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a b s t r a c t 

The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive 

hydrogel/nanostructured lipid carrier (NLC) drug delivery platform. An ophthalmic anti- 

inflammatory drug, baicalin (BN) was chosen as the model drug. BN 

–NLC was prepared using 

melt-emulsification combined with ultra-sonication technique. Additionally, a dual pH- and 

thermo-sensitive hydrogel composed of carboxymethyl chitosan (CMCS) and poloxamer 407 

(F127) was fabricated by a cross-linking reaction with a nontoxic crosslinker genipin (GP). 

GP-CMCS/F127 hydrogel was characterized by FTIR, NMR, XRD and SEM. The swelling stud- 

ies showed GP-CMCS/F127 hydrogel was both pH- and thermo-sensitive. The results of in 

vitro release suggested BN 

–NLC gel can prolong the release of baicalin comparing with BN 

eye drops and BN 

–NLC. Ex vivo cornea permeation study was evaluated using Franz diffusion 

cells. The apparent permeability coefficient ( P app ) of BN 

–NLC gel was much higher (4.46-fold) 

than that of BN eye drops. Through the determination of corneal hydration levels, BN 

–NLC 

gel was confirmed that had no significant irritation to cornea. Ex vivo precorneal retention 

experiments were carried out by a flow-through approach. The results indicated that the 

NLC-based hydrogel can prolong precorneal residence time. In conclusion, the hybrid NLC- 

based hydrogel has a promising potential for application in ocular drug delivery. 
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. Introduction 

ye is a distinctive organ because of unique drug disposition 

eatures. For treating various eye disorders, topical adminis- 
ration to the eye is the most accessible and common route 
ue to its convenient and painless properties. Nonetheless,
he drug bioavailability of conventional eye drops is relatively 
ow as a result of inherent defense mechanisms of the eye,
ncluding low permeability of the cornea, constant lachryma- 
ion, frequent blinking and rapid nasolacrimal drainage [1–3] .
n ideal ophthalmic drug delivery system can not only facil- 

tate drug to penetrate through the corneal barriers, but also 
rolong the pre-corneal retention time. 

Hydrogels are hydrophilic polymers which are insoluble 
ut can absorb a large amount of water in aqueous media 

4–6] . Since the pioneering work of Wichterle et al. in the early 
960s on the synthetic hydrogel, the applications of hydro- 
els have been broadened to many fields, such as food addi- 
ives, regenerative medicine, tissue engineering and drug de- 
ivery [5 ,7–11] . In particular, “smart” hydrogels which can re- 
pond to outside environmental stimuli, like pH, temperature,
nd ionic strength, have been intensively studied [12–19] . In- 
erpenetrating polymer networks (IPN) compose of a blend of 
olymers in network form where at least one component is 
olymerized and/or crosslinked [5 ,20] . Hydrogels formed by 

PN mostly possess more attractive mechanical properties, at- 
ributed to not only individual crosslinked networks but phys- 
cal entanglements among the polymers [13] . Moreover, hy- 
rogels with unique properties can be fabricated by IPN. For 

nstance, the combinations of pH- and thermo-sensitive poly- 
ers have been employed to form the “smart” hydrogel with 

ual pH- and thermo-sensitivity [21 ,22] . Semi-IPN, one type 
f IPN, are the interpenetrating polymer networks in which 

nly one component of the IPN is crosslinked or polymerized 

5 ,20] . 
Individual polymer based hydrogel with environment- 

ensitivity for ocular drug delivery, such as poloxamer hydro- 
els and carbomer hydrogels, have been extensively studied 

23–26] . However, they have shortcomings more or less. One 
imitation of poloxamer hydrogels for ocular drug delivery is 
hat the concentration of poloxamer in thermo-sensitive hy- 
rogel is usually higher than 20% (w/w) to exhibit suitable 
hermoreversible properties, which has potential irritation to 
yes [23 ,24] . Additionally, the drawbacks of poloxamer hydro- 
els, including low mechanical strength, poor mucoadhesion 

nd easy dissolution in tear fluid, also limit their applica- 
ions in the field of ophthalmic drug delivery [24 ,27–29 ]. To 
arbomer hydrogels, the pH-sensitivity comes from numer- 
us carboxyl groups of carbomer. The acid nature of carbomer 
ould not be neutralized by the tear fluid and hence would ir- 
itate the ocular tissue, when the polymer used in high con- 
entration [24] . Therefore, we have fabricated a dual pH- and 

hermo-sensitive hydrogel composed of carboxymethyl chi- 
osan (CMCS, pH-sensitive polymer) and poloxamer 407 (F127,
hermo-sensitive polymer) by a covalent crosslinking with a 
ontoxic crosslinker genipin (GP). The combination of two 
nvironment-sensitive polymers can drop off the required 

