
700 μl of fresh buffer RLT (Qiagen) containing 1% (v/v) β-mercaptoethanol
was added and vortexed for 10 s. Samples (including the fragmented
paper points) were placed on a QIAshredder Mini Spin column (Qiagen)
and centrifuged for 1 min at 11,000 r.p.m. The flow-through containing the
bacterial cells was mixed with 150mg acid-washed and autoclaved glass
beads (diameter 106 μm). Samples were vortexed 10 times for 30 s at full
speed with at least 1-min intervals on ice in between vortexing and then
centrifuged for 1 min at maximal speed. Total RNA was isolated from the
supernatants with the RNeasy Mini Kit (Qiagen). DNA was removed by
column digestion and by DNAse digestion in the eluate using the RNeasy
cleanup procedure. Human and bacterial ribosomal RNAs were depleted
using the MicrobEnrich and MicrobExpress kits (Ambion). The quality and
quantity of RNA was assessed using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). The enriched mRNA was converted to
cDNA libraries using the TruSeq RNA Sample Preparation Kit (samples 2, 3,
5 and 6; Epicentre Biotechnologies, Madison, WI, USA) and ScriptSeq,
version 2, RNA-Seq Library Preparation Kit (other samples; Epicentre
Biotechnologies). The quality of the libraries was assessed using the
Agilent 2100 Bioanalyzer (Agilent Technologies). Three samples (nos 3, 4
and 6) were lost during RNA extraction, mRNA enrichment and cDNA
library synthesis. For sequencing, equal amounts (12 pM) of the libraries
were multiplexed. Cluster generation was performed with cBot (Illumina,
Inc., San Diego, CA, USA) using TruSeq SR Cluster Kit version 3—cBot-HS
(Illumina). Eight libraries with different indices were pooled and sequenced
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paired-end in the rapid mode in a single lane on the Illumina HiSeq 2500
using TruSeq SBS Kit version 3—HS (Illumina) for 110 cycles. A total of two
lanes were sequenced for the 16 libraries. Image analysis and base calling
were performed using the Illumina pipeline, version 1.8. RNA-seq
sequencing data are available at MG-RAST under Project accession number
5148 (http://metagenomics.anl.gov/linkin.cgi?project = 5148). After quality
control, ~ 42 million reads were obtained per sample. After removal of
ribosomal RNA, on average ∼ 5 million reads per sample could be assigned
to open reading frames (ORFs) by the MG-RAST pipeline (Supplementary
Table S3).

Data processing
The sequencing output was quality controlled and the sequencing
adaptors were clipped using the fastq-mcf tool of ea-utils.21 Sequence
reads were analysed with an in-house pipeline and MG-RAST.22 The in-
house pipeline started with the removal of ribosomal RNA reads using
SortmeRNA version 1.8.23 Non-ribosomal RNA fragments were mapped
against the HOMD reference sequences (the 397 annotated genomes)
using the Burrows–Wheeler Aligner version 0.7.5 (− k 31, option for
minimum seed length, SA (SA:Z), tag for chimera removal), and SAMtools
for sorting and filtering nucleotide sequence alignments.24 Merging the
paired reads after calculating hits per ORF and genome was performed
using custom user scripts. Differential gene expression was calculated
using the R package edgeR.25 Using the MG-RAST server, genes were
assigned to COG (Clusters of Orthologous Groups) categories according to
MG-RAST Hierarchical Classification (maximum e-value e-5, minimum
identity 60%, minimum alignment length of 15 amino acids). The COG
database from 2003 was used.26

Statistical analysis
R, the free software environment for statistical computing and graphics27

and PRIMER and PERMANOVA+, the suite of univariate, graphical and
multivariate routines28 were used to analyse the data. Rarefaction curves
were plotted on unstandardised mapped reads (raw counts) grouped to
features, e.g., COGs, using the R package vegan.29 A principal coordinates
analysis (PCoA) was performed with the PCO PERMANOVA+ routine on the
basis of the Bray–Curtis similarity matrix created for the standardised log-
transformed abundances of reads grouped to classes, COGs or genes.
Scatter plots of the first two principal coordinates were generated and in
the case of class-abundances-based PCoA plots, a vector overlay was used
to visualise the relationship between the abundances of taxonomic classes
and the ordination axes. Each vector begins at the centre of a circle (0, 0)
and ends at the coordinates (x, y) consisting of the Spearman's rank
correlation coefficient between that variable and each of the ordination
axes 1 and 2, respectively. The length and direction of the vector indicate
the strength and direction, respectively, of the relationship between the
variable and the ordination axes. Group-average agglomerative hierarchical
clustering was performed on the basis of the Bray–Curtis similarity matrix. A
heat map was created using the R package pheatmap.30 The linear
discriminant analysis (LDA) effect size (LEfSe) pipeline31 was used to identify
features (i.e., phylotypes, COGs or genes) that were associated with health
and disease. This software is available at (http://huttenhower.sph.harvard.
edu/galaxy/). Samples 1 and 11 were excluded from all the analyses that
identified features associated with periodontal disease and health.
To select the best gene markers, two feature selection techniques which

are integrated in the Python package scikit-learn32 were applied. They
were: (i) recursive feature elimination and (ii) random forest (RF) feature
importance evaluation method. The recursive feature elimination is a
widely applied algorithm in feature selection because of its high
performance. It recursively eliminates the features with low weights
measured by an external classifier such as support vector machine (SVM)
until a set of best features are achieved. RF is a supervised machine
learning method generally used in classification, regression and feature
importance evaluation. RF constructs the decision trees with different
subsets of features and thus enables the evaluation of the importance of
each feature. The standardised abundance of the 100 genes with the
highest LDA score was scaled into the range of 0 to 1 and afterwards
applied to the feature selection process. To validate the discovered
biomarker candidates, a model was built for predicting the diagnosis of
individuals from the training data set using the SVM algorithm with linear
kernel33 under the optimisation of fourfold cross validation. The optimal c
parameter of the SVM model was determined by a grid search in the range:
[2−5, 27]. An external data set17 was used for further validation. Computer

code used to generate results can be accessed at (https://github.com/
dawnmy/metatranscriptome_paper).

