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Although metabolomics has attracted considerable attention in the field of

lung cancer (LC) detection and management, only a very limited number

of works have applied it to tissues. As such, the aim of this study was the

thorough analysis of metabolic profiles of relevant LC tissues, including

the most important histological subtypes (adenocarcinoma and squamous

cell lung carcinoma). Mass spectrometry-based metabolomics, along with

genetic expression and histological analyses, were performed as part of this

study, the widest to date, to identify metabolic alterations in tumors of the

most relevant histological subtypes in lung. A total of 136 lung tissue sam-

ples were analyzed and 851 metabolites were identified through metabolo-

mic analysis. Our data show the existence of a clear metabolic alteration

not only between tumor vs. nonmalignant tissue in each patient, but also

inherently intrinsic changes in both AC and SCC. Significant changes were

observed in the most relevant biochemical pathways, and nucleotide meta-

bolism showed an important number of metabolites with high predictive

capability values. The present study provides a detailed analysis of the

metabolomic changes taking place in relevant biochemical pathways of the

most important histological subtypes of LC, which can be used as

biomarkers and also to identify novel targets.

1. Introduction

Nowadays, lung cancer (LC) is the leading cause of

death from cancer in the world. The most common

type of LC is non-small-cell LC (NSCLC), which

represents 85% of all LCs. The most important histo-

logical subtypes include adenocarcinoma (AC), squa-

mous cell lung carcinoma (SCC) and large-cell

carcinoma, of which AC and SCC represent ~ 90% of

all cases (Falco et al., 2016). Generally, diagnosis takes
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place after the first symptoms have already appeared,

which normally happens at an advanced stage.

Although different methods such as computerized

tomography scans and bronchoscopy have contributed

to detection of the disease, they do not increase the

likelihood of early diagnosis (National Lung Screening

Trial Research Team et al., 2011).

In the search for new cancer markers to be applied

with a minimally invasive screening methodology, the

field of metabolomics has enjoyed considerable interest

in the last years (Aboud and Weiss, 2013). Samples

that can be analyzed in metabolomics include cells, flu-

ids or tissues, biofluids such as urine, total blood,

plasma, serum and saliva being the most widely used

because of the minimally invasive methods used to

obtained them. Although there is an increasing interest

in studies using tumor tissues, few analyses have been

carried out, mainly due to the difficulty of obtaining

this type of sample (Armitage and Southam, 2016).

The analysis of the metabolomics profile characteriz-

ing LC is still in its early stages. Nevertheless, different

approximations have been developed to identify altered

metabolites in LC through monitoring several types of

samples such as serum (Kumar et al., 2017), plasma

(Louis et al., 2017), urine (Haznadar et al., 2016), spu-

tum (O’Shea et al., 2016) or sweat (Calderon-Santiago

et al., 2015). In contrast, to date only a very limited

number of works have directly analyzed metabolic dif-

ferences in tissues. The first approach was performed by

Fan et al. (2009), who analyzed 13C-glucose-labeled tis-

sue extracts from 12 patients to show an alteration in

the Krebs cycle activity and the pyruvate carboxylation.

Later, Rocha et al. (2010) analyzed the differences

between tumor and non-involved adjacent lung tissues

of 12 samples and proved a clear increase in phospho-

choline, lactate and glycerophosphocholine levels in

tumors, whereas there was a decrease in inosine/adeno-

sine, acetate, myo-inositol and glucose. That same year,

Jordan et al. (2010) described the analysis of tissue sam-

ples from 14 subjects with AC (nine subjects) and SCC

(five subjects) compared with control samples (seven

subjects). In 2011, Hori et al. (2011) performed a meta-

bolomic analysis of LC in seven patients, finding signifi-

cant changes in 40 metabolites. Kami et al. (2013)

reported a metabolomic profiling of nine samples of

lung tumor tissues, proving a high glycolytic activity in

them. Finally, the S. Miyamoto group has recently

described different metabolic perturbations associated

with AC (Fahrmann et al., 2017; Wikoff et al., 2015)

and Rocha et al. (2015) have utilized 1H NMR metabo-

lomics to analyze matched tumors and adjacent control

tissues from 56 subjects with different types of primary

lung carcinomas.