oncentration of individual polymer, improve the mechanical 
trength of the hydrogel and strengthen the response in terms 
f making the developed hydrogel responsive to multiple 
timuli. Accordingly, the developed hydrogel can prolong the 
recorneal residence time of the drug and lower the irritation 

o the eye. GP can form covalent bonds with primary amine 
roups, which is able to crosslink macromolecules, such 

s chitosan, carboxymethyl chitosan and gelatin [14 ,30–33 ].
urthermore, compared with other chemical crosslinkers, nat- 
rally occurring GP is a promising selection for crosslink- 

ng in terms of admirable biocompatibility and low cytotoxi- 
ity, which has been demonstrated to be about 10 000 times 
ess cytotoxic than glutaraldehyde [32 ,34] . As previously re- 
orted, GP has been employed to fabricate hydrogels for oc- 
lar drug delivery [32 ,35–37 ]. In addition, GP is the major ac-
ive anti-inflammatory ingredient in gardenia fruit, which has 
een used as an anti-inflammatory drug in traditional Chinese 
edicine for thousands of years [36 ,38–40 ]. 
Nanostructured lipid carriers (NLC), which can promote 

orneal penetration, control drug release, avoid organic sol- 
ents during production, have been regarded as promising 
ools for ocular drug delivery recently [1 ,2 ,41] . NLC also have
he ability to immobilize drugs and prevent the nanoparticles 
rom coalescing because of the solid matrix. However, NLC 

ay still be rapidly eliminated by defense mechanisms of the 
cular globe, owing to their low viscosity. To circumvent this 
rawback, NLC can be gelled or incorporated into semi-solid 

ystems to increase the viscosity of the drug delivery system 

nd consequently increase the retention time on ocular sur- 
ace [42 ,43] . 

In present study, we fabricated a novel NLC-based hydro- 
el for ocular delivery of baicalin (BN), an ophthalmic anti- 
nflammatory drug [44 ,45] . BN 

–NLC was prepared, character- 
zed and incorporated into the hydrogel. GP-CMCS/F127 hy- 
rogel was synthesized under a simple, facile and green fabri- 
ation process without complicated procedure, high temper- 
ture or usage of organic solvent. IR, NMR, XRD and SEM were 
erformed to demonstrate the successful formation of GP- 
MCS/F127 hydrogel. In addition, swelling properties of GP- 
MCS/F127 hydrogel were investigated under different pH and 

emperature. Moreover, the superiorities of BN 

–NLC gel over 
N eye drops and BN 

–NLC for ophthalmic delivery were eval- 
ated concerning in vitro release, ex vivo cornea permeation 

nd ex vivo precorneal retention studies. 

. Materials and methods 

.1. Materials 

aicalin (BN) was obtained from Shanxi Zelang Phytoextrac- 
ion Co., Ltd. (Xi’an, China). Compritol 888 ATO, a hydrophobic 

ixture of mono-, di- and tri-behenate of glycerol, was kindly 
ifted by Gattefosse (Paris, France); Miglyol 812N, mixtures of 
aprylic/Capric Triglycerides, was provided by Sasol (Witten,
ermany); Soy lecithin was supplied by Taiwei pharmaceuti- 
al Co., Ltd. (Shanghai, China); Cremophor EL was provided 

y BASF (Ludwigshafen, Germany). Carboxymethyl chitosan 

CMCS, Mw = 197.17 kDa) was supplied by Eisie Chemical Co.,
td (Zhejiang, China); Poloxamer 407 (F127) was acquired from 

ASF (Ludwigshafen, Germany); Genipin (GP) was provided by 
hallenge Bioproducts (Taichung, Taiwan). Coumarin-6 (C6) 
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Table 1 – Feed compositions for the formation of GP- 
CMCS/F127 hydrogels. 

Sample CMCS (%, w/v) F127 (%, w/v) GP (%, w/v) Water (ml) 

1 3.0 1.0 0.2 10 
2 3.0 1.0 0.4 10 
3 3.0 1.0 0.8 10 
4 2.5 1.5 0.4 10 
5 3.5 0.5 0.4 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was supplied by Aladdin Co., Ltd (Shanghai, China). All other
reagents were of analytical grade or better. 

2.2. Animals 

Ocular damage free, New Zealand albino rabbits (half male
and half female, weighting 1.5–2.0 kg), were supplied by the
Lab Animal Center of Shenyang Pharmaceutical University.
The rabbits, fed with standard pellet diet and water ad libi-
tum , housed in standard cages in a light-controlled room at
25 ± 1 °C and 50% ± 5% R.H. Animal studies were approved by
Shenyang Pharmaceutical University Animal Ethical Commit-
tee and performed according to the Principles of Laboratory
Animal Care (NIH publication No. 92-93, revised in 1985). 