RESULTS
Our data set comprises 666 million raw reads originating from 16
periodontal communities (Supplementary Table S3). After quality
control, 616 million of reads remained. Using SortMeRNA, 19% of
them were identified as eukaryotic rRNA and 60% as bacterial and
archaeal rRNA. Using HOMD and Burrows–Wheeler Aligner, 4%
chimeras were detected and the remaining 17% were putative
mRNA of both bacterial and eukaryotic origin. Of those 104 million
reads, 27% could be mapped to the 397 genomes in the HOMD
database, on average 1,758,071 reads per sample. Independent
Burrows–Wheeler Aligner mapping of the quality controlled raw
reads to the human genome showed that 18% of them were of
human origin.
For the COG analysis, we used the MG-RAST server which

applies different tools for quality control and for identifying
ribosomal RNA. Using MG-RAST, 77.9% of quality controlled reads
were identified as so-called artificial duplicate reads (ADR, mostly
rRNA or sequencing artifacts), 5.3% were non-artificial duplicate
reads and non-ORFs, and 16.8% were potential mRNA as they
contained a predicted ORF. Of those 81 million reads, 8.8% could
be annotated with COG categories.

Phylogenetic composition of periodontal metatranscriptomes
Figure 1a shows the assignment of the mRNA reads to
phylogenetic classes. Communities 2, 5, 8 and 13 from period-
ontitis patients were dominated by Bacteroidia transcripts.
Transcripts from Spirochaetes and Synergistetes were less
abundant but found almost exlusively in those samples. Period-
ontitis samples 1 and 11 showed strikingly different profiles.
Sample 1 was dominated by Negativicutes, while sample 11 was
dominated by Bacilli. Transcripts from Actinobacteria were more
abundant in ‘healthy’ samples (with the exception of the
discordant community 11). Transcripts from several phyla that
were present according to 16S amplicon sequencing were
missing: (SR1 [C-1], Chloroflexi [C-1], Sphingobacteria, Bacteroi-
detes [C-2] and Bacteroidetes [C-1]). Those classes had abun-
dances below 0.5% in the taxonomic profiles based on amplicon
sequencing12 and thus their contribution to the metatranscrip-
tome might be too small to be detectable.
The PCoA distinguished communities from individuals diagnosed

with periodontitis from those that were healthy (Figure 1b). The
classes Bacteroidia, Deltaproteobacteria, Spirochaetes and Syner-
gistetes showed a strong negative correlation with the principal
coordinate 1 in contrast to the classes Actinobacteria and Bacilli
that were positively correlated. This demonstrates a shift in the
active community from health, where an aerobic Gram-positive
flora is dominant, and disease where anaerobic Gram-negative
bacteria are more prevalent. Samples 1 and 11 had previously been
identified as outliers by 16S rRNA gene amplicon sequencing.12

Most active bacterial taxa in the periodontal microbiome
Using the LEfSe algorithm, we compared the transcriptional
activity of periodontal bacteria in health and disease. Reads were
mapped to the ORFs in the reference genomes of oral bacteria
and the percentage of transcripts from each taxon was calculated
for each community. Transcripts were grouped to species-level
taxa named human oral taxon, which includes species that have
not yet been cultivated or validly described. Transcripts from a
total of 324 human oral taxon phylotypes were identified. Of
those, 76 were associated with health and 33 with periodontitis
(LDA 42, Po0.05, Supplementary Datasheet S1).
In Figure 1c, the mean abundances of transcripts from the 20

most active taxa are shown. In periodontitis, the ‘Red-complex’
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bacteria P. gingivalis, T. forsythia and T. denticola were among
them, as well as other known periodontal pathogens like
Pr. intermedia, Filifactor alocis, P. endodentalis, Fretibacterium
fastidiosum, Campylobacter rectus and several species of
Treponema. These taxa have previously already been associated
with periodontitis at the DNA level using 16S rRNA gene amplicon
sequencing for the same set of samples,12 and here we further
confirmed it at the mRNA level. Thus these species are not only
abundant, but they also belong to the most active part of the
community in periodontitis.
The healthy metatranscriptomes were dominated by transcripts

from streptococci, represented by S. mitis, S. oralis, S. pneumoniae,
Streptococcus sp. (human oral taxon 58), S. sanguinis and S. infantis.