Although the use of monitoring metabolic levels as

a tool to detect the early stages in some oncological

diseases can be applied to easy-to-obtain samples, such

as serum or plasma, knowing the changes originally

experienced by the tissue is especially important in the

search for these markers. This is why the aim of this

study has been the thorough analysis of the metabolic

profile of a relevant number of LC tissues belonging

to the most prevalent histological subtypes (AC and

SCC) and their corresponding adjacent healthy tissue

from the same patient. As far as we are aware, this

study is to date the widest in terms of the number of

samples and histological subtypes analyzed. The

obtained data prove the presence of biochemical

changes at tissue level in the different LC samples,

which can be useful for identifying biomarkers and to

increase the knowledge of the metabolic reprogram-

ming developed during tumorigenesis.

2. Materials and methods

2.1. Patient cohorts

Lung tissue samples from patients treated surgically

for primary LC were obtained from University Hospi-

tal Reina Sofia (Cordoba, Spain). This research study

was conducted in accordance with the Helsinki Decla-

ration and was approved by the Cordoba Clinical

Research Ethics Committee. Tissue samples were

stored and managed by the Cordoba node belonging

to the Biobank of the Andalusian Health Service (Ser-

vicio Andaluz de Salud – SAS). All patients signed a

written informed consent document indicating their

voluntary donation. All samples were histologically

reviewed and classified, frozen and stored at �80 °C
until analysis, and the remaining specimen was forma-

lin-fixed and paraffin-embedded for conventional diag-

nostic studies and immunohistochemical analysis.

None of the patients received chemotherapy or radia-

tion therapy before the operation. Clinicopathological

data were prospectively collected.

2.2. Metabolomic analysis

2.2.1. Sample preparation

Metabolomic profiling analysis was performed by

Metabolon as previously described (Reitman et al.,

2011). Samples were prepared using the automated

MICROLAB STAR� system from Hamilton Company

(Reno, NV, USA). A recovery standard was added

prior to the first step in the extraction process for

quality control purposes. Samples were prepared using
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an aqueous methanol extraction process to remove the

protein fraction while allowing maximum recovery of

small molecules. The resulting extract was divided into

four fractions: one for analysis by ultra-performance

liquid chromatography/tandem mass spectrometry

(UPLC/MS/MS; positive mode), one for UPLC/MS/

MS (negative mode), one for GC/MS, and one for

backup. Samples were placed briefly on a TurboVap�
(Zymark, Hopkinton, MA, USA) to remove the

organic solvent. Each sample was then frozen and

dried under vacuum. Samples were then prepared for

the appropriate instrument, either UPLC/MS/MS or

GC/MS.

2.2.2. UPLC/MS/MS

The LC/MS portion of the platform was based on

Waters ACQUITY ultra-performance liquid chro-

matography and a Thermo-Finnigan linear trap quad-

rupole mass spectrometer, which consisted of an

electrospray ionization source and a linear ion-trap

mass analyzer (Evans et al., 2009). The sample extract

was dried and then reconstituted in acidic or basic LC-

compatible solvents, each of which contained 11 or

more injection standards at fixed concentrations to

ensure injection and chromatographic consistency. One

aliquot was analyzed using acidic positive ion optimized

conditions and the other using basic negative ion opti-

mized conditions in two independent injections using

separate dedicated columns. Extracts reconstituted in

acidic conditions were gradient-eluted using water and

methanol containing 0.1% formic acid, and the basic

extracts, which also used water/methanol, contained

6.5 mM ammonium bicarbonate. The MS analysis alter-

nated between MS and data-dependent MS2 scans using

dynamic exclusion. Raw data files are archived and

extracted as described below.