2.3. Preparation of different formulations 

2.3.1. Preparation of BN 

–NLC 

BN loaded NLC was prepared using the melt-emulsification
and ultra-sonication method [46] . Compritol 888 ATO (110 mg),
Miglyol 812N (90 mg) and baicalin (8 mg) were mixed and
heated under magnetic stirring at 87 °C to form a uniform lipid
phase. Simultaneously, the aqueous surfactant solution with
Cremophor EL (150 mg) and soy lecithin (150 mg) was prepared
in 10 ml deionized water and also heated at 87 °C. The hot sur-
factant solution was then dropped to the hot lipid under mag-
netic stirring for 5 min. A probe-ultrasonic cell disruptor was
employed to homogenize the coarse emulsion for 2 min and
the obtained dispersion was quickly placed in an ice bath to
promote the formation of the nanostructured lipid carriers. 

2.3.2. Preparation of BN 

–NLC gel 
The hydrogel composed of carboxymethyl chitosan (CMCS)
and poloxamer 407 (F127) crosslinked by genipin (GP) was de-
veloped to obtain a dual pH- and thermo-sensitive semi-IPN
hydrogel ( Fig. 1 ). Different hydrogels were fabricated by choos-
ing different weight ratios of CMCS to F127 and different con-
centrations of GP ( Table 1 ). CMCS and F127 were both dis-
solved in 5 ml deionized water and they were mixed. Sub-
sequently, we added GP slowly to the mixed solution under
shaking at 37 °C and the crosslinking reaction lasted for 2 h.
Then the hydrogel was held for 24 h at room temperature, di-
alyzed by a cellulose membrane (8 000–14 000 Mw t.) for 24 h
and afterwards lyophilized. The swelling-loading method was
chosen to incorporate BN 

–NLC into the hydrogel [47] . In brief,
the lyophilized hydrogel was immersed in BN 

–NLC dispersion
at room temperature for 24 h. Then the swollen hydrogel was
carefully taken out from BN 

–NLC dispersion, and we wiped off
water excess on the surface of the swollen hydrogel with filter
paper. 

2.3.3. Preparation of BN eye drops 
10 ml of 15% propylene glycol was employed to dissolve 2 mg
baicalin to obtain BN eye drops, which was used as the nega-
tive control in present study [48] . 

2.4. Physicochemical characterization 

2.4.1. Characterization of particles 
The particle size (PS) and polydispersity index (PDI) were an-
alyzed with a ZetasizerNano ZS90 (Malvern Instruments, UK).
TEM studies were carried out by negative-staining method, us-
ing a JEM-2100 JEOL instrument (Tokyo, Japan). 

2.4.2. Determination of entrapment efficiency 
The entrapment efficiency (EE, %) of BN 

–NLC was determined
by centrifugal ultrafiltration method [2] . Briefly, 400 μl NLC
sample was added into the ultrafiltration tube and centrifuged
for 30 min at 4000 rpm. Unentrapped baicalin was acquired in
the ultrafiltrate, which was analyzed by HPLC at 280 nm. The
HPLC system with a Diamonsil C 18 column (250 mm × 4.6 mm,
5 μm, Dikma, China) was employed to measure the concentra-
tion of baicalin. Additionally, 400 μl NLC sample was directly
precipitated with methanol and metered to 2 ml. After cen-
trifugation of 30 min at 4000 rpm, the total baicalin in BN 

–NLC
was acquired in the supernatant and quantified by HPLC after
filtering through 0.22 μm membrane filters. EE was calculated
from the following equation: 

EE% = 

C Total − C Free 

C Total 
× 100 

where C Total is the concentration of total baicalin and C Free is
the concentration of unentrapped baicalin in the ultrafiltrate.

2.4.3. Stability of BN 

–NLC dispersed into the hydrogel 
Dynamic light scattering (DLS) was employed to evaluate the
stability of BN-NLC incorporated into the hydrogel for seven
consecutive days. Freshly prepared samples were stored at
4 °C. Every 24 h, particle size (PS) and polydispersity index (PDI)
of samples were determined. 

2.5. Characterization of GP-CMCS/F127 hydrogel 

2.5.1. IR 

FTIR spectra were recorded using KBr disks on an IFS55 spec-
trometer (Bruker, Germany) at room temperature at wave-
length range of 4000–500 cm 

−1 . 

2.5.2. 1 H NMR 

1 H NMR studies were carried out by a Bruker AVANCE 600
spectrometer (Bruker, Germany) using D 2 O or DMSO-d 6 as the
solvent. 