Functional shifts in the dysbiotic periodontal community
In the 16 studied communities, we were able to assign 7.65 million
reads to 4,256 different COGs. Each COG consists of clusters of

orthologues and is assumed to have evolved from a single
ancestral gene.26 All communities except sample no. 9 reached a
clear plateau according to the rarefaction analysis (Supplementary
Figure S1a). Because 42% of the COGs had a low abundance
(below 0.01% in any community) and together contributed only
0.9%±0.4 (s.d.) of the total abundance, they were excluded from
further analyses. PCoA (Supplementary Figure S1b) indicated that
the COG composition of the metatranscriptomes was quite similar
for all communities except for sample 9 that was an outlier, likely
owing to the low sequencing depth. Periodontitis samples 2, 5, 8
and 13 tended to group in the top right area of the plot but there
was no clear border between them and samples from healthy
individuals.
Clear differences between periodontitis and health were found

using the LEfSe algorithm. A total of 334 COGs were significantly
differentially expressed (Supplementary Datasheet S2). Of those,
127 COGs were more abundant in health and 207 were more
abundant in disease (Po0.05, LDA score 42). The 50 COGs with

Figure 1. Composition of microbial communities from periodontal pockets as assessed by metatranscriptome analysis. (a) Composition of the
periodontal community in the 16 individuals shown on the class level. Healthy subjects and those diagnosed with periodontitis are grouped
on the right and left side of the subpanel, respectively. (b) Principal coordinates analysis (PCoA) of periodontal communities. Bray–Curtis
similarity values were calculated on standardised log2 transformed abundances of reads grouped to Classes. Communities from healthy
individuals and those with periodontitis are marked in green and red, respectively. Vectors represent the direction of the relationships
between classes and ordination axes (see Materials and Methods for details). (c) Transcriptionally active species associated with health and
disease. Relative abundance in health and disease of reads grouped to species (human oral taxons, HOTs) that were associated with
periodontitis (upper part) and health (lower part). ‘Red-complex’ species are highlighted in red. Po0.05 for all data shown.

Biomarkers for periodontitis
SP Szafrański et al
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the highest LDA scores in health are shown in Figure 2. Pyruvate/
2-oxoglutarate dehydrogenase complex was the most strongly
enriched health-related COG in the whole data set, followed by
phosphoenolpyruvate-protein kinase. The health-associated COGs
related to carbohydrate transport and metabolism (category G)
included many different phosphotransferase systems, ABC-type
transport systems, permeases and hydrolysing enzymes like beta-
galactosidase and glycosidase, as well as 6-phosphogluconate
dehydrogenase, an enzyme in the pentose phosphate pathway,
and pyruvate kinase involved in glycolysis. Other COGS involved in
energy production and conversion (category C) were aconitase
catalysing the isomerisation of citrate to isocitrate, F0F1-type ATP
synthase and glycerol kinase. Glutamate synthase and glutamine
synthetase transcripts were also enriched in communities from
healthy individuals, as well as the stress-related superoxide
dismutase and cold shock proteins. The data suggest that in the
healthy periodontal microbiome uptake of dietary sugars and their
metabolism in central pathways predominates, cell division is
rapid, and oxidative stress needs to be counteracted. The
enrichment for glutamine synthetase and glutamate synthase
transcripts might indicate a need to synthesise this essential
amino acid.
In the periodontitis metatranscriptomes (Figure 3), a number of

enriched COGs can directly be linked to pathogenesis. The most
abundant one was COG1344 (flagellin), but additionally transcripts
assigned to chemotaxis (category T), iron acquisition, antimicrobial
resistance, secretion (category U and V), colicin receptor and Fe
transport protein (category Q) were significantly more abundant.
Community metabolism (categories E, G, H, C, I, F, Q) was different
in periodontitis and was characterised by the enrichment of COGs
related to peptide catabolism (dipeptidyl aminopeptidases,
dipeptidases and tripeptidases) and degradation of amino acids
(category E, aspartate, glycine, glutamate, leucine, tryptophan).
This finding is in accordance with the known high concentrations
of peptides and amino acids in periodontal pockets. They
originate from host serum or damaged tissues as a result of the
strong proteolytic activity of the microbial communities as well as
destructive immune response.34 The glycine cleavage system (also
known as glycine decarboxylase complex or glycine synthase)
carries out the formation of serine from two glycine molecules and
is composed of four proteins called T-, P-, L- and H-protein. COGs
for the P-, T- and H-protein were significantly more abundant in
periodontitis. From serine, pyruvate is formed by the serine
dehydratase and can then be metabolised by the pyruvate–
ferredoxin oxidoreductase. COGs for the alpha, beta and gamma
subunits of this enzyme were the most strongly differentially
expressed COGs in the periodontitis metatranscriptomes (after
flagellin). In addition, flavodoxins (COG0716) and flavodoxin
oxidoreductases (COG0543) were enriched. Flavodoxin, like
ferredoxin, is a low-potential electron carrier, but in contrast to
ferredoxin, it does not contain iron; flavin mononucleotide
functions as redox group. Therefore, flavodoxin is synthesised by
anaerobes under iron-limiting conditions. The enrichment of
COG3470 (uncharacterised high affinity Fe2+ transport protein)
further suggests that iron is limited in disease.
Thus, based on the analysis of transcripts grouped to COGs, we

observed a shift from the carbohydrate-consuming healthy
subgingival flora to the dysbiotic periodontitis community that
relied on proteolysis and fermentative pathways and was limited
for iron. Moreover, known virulence factors (chemotaxis and
flagella genes) were enriched.

Gene biomarkers for periodontitis
We mapped 28.1 million reads to 366,000 genes from reference
genomes of oral microorganisms. A cluster analysis of the 5,000
most highly expressed genes encompassing 40% of all mapped
reads (Supplementary Figure S2) showed clear differences in the

expression profiles of the microbial communities in health and
periodontitis. The clustering was not changed if the number of
genes analysed was increased to 80% of the most highly
expressed genes (Supplementary Figure S3). Interestingly, sample
no. 7 (health) clearly clustered with the periodontitis samples. It
would be interesting to test whether such a disease-like
expression profile in a clinically healthy individual indicates an
early stage of periodontitis. Conversely, sample no. 11 clustered
with the ‘healthy’ samples, although it was derived from an
individual diagnosed with periodontitis. This community was
dominated by health-related Rothia sp. and streptococci, but we
also detected weak activity of P. gingivalis, Pr. intermedia and T.
forsythia (Supplementary Figure S4). The periodontal pocket depth
in this individual was relatively shallow (4–5mm), similar to the
other outlier (sample no. 1).This may suggest that in individual 11
we observed a mild form of periodontal disease, e.g., gingivitis.
We used the LEfSe algorithm to detect gene biomarkers. The