2.5.3. XRD 

X-ray diffraction patterns were obtained by a D8 X-ray
diffractometer (Bruker, Germany), using Cu K radiation
( λ = 0.154 nm). The angular range (2 θ ) covered was between 10 °
and 40 °, with a scanning speed of 2 °/min. 
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Fig. 1 – (A) Crosslinking reaction between CMCS and GP. (B) Schematic diagram of the semi-IPN formation of GP-CMCS/F127 
hydrogel. 
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.5.4. Viscosity 
iscosity measurements of F127, CMCS and GP-CMCS/F127 
ydrogel were performed by a SNB-1 viscometer (Fangrui,
hina) at 1 rpm using the spindle of 29 at 35 °C. 

.5.5. SEM 

itachi S-3400N scanning electron microscope (SEM) was em- 
loyed to investigate the morphology of F127, CMCS and GP- 
MCS/F127 hydrogel. 

.6. Swelling properties 

he lyophilized GP-CMCS/F127 hydrogels were weighed ( W 0 ) 
efore being immersed in PBS (phosphate buffer saline, pH 

.5 or 2.5) at different temperatures (35 or 25 °C). Periodically,
he immersed hydrogels were taken out from PBS. We used 

lter paper to wipe off water excess on the surface of the 
wollen hydrogel, and weighed ( W s ). Swelling ratio (SR%) of 
P-CMCS/F127 hydrogel was calculated from the following 
ormula: 

R% = 

W s − W 0 

W 0 
× 100 

here W s is the weight of wet hydrogel and W 0 is the weight
f lyophilized hydrogel. 

.7. In vitro release study 

n vitro release experiments were performed by dynamic dial- 
sis method [45] . Dialysis bags (molecular weight cut off 
 000–14 000) were used to contain various formulations of 
aicalin and fixed on the stirring paddles. The experiments 
ere carried out at 35 ± 0.5 °C in 100 ml of the release medium

PBS, pH 6.5) with a constant speed (100 rpm). Periodically,
 ml aliquots of the buffer medium containing baicalin were 
ithdrawn and replaced with 1 ml preheated fresh release 
edium. The baicalin content released was analyzed by HPLC 

t 280 nm. 
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Table 2 – Physicochemical characterization of BN 

–NLC 

(mean ± SD, n = 3). 

Sample Particle size (d-nm) Polydispersity index EE (%) 

BN 

–NLC 99.64 ± 2.14 0.24 ± 0.02 89.05 ± 0.44 

Fig. 2 – TEM micrograph of BN 

–NLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8. Corneal permeation study 

Corneal permeation profiles of various BN formulations were
studied in Franz-type diffusion cells (Tian Mei Da Instru-
ments, Shenyang, China). Freshly excised corneas (approxi-
mate available areas 0.50 cm 

2 ) with a nearly 2 mm sclera ring
were mounted on the diffusion cells, kept at a stirring speed
of 50 rpm at 34 ± 0.5 °C. 1 ml of preparations and 4 ml of PBS
(pH 6.5) were placed in the donor and receptor chamber, sepa-
rately. Periodically, 1 ml aliquots of diffusion medium contain-
ing baicalin were withdrawn and replaced with 1 ml preheated
fresh diffusion medium. The baicalin content in the samples
was analyzed by HPLC at 280 nm. The cumulative penetration
amount of baicalin at different intervals was obtained by the
following equation: 

Q n = 

V 0 

A 

⎛ 

⎝ C n + 

V 

V 0 

n −1 ∑ 

i =1 

C i 

⎞ 

⎠ 

where V 0 is the volume of PBS in the receptor chamber (4.0 ml);
A is the diffusion area (0.50 cm 

2 ); V is the sampling volume
(0.4 ml); C n is the baicalin concentration in the receptor cham-
ber at different intervals; and C i is the baicalin concentra-
tion in the receptor chamber before determination. The rate
of baicalin penetration was determined by the apparent per-
meability coefficient ( P app ) and steady-state flux ( J ss ) by the fol-
lowing equation: 

P app = 

�Q 

�t · C 0 · 60 

J ss = C 0 P app 

where �Q / �t is the steady-state slope of linear plot of the
amount of baicalin in the receiving chamber vs . time, C 0 is the
initial concentration of baicalin in the donor chamber. 

2.9. Corneal hydration level study 

The wet corneal weights were determined for the treated
corneas, which were carefully removed from the scleral ring
after corneal penetration tests [49] . Subsequently, the corneas
were dried at 100 °C for 6 h and weighed again. The hydration
level (HL%) of the cornea sample was obtained from the fol-
lowing formula: 

HL% = 

[
1 −

(
W d 

W w 

)]
× 100 

where W d is the dry cornea weight and W w 

is the correspond-
ing wet cornea weight. 

2.10. Precorneal retention study 

Ex vivo precorneal retention experiments were carried out as
previously reported in Irmukhametova et al. [50] . The viscosity
and moisture retention ability of different coumarin-6 (C6) for-
mulations on cornea were studied using a fluorescence micro-
scope (Olympus BX50, Tokyo, Japan). Freshly excised corneas
were obtained after the rabbits were slaughtered. The back-
ground microscopy images were taken for each cornea and
then 40 μl of C6 formulations was added onto the surface of
the cornea. For each wash, 20 ml of simulated tear fluid (STF)
was dripped onto the surface of the cornea at 3 ml/min with
a syringe pump [50] . STF was obtained by dissolving 0.061 g
CaCl 2 , 2 g NaHCO 3 and 6.7 g NaCl in 1000 ml deionized water.
The microscopy images were taken again after each wash, un-
der the emitted green light. The images were analyzed by Im-
age J in 8-bit grayscale. The mean fluorescence values were
normalized by subtracting the corresponding background flu-
orescence prior to administration of C6 formulations. In ad-
dition, the tests were also performed directly on glass slides
without excised cornea. 

3. Results and discussion 

3.1. Characterization of BN 

–NLC 

PS, PDI and EE% of BN 

–NLC are presented in Table 2 . To an oph-
thalmic drug delivery system, the particle size is important to
assess the risk of irritation and discomfort to the ocular tis-
sue. BN 

–NLC exhibited a relatively low size (99.64 ± 2.14 nm),
which was proper for ophthalmic application. PDI value was
lower than 0.3, suggesting good homogeneity. In addition,
the entrapment efficiency of BN 

–NLC was 89.05% ± 0.44%,
ascribed to liquid lipid that can disturb ordered crystalline
state, form an imperfect structure in the core solid matrix,
and further increase drug storage space [51] . The particle mor-
phology of BN 

–NLC was characterized by TEM. As presented
in Fig. 2 , BN 

–NLC were homogeneously distributed and spher-
ical in shape. Moreover, TEM micrograph indicated that most
nanoparticles were around 100 nm, similar to the size ana-
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Fig. 3 – Particle size and polydispersity index of BN 

–NLC 

dispersed into the hydrogel measured for 7 d of storage at 
4 °C (mean ± SD, n = 3). 
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Fig. 4 – FT-IR spectra of (A) F127, (B) CMCS, (C) 
GP-CMCS/F127 hydrogel and (D) GP. 

Fig. 5 – 1 H NMR comparison of (A) CMCS and (B) 
GP-CMCS/F127 hydrogel. 

Fig. 6 – XRD patterns of (A) F127, (B) CMCS, (C) physical 
mixture and (D) GP-CMCS/F127 hydrogel. 

b
G
3
d
s  

b

yzed by dynamic light scattering (DLS). The particle size and 

olydispersity index of BN 

–NLC dispersed into the hydrogel 
ere measured for 7 d. As exhibited in Fig. 3 , the incorporation 

nto the hydrogel did not result in particle aggregation or poor 
omogeneity. The results indicated that after incorporation 

nto the hydrogel, BN 

–NLC kept stable within a week. 

.2. Formation and characterization of GP-CMCS/F127 

ydrogel 

P-CMCS/F127 hydrogel was fabricated with a crosslinking re- 
ction between CMCS and GP. The proposed mechanism of the 
eaction is that each GP molecule could react with two pri- 

ary amine groups from two chains of different polysaccha- 
ides ( Fig. 1A ) [35 ,52] . In order to obtain a dual pH- and thermo-
ensitive hydrogel, CMCS and F127 were blended with GP un- 
er 37 °C. The schematic illustration of the semi-IPN hydrogel 

s represented in Fig. 1B . 
Fourier transform infrared (FTIR) spectra of GP, F127, CMCS 

nd GP-CMCS/F127 hydrogel are exhibited in Fig. 4 . GP exhib- 
ted its characteristic peaks at 1680 and 1622 cm 

−1 , owing to 
he stretching vibration of C = O in carboxymethyl group and 

 = C in cycloolefin, respectively [34 ,35 ,53] . The peaks between 

400 and 3200 cm 

−1 could be attributed to the stretching vibra- 
ion of O 

–H [53] . The peaks of F127 were observed at 2891, 1467,
343 and 1113 cm 

−1 , owing to the existence of –CH stretch- 
ng, –CH 2 – bending, in-plane –OH bending and C 