standardised abundances of reads from the top 2,000 most highly
expressed ORFs were used for this calculation, and samples 1 and
11 were excluded. Of those 2,000 most highly expressed ORFs, 420
were significantly associated with periodontitis and 329 with
health (Po0.05; Supplementary Datasheet S3). Among the top
100 marker genes, the majority (48) originated from P. gingivalis,
followed by 16 from Pr. intermedia, 10 from Fretibacterium
fastidiosum, 9 from Filifactor alocis, 7 from Tr. denticola, 5 from
Ta. forsythia and 5 from the other species. Marker genes included
genes encoding structural proteins, metabolic enzymes and
numerous virulence factors. Among the best markers, we
identified both genes encoding the arginine-specific gingipains
(rgpA and rgpB) and one coding for the lysine-specific gingipain
Kgp. Gingipains, the cysteine proteases produced by P. gingivalis,
are responsible for most of the proteolytic activity of this
bacterium and are known virulence factors. Other potential
biomarkers for periodontitis were fimA encoding fimbrillin, hagA,
hagE encoding hemagglutinin proteins and hmuY encoding a
potential haem transporter. Among marker genes that were
involved in iron uptake, we also identified an iron transporter from
Campylobacter rectus and a hemin-binding protein from
Pr. intermedia. We also detected numerous genes related to
flagella synthesis, e.g., flagellin from Fretibacterium fastidiosum and
numerous flagella genes from T. denticola.
The PCoA analysis of the periodontal communities using the

749 biomarker genes identified by the LEfSe algorithm showed
two clearly separate clusters for health and periodontitis
(Supplementary Figure S4a). Sample 1 was an outlier as identified
previously. In the middle area, we found four communities that
may represent an intermediate state between health and disease.
Three of them came from healthy individuals (sample 15, 14, 7)
and one from a subject diagnosed with periodontitis (11). These
communities harboured intermediate levels of transcripts from
health- and disease-related periodontal microorganisms
(Supplementary Figure S4b). We hypothesise that these samples
(25% of our samples) might represent gingivitis, a very common
mild state of periodontal disease. Although the power of
discrimination increases with the number of biomarkers, the
problem of overfitting arises, i.e., in a large enough set of variables
(e.g., a metatranscriptome), biomarkers will be detected by
chance. From a practical point of view, the number of biomarkers
should also be narrowed down to develop diagnosis tools. Finally,
with a smaller number of biomarkers, model performance can be
improved and deeper insight into the underlying mechanisms can
be obtained.35 The biomarker selection and validation process
applied here is depicted in Figure 4a. To select a subset of
biomarkers but keep their discriminatory power, we applied
recursive feature elimination and the RF feature importance
evaluation method. The recursive feature elimination was
implemented with SVM. Both methods identified the same three
best biomarkers from the top 100 genes with the highest LDA
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score (Supplementary Datasheet S3). Based on them, a model was
achieved which misclassified only samples 1 and 11 that had
previously been identified as outliers12 (Figure 4b). Further

validation on an external data set17 misclassified one out of six
samples (Figure 4b). This was sample no. 2 from an individual with
periodontitis, which is an outlier as shown in the PCoA analysis

Figure 2. COGs associated with health. Relative abundance in health and disease of reads grouped to the 50 COGs with the highest LDA score
which were associated with health. The error bars show the standard error of the mean. Po0.05 for all COGs shown. COG, cluster of
orthologous groups; Inf., information storage and processing; LDA, linear discriminant analysis.
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Figure 3. COGs associated with periodontitis. Relative abundance in health and disease of reads grouped to the 50 COGs with the highest LDA
score that were associated with periodontitis. The error bars show the standard error of the mean. Po0.05 for all COGs shown. COG, cluster of
orthologous groups; Inf., information storage and processing; LDA, linear discriminant analysis.
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(Figure 4c). The RF was also ultilised to build the classification
model which showed the same outcome as the SVM model (our
samples 1 and 11 and the external sample 2 were misclassified).
The three highly expressed biomarker genes encoded haem

binding protein HmuY from P. gingivalis, flagellar filament core
protein FlaB3 from T. denticola and a repeat protein of unknown
function from Filifactor alocis.

Transcriptome of Prevotella nigrescens in health and disease
Key-stone periodontal pathogens are hypothesised to influence
the pathogenic potential of other bacteria in the community.
Pr. nigrescens can easily be isolated from infected teeth, but
its pathogenicity is unclear.36,37 Here we compared the
transcriptomes of Pr. nigrescens in three communities from healthy
individuals (sample nos 10, 12 and 17) with the transcriptomes in
communities from individuals with periodontal disease (sample
nos 5, 8 and 13). In the six selected communities, Pr. nigrescens
showed a mean abundance of 4.4%±2.3% (s.d.). Moreover, the
selected communities had a clear health- or disease-associated
gene expression profile according to our gene marker analysis
(Figure 1 and Supplementary Figure S4).
On average, 147,000 reads were assigned to Pr. nigrescens per

sample (maximum 320,000; minimum 30,000), and mapped
to 2,068 genes, representing 94% of the genome. We found
48 differentially expressed genes (Po0.05; Table 1 and
Supplementary Table S4). The majority of them were upregulated
in disease and were related to virulence: peptidases (M16 and
M26), a haem ABC transporter, a multidrug transporter,