–O stretching 
47] . Broad band around 3600–3200 cm 

−1 in the CMCS spec- 
rum could be recognized as the stretching vibration of O 

–H 

nd N 

–H bonds [54] . The peak at 1630 cm 

−1 could be assigned
o the asymmetrical stretching vibration of the COO 

− group 

nd overlapped with the deforming vibration of -NH 2 [14] .
he absorption peak at 1409 cm 

−1 could be characteristics 
f the symmetrical stretching vibration of the COO 

− group.
he pyranose ring was evidenced by the presence of bands 
etween 1200 cm 

−1 to 1000 cm 

−1 in the “fingerprint” region 

55] . Compared to the peaks of CMCS, the peaks in the spec- 
rum of GP-CMCS/F127 hydrogel appeared similar in whole,
ut they were indeed different in detail. In the spectrum of 
P-CMCS/F127 hydrogel, much smaller bands around 3600–
200 cm 

−1 and 1630 cm 

−1 were observed corresponding to the 
ramatic decrease of the amino groups in CMCS, and the ab- 
ence at 1680 cm 

−1 was due to the drastic reduction of the car-
oxymethyl groups in GP [34 ,35 ,53] . The results confirmed that 
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Fig. 7 – SEM micrographs of (A) F127, (B) CMCS and (C) GP-CMCS/F127 hydrogel. Scale bar is 200 μm. 

Fig. 8 – Swelling behaviors of GP-CMCS/F127 hydrogels 
(with the same CMCS-to-F127 weight ratio) cross-linked by 

various concentrations of GP (0.2%, 0.4%, 0.8%, w/v) at pH 

6.5 and 35 °C (mean ± SD, n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 – Viscosity of F127, CMCS and GP-CMCS/F127 hy- 
drogel (mean ± SD, n = 3). 

Sample Viscosity (Pa s) 

F127 0.06 ± 0.00 
CMCS 0.15 ± 0.01 
GP-CMCS/F127 hydrogel 95.37 ± 1.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the crosslinking reaction between amino groups of CMCS and
carboxymethyl groups of GP had took place. 

The successful cross-linking was also demonstrated by the
1 H NMR spectra ( Fig. 5 ). Compared to the spectrum of pure
CMCS, the appearance of new proton peaks at 8.07 ppm and
5.32 ppm in the spectrum of the synthetic hydrogel were as-
cribed to the protons of monosubstituted amide linked to the
saccharide backbone and the alkenyl hydrogen of genipin,
separately. 

XRD experiments were carried out to study the crystalline
information of F127, CMCS and GP-CMCS/F127 hydrogel. As
presented in Fig. 6 , for F127, two sharp and strong diffrac-
tion peaks positioned at 2 θ = 19.05 ° and 2 θ = 23.37 °, indicat-
ing high crystallinity nature. A broad weak peak at 2 θ = 20.23 °
could be seen in the pattern of CMCS, related to its amorphous
structure. The peaks of the XRD pattern of physical mixture of
F127 and CMCS hardly changed position, although the inten-
sity was lower. Nonetheless, there was no peak in the pattern
of GP-CMCS/F127 hydrogel. The formation of crystalline re-
gions could be limited and hindered, because the crosslinking
inhibits close packing of polymer chains by reducing the de-
gree of freedom in the three-dimensional conformation [56] .
XRD results further demonstrated that the crosslinking reac-
tion occurred and the hydrogel had been synthesized. 
Viscosity is a vital parameter to hydrogels for ophthalmic
drug delivery. Adequate viscosity of the ocular formulations
facilitates sustained release of the drugs and increased res-
idence time on ocular surface, consequently ocular bioavail-
ability [2 ,3 ,23] . The viscosity of F127, CMCS and the synthetic
hydrogel was determined at the temperature of ocular surface
(35 °C). As shown in Table 3 , the viscosity of GP-CMCS/F127 hy-
drogel is much higher compared to two polymers, suggesting
that the developed hydrogel has potential for application in
ocular drug delivery. 

The structural and morphological analyses of F127, CMCS
and freeze-dried GP-CMCS/F127 hydrogel were performed
by scanning electron microscopy (SEM). It is observed from
Fig. 7C that GP-CMCS/F127 hydrogel had a three-dimensional
network porous structure, while there was no inerratic pore
on the surface of F127 and CMCS. The porous structure is
beneficial to facilitate water into GP-CMCS/F127 hydrogel. 

3.3. Swelling properties 

In present study, we employed swelling ratio (SR), the
index of water uptake capacity of hydrogels, to assess
the swelling properties of GP-CMCS/F127 hydrogel. Time-
dependent swelling behaviours of the hydrogels with the
same CMCS/F127 weight ratio cross-linked by distinct concen-
trations of GP at pH 6.5, 35 °C, are illustrated in Fig. 8 . It was ob-
vious that the concentration of GP had a negative effect on SR
of GP-CMCS/F127 hydrogel. Because higher concentrations of
GP would enhance the crosslinking density, restrict the mobil-
ity of the macromolecular chains and reduce the water uptake
capacity of the hydrogel. High swelling ratio is good for drug
loading. And to ensure enough strength, the hydrogel cross-
linked by 0.4% GP was chosen for subsequent study. 

Fig. 9 exhibits the swelling properties of the hydrogels with
distinct CMCS/F127 weight ratios under different pH (2.5 and
6.5) and temperature (25 and 35 °C). We could observe that all
GP-CMCS/F127 hydrogels presented prominent pH-dependent
swelling, owing to numerous hydroxyl and carboxyl groups of
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Fig. 9 – Swelling behaviors of GP-CMCS/F127 hydrogels 
with various CMCS-to-F127 weight ratios (A: 2.5/1.5; 
B: 3.0/1.0; C: 3.5/0.5) cross-linked by 0.4% (w/v) GP at four 
conditions (mean ± SD, n = 3). 

Fig. 10 – BN release profiles from various formulations at pH 

6.5, 35 °C (mean ± SD, n = 3). 

Fig. 11 – Transcorneal penetration profiles of various 
formulations (mean ± SD, n = 3). 
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MCS [14] . At pH 2.5, SR values of GP-CMCS/F127 hydrogels 
ere limited, because hydroxyl and carboxyl groups of CMCS 

n their neutral form (–OH and –COOH), which could form hy- 
rogen bonds and absorb less water. On the contrary, SR values 
ere higher at pH 6.5, owing to progressively ionized carboxyl 

roups of CMCS. The increase of charge density had a posi- 
ive influence on the water uptake capacity by electrostatic 
epulsion force between the ionized groups, which resulted 

n an increase of swelling ratio of GP-CMCS/F127 hydrogel. In 

ddition, temperature-dependent swelling is also observed in 

ig. 9 . F127 can self-assemble into micelles in aqueous solu- 
ions, with hydrophobic PPO blocks forming the core and rel- 
tively hydrophilic PEO blocks forming the shell. As the am- 
ient temperature rise from 25 to 35 °C, the growing number 
nd close packing of F127 micelles resulted in the decrease 
f SR [28] . Consequently, at pH 6.5, 35 °C, the swelling ratios
f the hydrogels were much higher than those under other 
onditions, which demonstrated the dual pH- and thermo- 
ensitivity of the hydrogel. Interestingly, we can find from 
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Fig. 12 – Retention of various C6 formulations on glass slides and excised corneas after several wash cycles using STF. 
Fluorescence microphotographs on (A) glass slides and (B) excised corneas: (a) C6 eye drops; (b) C6-NLC; (c) C6-NLC gel, Scale 
bar is 200 μm. Fluorescence indensity levels on (C) glass slides and (D) excised corneas (mean ± SD, n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 – Transcorneal penetration parameters of various 
preparations (mean ± SD, n = 3). 

Sample P app × 10 5 (cm/s) J ss × 10 4 (μg/s/cm 

2 ) HL (%) 

BN eye drops 1.30 ± 0.09 4.45 ± 0.53 84.62 ± 0.42 
BN 

–NLC 4.13 ± 0.11 13.17 ± 0.64 79.09 ± 0.57 
BN 

–NLC gel 5.80 ± 0.06 19.38 ± 0.41 78.16 ± 0.26 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 that SR values at 180 min markedly increased as the
weight ratio of CMCS to F127 in the hydrogels rise at pH 6.5,
35 °C (34.35 of CMCS/F127-2.5/1.5; 42.64 of CMCS/F127-3.0/1.0;
47.01 of CMCS/F127-3.5/0.5), owing to the increase in the car-
boxylic group content. The highest SR values though the hy-
drogel with a CMCS-to-F127 weight ratio of 3.5:0.5 had, the
thermo-sensitivity of it was not apparent, because of relatively
low amount of F127. Accordingly, the hydrogel with a CMCS-
to-F127 weight ratio of 3.0:1.0 was chosen for in vitro release
study. 