collagenase and hemagglutinin. We observed the upregulation
of L-asparaginase, L-aspartate oxidase, fumarate hydratase, acyl-
CoA synthetase and NAD-utilising dehydrogenase. Moreover, a
strong increase in the expression of a putative operon
(pnig_c_6_996—pnig_c_6_999) was observed. It consists of four
genes coding for D-glycero-D-manno-heptose 1-phosphate kinase,
phosphoheptose isomerase, hydrolase (likely D,D-heptose
1,7-bisphosphate phosphatase) and an uncharacterised protein.
Glycero-manno-heptose is present in cell surface polysaccharides
and glycoproteins. It can be found in lipopolysaccharide and its
derivatives can also be found in capsules, O-antigens and in
surface layer glycoproteins.38 Thus, it is likely that the immuno-
genic properties of Pr. nigrescens changed in the dysbiotic
community, which may result in different interactions with the
host immune system.
Pr. nigrescens produces a bacteriocin named nigrescin which is

active against the ‘red complex’ periodontal pathogens.39 We
detected its expression in vivo both in health and periodontitis,
indicating that it may be necessary to ensure survival of
Pr. nigrescens in the competitive multi-species biofilm of the
periodontal pocket.
Pr. nigrescens possesses haemolytic and hemagglutinating

activity.37 Strikingly, the haemolytic protein was downregulated,
suggesting that in periodontitis, iron is obtained via another route.
Recently a mutualistic co-operation between P. gingivalis and
Pr. intermedia was demonstrated in vitro, whereby haem
degradation was accomplished by the joint activity of the HmuY
haemophore of P. gingivalis and the cysteine protease interpain A
(InpA) of Pr. intermedia.40 The HmuY haemophore was one of the

Figure 4. The biomarker candidates, their discovery and validation. (a) Flowchart for the biomarker selection and validation procedure. Reads
were mapped against the HOMD database. LDA scores were calculated with linear discriminant analysis (LDA) for the 2,000 most highly
expressed ORFs using the LEfSe algorithm.31 The top 100 ORFs with the highest LDA scores were further evaluated using the RF and SVM
methods leading to the discovery of the three best biomarkers. They were validated using data from an independent study published
previously. (b) Comparison between prediction based on the three biomarkers and clinical diagnosis. The classification model was tested on
22 samples. The 16 training samples are from our own study; the six external samples are from ref. 17. All the training samples were correctly
classified except for two outliers. From the external data set, all but one sample were correctly classified. (c) Principal components analysis
(PCA) was based on the three biomarker candidates. Euclidean distances were calculated on standardised abundances of reads from the three
biomarker genes and scaled into the range of 0 to 1. Part of the plot was enlarged to clearly show the positions of densely packed samples.
ORF, open reading frame; RF, random forest; SVM, support vector machine.
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most highly expressed genes in our study. Pr. intermedia and Pr.
nigrescens are very closely related and show similar physiologies.
Thus, our data provide in vivo evidence for this finding.

Expression of pathways leading to butyrate
Butyrate is a cytotoxic short-chain fatty acid41 produced by
anaerobic bacterial metabolism and it is enhanced in chronic
periodontitis;42 it can inhibit differentiation of human gingival
fibroblast cells43 and the lysin degradation pathway leading to
buryrate was shown to be upregulated in the metatranscriptome
of aggressive periodontitis.17 Therefore, here we used our
metatranscriptome data to analyse the expression of pathways
leading to butyrate in detail. At least 10 oral bacterial species were
reported to produce butyrate in vitro, and they utilise different
amino acids and peptides through numerous pathways as

summarised in Supplementary Table S5. Figure 5a shows those
pathways in detail: lysine, glutamate and aspartate are catabolised
to butyrate via the diaminohexanoate, 2-hydroxyglutarate and
succinyl-CoA pathways as well as through the glutamate
dehydrogenase pathway. The 19 enzymes that are performing
the various transformations and the connections between the
pathways are also indicated.
The abundance of reads coding for enzymes involved in those

pathways and assigned to the various periodontal pathogens in
our metatranscriptome samples is shown in Figure 5b
(Supplementary Datasheet S4). The glutamate dehydrogenase,
diaminohexanoate and 2-hydroxyglutarate pathways of F. nucle-
atum were universally expressed in all samples except sample no.
9, and reached an unusually high level in sample no. 7.
Interestingly, in samples from individuals with periodontitis,

Table 1. Genes of Prevotella nigrescens differentially expressed in health and disease