3.4. In vitro release study 

In vitro release behaviors of baicalin are illustrated in Fig. 10 . It
is a biphasic drug release pattern that BN 

–NLC gel presented:
a burst release appeared initially and afterwards a sustained
release. The biphasic release pattern is beneficial to deliver
ophthalmic anti-inflammatory drug, as it facilitates the rapid
onset of drug initially and maintains a sustained release for
a long time. Furthermore, the release rate of baicalin from
BN 

–NLC gel was obviously slower than that from BN eye drops
and BN 

–NLC. BN eye drops completed releasing within 3 h and
the cumulative amount of baicalin released from BN 

–NLC was
89.27% after 6 h, while that from BN 

–NLC gel was 81.10% after
10 h. The results revealed that compared to BN eye drops and
BN 

–NLC, BN 

–NLC gel would prolong the release of baicalin,
owing to the three-dimensional network structure of the hy-
drogel as an additional diffusion barrier of the drug. In short,
BN 

–NLC gel is a proper vehicle for the sustained release of
baicalin. 

3.5. Corneal permeation study 

Fig. 11 exhibits the corneal penetration profiles of BN eye
drops, BN 

–NLC and BN 

–NLC gel, and the transcorneal penetra-
tion parameters of different formations are listed in Table 4 .
Straight lines were observed in Fig. 11 , which demonstrated
throughout the experimental conditions, the corneas were
integrated with constant penetration rate [46] . The cornea
is generally recognized as an effective barrier to drug deliv-
ery, including three main layers: outer lipophilic epithelium,
middle hydrophilic stroma and inner lipophilic endothelium
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2 ,44] . As shown in Table 4 , the P app of BN 

–NLC was 3.18-fold
ersus BN eye drops, which could be ascribed to lipid matrixes.
ipid matrixes of NLC are biocompatible with corneal epithe- 
ia and could facilitate the transcorneal permeation of the en- 
rapped drug [57] . In addition, the surfactants in BN 

–NLC could 

pen the intercellular tight junctions among the corneal ep- 
thelia, improve the solubility of baicalin and enhance drug 
enetration. Moreover, BN 

–NLC gel can further increase the 
orneal penetration of baicalin, with 1.40-fold and 4.46-fold 

ersus that of BN 

–NLC and BN eye drops, separately. The higher 
iscosity and moisture retention ability of hydrogels can in- 
rease residence time on ocular surface, prolong drug local- 
zation inside corneal tissues and act as a reservoir for BN de- 
ivery [2 ,58] . 

.6. Corneal hydration level study 

ydration level (HL) is an index employed to investigate the 
xtent of the corneal damage. As exhibited in Table 4 , the HL 
f BN 

–NLC gel was 78.16 ± 0.26. The HL range of normal cornea 
s 76% −80% and a higher HL of 83% −92% indicates a dam- 
ge to the epithelium and/or endothelium [58 ,59] . Accordingly,
N 

–NLC gel produced no significant corneal irritation and it is 
emonstrated to be promising for ophthalmic application. 

.7. Precorneal retention study 

recorneal retention study was carried out by a flow-through 

pproach with fluorescence detection [50 ,60] . Fluorescence 
icrophotographs and retention profiles of various formula- 

ions after washing with STF are presented in Fig. 12 . Glass 
lides were used in non-mucosal control groups to investigate 
hether the mucoadhesion behavior could be simply due to 

he viscosity of the preparations, or especial mucoadhesive in- 
eractions. We can observe from Fig. 12A and C that C6 eye 
rops and C6-NLC washed off totally after 2 and 3 wash cy- 
les, respectively. For C6-NLC gel, fluorescence signals can be 
etected after 5 wash cycles. The results of different formu- 

ations on the glass slide relied mainly on the viscosity of the 
reparations. Much higher viscosity of C6-NLC gel than C6 eye 
rops and C6-NLC led to stronger fluorescence signals after 
onsecutive washes. As shown in Fig. 12B and D , compared 

o the glass slide groups, all formulations presented better re- 
ention on the surface of the cornea. However, significant de- 
rease in fluorescence indensity of C6 eye drops and C6-NLC 

an be seen after 3 wash cycles. As expected, C6-NLC gel ex- 
ibited the strongest mucoadhesion, which could be ascribed 

o the penetration of C6 into the corneal epithelium with the 
elp of surfactants. Moreover, with high viscosity and mois- 

ure retention ability, the NLC-based hydrogel can act as a pre- 
orneal drug reservoir and increase drug residence time on 

cular surface. 

. Conclusions 

n conclusion, we have successfully developed an innovative 
LC-based hydrogel for ophthalmic drug delivery. The results 
ave demonstrated that the hydrogel composed of CMCS and 

127 crosslinked by GP is dual pH- and thermo-sensitive and 
he NLC-based hydrogel is an effective vehicle for drug de- 
ivery of baicalin. In conclusion, such a unique NLC-based 

ydrogel with dual pH- and thermo-sensitivity can combine 
he superiorities of macroscale drug delivery systems and 

anomedicines, and will have a promising potential for ap- 
lication in ophthalmic drug delivery. 
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