Locus tag Log2 fold change Log2 CPM P value Gene product

pnig_c_8_1174 11.7 10.6 0.000 Hypothetical protein
pnig_c_6_998 10.2 9.1 0.000 D,D-heptose 1,7-bisphosphate phosphatase
pnig_c_6_996 10.2 9.0 0.000 Dehydrogenase
pnig_c_6_999 9.9 8.8 0.000 Hypothetical protein
pnig_c_26_1881 9.6 8.6 0.000 DNA-binding protein
pnig_c_8_1173 9.4 8.5 0.000 Hypothetical protein
pnig_c_1_3 9.1 8.2 0.003 Peptidase M26
pnig_c_6_997 8.8 7.9 0.000 Phosphoheptose isomerase
pnig_c_6_1000 8.3 7.4 0.013 Membrane protein
pnig_c_43_2127 7.9 7.3 0.044 Transposase
pnig_c_45_2145 7.6 8.6 0.000 Hypothetical protein
pnig_c_1_164 7.2 6.5 0.005 Acyl-CoA synthetase
pnig_c_1_166 6.9 6.2 0.023 Fumarate hydratase
pnig_c_53_2187 6.1 9.0 0.002 ABC transporter ATP-binding protein
pnig_c_9_1255 5.9 7.7 0.001 Porin
pnig_c_45_2144 5.5 7.3 0.006 Membrane protein
pnig_c_4_784 5.2 6.4 0.037 Endonuclease
pnig_c_6_1004 5.0 8.2 0.026 Polysaccharide biosynthesis protein
pnig_c_6_1013 4.1 8.8 0.001 NAD-utilising dehydrogenase
pnig_c_7_1093 4.0 8.9 0.000 Phosphoglucomutase
pnig_c_25_1868 4.0 13.5 0.000
pnig_c_26_1883 3.5 9.7 0.002 Haem ABC transporter ATP-binding protein
pnig_c_25_1874 3.5 7.8 0.026 Dolichyl-phosphate beta-D-mannosyltransferase
pnig_c_6_1017 3.5 7.8 0.037 Amidase
pnig_c_7_1096 3.4 9.7 0.000 Cell division protein
pnig_c_2_296 3.4 9.5 0.001 Hypothetical protein
pnig_c_9_1256 3.3 7.7 0.047 L-asparaginase
pnig_c_4_675 3.2 8.8 0.012 Peptidase M16
pnig_c_4_751 3.1 10.4 0.000 Molecular chaperone DnaJ
pnig_c_14_1504 3.1 9.2 0.047 Surface protein
pnig_c_17_1619 3.0 9.3 0.003 Membrane protein
pnig_c_7_1098 2.9 8.4 0.044 Exodeoxyribonuclease III
pnig_c_7_1113 2.9 9.3 0.005 Cfr family radical SAM enzyme
pnig_c_11_1323 2.8 9.2 0.012 DNA topoisomerase IV subunit A
pnig_c_2_295 2.7 8.1 0.046 Hypothetical protein
pnig_c_19_1677 2.7 9.5 0.004 Cysteine desulfurase activator complex subunit SufB
pnig_c_26_1900 2.5 8.2 0.043 Hypothetical protein
pnig_c_29_1964 2.4 8.8 0.043 Multidrug transporter
pnig_c_4_746 2.4 9.6 0.044 DNA-binding protein
pnig_c_4_804 2.4 9.4 0.011 Phosphoribosylaminoimidazole-succinocarboxamide synthases
pnig_c_4_749 2.3 10.1 0.006 ABC transporter ATP-binding protein
pnig_c_4_682 2.3 10.1 0.006 Carbamoyl phosphate synthase large subunit
pnig_c_11_1334 2.3 9.6 0.023 GTPase Era
pnig_c_5_926 2.2 10.0 0.048 Imidazolonepropionase
pnig_c_30_1970 2.1 10.0 0.050 Histidyl-tRNA synthase
pnig_c_11_1333 2.1 11.1 0.023 3-oxoacyl-ACP synthase
pnig_c_24_1842 − 4.4 6.6 0.044 Hemolysin haemolytic protein
pnig_c_3_525 −6.8 7.2 0.002 Hypothetical protein

Abbreviation: CPM, count of mapped reads per gene per million reads.
P values were corrected for false discovary rate using the method by Benjamini and Hochberg.
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SP Szafrański et al

9

© 2015 Nanyang Technological University/Macmillan Publishers Limited npj Biofilms and Microbiomes (2015) 15017



additional species could be observed expressing various pathways
leading to buryrate. Figures 5c and d show the abundance of the
same reads as shown in Figure 5b but grouped to pathways
only and species only, respectively. The diaminohexanoate,
2-hydroxyglutarate and glutamate dehydrogenase pathways were
universally expressed, whereas the succinyl-CoA pathway was
found almost exclusively in disease (Figure 5c). Similarly, butyrate
pathways from F. nucleatum were universally expressed, whereas
the pathways from Tannerella forsythia, P. spp. and Filifactor alocis
contributed to butyrate production in disease only.
The data indicate that butyrate production by F. nucleatum is

not specific for periodontitis. However, in the dysbiotic period-
ontal community, several additional pathogens contribute to
butyrate production, and this community additionally utilises the
succinyl-CoA pathway to catabolise glutamate. Thus, butyrate
catabolism is performed by a taxonomically and functionally more
diverse community in periodontitis.

DISCUSSION
We observed a clear shift in the transcriptionally active community
between health and disease. Transcripts from Bacteroidia,
Deltaproteobacteria, Spirochaetes and Synergistetes were highly
abundant in disease in contrast to those from Bacilli and
Actinobacteria that were enriched in health. A higher abundance
of those four classes in periodontitis had previously been found
using 16S rRNA gene amplicon sequencing of the same samples,12

indicating that both the abundance and the transcriptional activity
of these bacteria were increased in periodontitis. The correlation
between community fingerprints obtained with 16S profiling and
metatranscriptomics was higher for periodontitis samples than for
those from healthy individuals (r= 0.84 ± 0.13 vs. 0.68 ± 0.23
(mean± s.d.; Supplementary Figure S5)). Similarly, Jorth et al.17

observed a higher correlation between rRNA abundance (RNA
level) and rRNA gene abundance (DNA level) for samples from

Figure 5. Pathways involved in butyrate production and their expression in health and periodontitis. (a) Scheme of the proposed pathways
utilised by oral bacteria to produce butyrate from lysine, glutamate and aspartate: the diaminohexanoate pathway (DAH, highlighted in brown)
of lysine degradation consists of the following enzymes (numbers within circles): (1) L-lysine-2,3-aminomutase, (2) L-β-lysine-5,6-aminomutase,
(3) 3,5-diaminohexanoate dehydrogenase, (4) 3-keto-5-aminohexanoate cleavage enzyme, (5) 3-aminobutyryl-CoA deaminase. The glutamate
dehydrogenase pathway (GDH, highlighted in green) catalyses the reaction number (6). The 2-hydroxyglutarate pathway (2HG, highlighted in
blue) of glutamate catabolism consists of following enzymes: (7) 2-hydroxyglutarate dehydrogenase, (8) glutaconate (2-hydroxyglutarate)
CoA-transferase, (9) 2-hydroxyglutaryl-CoA dehydratase, (10) glutaconyl-CoA decarboxylase, (11) butyryl-CoA dehydrogenase, (12) acyl-CoA:
acetate CoA/acetoacetate CoA-transferase, (13) 2-oxoglutarate oxidoreductase. The succinyl-CoA pathway (SUC, highlighted in red) of
glutamate catabolism consists of the following enzymes: (14) succinate-semialdehyde dehydrogenase, (15) 4-hydroxybutyrate dehydrogenase,
(16) 4-hydroxybutyrate coenzyme A transferase, (17) 4-hydroxyphenylacetate-3-hydroxylase/4-hydroxybutyryl dehydratase. L-Aspartate can be
metabolised to succinate by (18) and (19) that are aspartate aminotransferase and fumarate reductase, respectively. Succinate can enter the
succinyl-CoA pathway (SUC). The presented pathways were adapted from refs 60–62. (b) Abundance of reads grouped to the six species and
four pathways highlighted in a. The values are plotted on the left and right side for the healthy individuals and those with periodontitis,
respectively. Mean values for both the groups are also shown. The legend with the list of abbreviations is located below the figure. (c) Same as b
but reads are grouped to pathways only. Colours are in accordance with those used in a. (d) Same as b but reads are grouped to species only.
Colours are in accordance with those used in b. **, showed statistically significant (Po0.01) higher abundance in the communities from
individuals with periodontitis. The outlier sample nos 1 and 11 were excluded from the analysis.
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SP Szafrański et al

10

npj Biofilms and Microbiomes (2015) 15017 © 2015 Nanyang Technological University/Macmillan Publishers Limited



periodontitis than for those from healthy sites. This could be
caused by technical problems. Deep pockets provide much more
material than the shallow healthy sulcus, and thus it is more
difficult to sample identical communities for DNA and RNA
extraction from healthy individuals. Alternatively, the microbial
community in chronic periodontitis may be more stable and
therefore DNA and mRNA fingerprints are more similar in contrast
to the healthy community, which is located closer to the
rest of the oral cavity and may undergo dynamic changes. This
hypothesis is in accordance with the lower diversity of the
metatranscriptome in periodontitis,17 whereas DNA-based studies
previously found a similar or higher alpha-diversity in disease.10,12

Here, we also observed that metatranscriptomes from diseased
periodontal pockets were more similar than those from healthy
subjects. Moreover, intermediate communities were also
observed. In future studies with more samples, they could provide
a hint towards the development of periodontitis and the causal
role of the microorganisms.
To investigate functional changes in activity, we grouped

sequence reads to COGs and identified those that were
differentially expressed. At COG level 1 in periodontal disease,
we observed a higher abundance of COGs related to protein
hydrolysis, e.g., peptidases and enzymes for amino acid catabo-
lism, and the glycine cleavage system. Higher glycine concentra-
tions were detected in saliva from individuals with periodontitis44

and glycine is rapidly metabolised in a co-culture of P. gingivalis
and T. denticola in vitro.45

The search for best potential biomarkers retrieved metabolic
enzymes and numerous virulence factors like gingipains (multi-
functional proteases secreted by P. gingivalis to manipulate the
host immune system), hemagglutinins and fimbriae, most of
which are in agreement with previous metatranscripome
studies.15–17 This number was narrowed down using the RF and
SVM methods to three biomarkers that predicted the diagnosis
correctly for the training data set, i.e., all samples except for the
two outliers identified previously.12 This had not been possible
with the same samples using a combination of the 10 best
phylogenetic biomarkers, e.g., 16S rRNA gene-based OTUs
(operational taxonomic units).12 The performance of the phyloge-
netic biomarkers could not be improved by combining 50 or even
100 of them. Part of the reason may be that the phylogenetic
diversity in periodontal pocket samples is much higher than the
functional diversity. More importantly, the 16S rRNA gene is a
phylogenetic marker with little information about functional traits
of the organisms. It has been shown that two strains differeing in
one nucleotide only can have widely different functional
associations.46 Validation of the functional biomarkers with the
metatranscriptome data from an independent study17 was
successful for all but one sample, which according to the PCoA
analysis was an outlier. This indicates that the method of sampling
(paper points or curettes) and the details of RNA extraction, mRNA
sequencing and bioinformatics analysis used in those two studies
did not influence the results. This is also in contrast to taxonomic
profiling of communities based on the 16S rRNA gene, which is
strongly dependent on the primers and methods for OTU calling.
Those three biomarkers will be discussed below.

Haem binding protein HmuY, biomarker from P. gingivalis
Iron is an essential element for life because it is part of co-factors,
cytochromes and iron–sulphur proteins. Thus, host and pathogen
compete fiercely for iron using highly effective mechanisms for its
sequestering and uptake.47 In vertebrates, haem is the most
abundant iron source and therefore pathogens developed
mechanisms for binding, uptake and degradation of haem.48

As a first step, haemoglobin must be proteolytically degraded.
P. gingivalis uses so-called gingipains, arginine or lysine-specific
proteases (Rgp, Kgp)49 which are also able to degrade cytokines

thereby downregulating the host’s immune response.50

Transcripts coding for both proteases were among the 100 best
biomarkers identified by LEfSe. However, a biomarker with an
even better discriminative power was the haem binding protein
HmuY which is highly specific for P. gingivalis.51 It has been shown
in vitro that haem can be obtained cooperatively by the HmuY
haemophore of P. gingivalis and the cysteine protease interpain A
(InpA) from Pr. intermedia.40 This may also occur in vivo, as HmuY
expression was correlated with a high expression of gingipains
and, in some communities, with InpA.

Flagellar filament core protein FlaB3, biomarker from T. denticola
In T. denticola, and more generally, in members of phylum
Spirochaetes, flagella filaments are an integral part of the
cytoskeleton, contributing to cell shape and enabling motility.52

Flagella filaments of T. denticola are composed of three FlaB
proteins (FlaB1–FlaB3 forming the core and the FlaA protein
forming the sheath).53 Flagella- and chemotaxis-related proteins
were shown to be necessary for tissue penetration.54 Here we
demonstrate that FlaB3 is highly expressed in vivo in periodontitis
and therefore indeed is a virulence factor and would be a
potentially useful biomarker.

Repeat protein falo_c_1_982, biomarker from F. alocis
Falo_c_1_982 is a hypothetical protein of unknown function. It is
1,083 amino acids in length and contains a copper amine oxidase
N-terminal domain PFAM motif (E value: 1.5e− 21). Blastp
identified the copper amine oxidase domain protein from the
same species as the most similar protein sharing 32% identity
(Score: 570, E value: 2e− 81). Amine oxidase is an enzyme that
converts primary amines to aldehydes with the subsequent
release of ammonia and hydrogen peroxide, and allows an
organism to utilise various amine substrates as a carbon and
nitrogen source. This particular hypothetical protein has not yet
been studied and it is a potential new virulence factor of the
emerging periodontal pathogen F. alocis.55 Malodor, however, is
an important symptom of periodontitis.56

It was proposed that key-stone pathogens might turn commen-
sals into pathogens in the dysbiotic community.13 Prevotella
species are obligatory anaerobic, Gram-negative representatives
of the phylum Bacteroidetes. Pr. intermedia and Pr. nigrescens are
two closely related species that can be found in subgingival
plaque. Pr. intermedia has been associated with periodontal
disease, whereas Pr. nigrescens was more prevalent in periodontal
health. In our study, Pr. intermedia, but not Pr. nigrescens, was
associated with disease. As Pr. nigrescens was moderately abundant
in samples from both conditions, it was possible to investigate the
effect of dysbiosis on its transcriptome. Indeed, we observed
increased expression of virulence factors, confirming the above
hypothesis that a mildly pathogenic species can switch to more
pathogenic physiology in dysbiosis without a shift in abundance.
Short-chain carboxylic-acids like butyrate occur in the gingival

crevices of individuals with periodontitis at millimolar concentra-
tions and stimulate inflammation.42 In addition, butyrate induces
the production of reactive oxygen species, inhibits growth of
gingival fibroblasts43 and induces apoptosis and autophagic cell
death in gingival epithelial cells.41 Butyrate was reported to be a
source of energy for the host epithelial cells and has multiple roles
in their physiology.57 Although buryrate is thought to contribute
to dysbiosis in periodontitis, it may protect the gut in colorectal
cancer.58 It has been suggested that F. nucleatum is a novel key-
stone pathogen because expression of lysine degradation path-
way leading to butyrate was observed in periodontitis patients.17

Here we discovered that F. nucleatum expressed genes for three
different pathways leading to butyrate, but this was not specific
for periodontitis but similar transcript abundances were also
observed in health. However, in the dysbiotic community,
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additional species contributed to butyrate production, namely
P. gingivalis, P. endodontalis, T. forsythia and F. alocis. In disease,
the proteolytic activity (e.g., high expression of gingipains
from P. gingivalis) of periodontal pathogens together with the
autodestructive, disturbed host immune system, fuels the com-
munity with peptides and free amino acids, the substrates for
butyrate production. Thus, the higher concentrations of those
substrates in periodontitis may be the reason for the higher
functional and taxonomic diversity of butyrate producers in
disease, rather than the presence of F. nucleatum. According to
our data, it cannot be viewed as a key-stone pathogen based on
its butyrate production. F. nucleatum has previously been thought
to be a commensal in the oral cavity important for dental plaque
development owing to its strong co-aggregation potential;
however, it has now been shown to be associated with a large
number of different diseases, including adverse pregnancy
outcomes and colorectal cancer.59 The virulence factor mediating
all of those diverse interactions with the host is FadA, an adhesin
which binds to cadherins, the conserved cell-junction molecules of
epithelial cells.59 Unravelling the precise role of F. nucleatum in
periodontitis, especially the processes that turns it from a
commensal into a pathogen, clearly requires further studies.

Conclusion
Our data strongly support the polymicrobial synergy and dysbiosis
model for periodontitis pathogenesis. Clear shifts in the functional
profiles of microbial communities from health to disease were
observed that could be predicted from three highly expressed
biomarker genes. Biomarkers included immunogenic surface
proteins, known virulence factors and potential novel virulence
traits. Pr. nigrescens was turned into an accessory pathogen in the
dysbiotic community, and the synthesis of the key metabolite
butyrate was accomplished by additional species and pathways in
dysbiosis, rather than by F. nucleatum alone. However, it remains to
be shown whether these shifts are induced by the responses of
commensals to changing conditions in the gingival fluid, or by the
triggering effect of key-stone pathogens or both.
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