2.2.3. GC/MS

The samples destined for GC/MS analysis were

re-dried under vacuum desiccation for a minimum of

24 h prior to being derivatized under dried nitrogen

using bis-trimethylsilyl-trifluoroacetamide. The GC

column was 5% phenyl and the temperature ramp

was from 40 to 300 °C in a 16-min period. Samples

were analyzed on a Thermo-Finnigan Trace DSQ

fast-scanning single-quadrupole mass spectrometer

using electron impact ionization. The instrument was

tuned and calibrated for mass resolution and mass

accuracy on a daily basis. The information output

from the raw data files was automatically extracted

as discussed below.

2.2.4. Quality assurance (QA)/quality control (QC)

For QA/QC purposes, additional samples were

included with each day’s analysis. These samples

included extracts of a pool of well characterized

human plasma, extracts of a pool created from a small

aliquot of the experimental samples and process

blanks. QC samples were spaced evenly among the

injections and all experimental samples were randomly

distributed throughout the run. A selection of QC

compounds was added to every sample for chromato-

graphic alignment, including those being tested. These

compounds were carefully chosen so as not to interfere

with the measurement of the endogenous compounds.

2.2.5. Data extraction and compound identification

Raw data were extracted, peak-identified and QC-pro-

cessed. Compounds were identified by comparison

with library entries of purified standards or recurrent

unknown entities. Biochemical identifications are based

on three criteria: retention index within a narrow win-

dow of the proposed identification, nominal mass

match to the library � 0.2 amu and the MS/MS for-

ward and reverse scores between the experimental data

and authentic standards. The MS/MS scores are based

on a comparison of the ions present in the experimen-

tal spectrum with the ions present in the library spec-

trum. Although there may be similarities between

these molecules based on one of these factors, all three

data points can be utilized to distinguish and differen-

tiate biochemicals. Based on the literature and on

KEGG/HMDB databases, metabolites were annotated

to one of eight ‘superpathways’ corresponding to their

general metabolic processes (amino acid, lipid, carbo-

hydrate, nucleotide, peptide, energy, cofactors and

vitamins, and xenobiotics), and to one of 73 ‘subpath-

ways’ representing more specific metabolic pathways

or biochemical subclasses. The three networks

(metabolite, subpathway and superpathway) together

depict the hierarchical map and have been used in pre-

vious studies (Krumsiek et al., 2012; Poisson et al.,

2015) (Data S1).

2.2.6. Data analysis and statistics

A final.csv containing information about the area of

metabolites in all samples was imported in R (URL

http://www.R-project.org) through the interface of

RSTUDIO (URL https://www.rstudio.com) for further

statistical analysis and graphics plot. Missing values (if

any) are assumed to be below the level of detection.

However, metabolites detected in all samples from one
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or more groups but not in samples from other groups

were assumed to be near the lower limit of detection

in the groups in which they were not detected. In this

case, the lowest detected level of these metabolites was

imputed for samples in which that metabolite was not

detected. Pathways were assigned for each metabolite,

allowing examination of overrepresented pathways.

After imputation with minimum observed values, the

datasets were log-transformed for further analyses.

Principal component analysis (PCA) and partial least

squares discriminant analysis (PLS-DA) were used

respectively as unsupervised and supervised multivari-

ate approaches to visualize metabolic changes occur-

ring in tumor tissues as compared with normal tissue.

The PLS-DA was applied with a 10-fold internal vali-

dation. A paired two-sample t-test was used to identify

metabolites that differed significantly between the

tumor and normal tissue. A Welch two-sample t-test

was applied on the log-transformed tumor/normal tis-

sue ratios to compare metabolite levels across different

tumor types. The same analysis was applied at super-

pathway level. The R packages employed for statistical

analysis and plot generation were pheatmap 1.0.8,

ggplot2 2.2.1, mixOmics 6.3.1 and MetaboAnalyztR

0.0.0.9.

2.3. Histological analysis

Immunohistochemical staining was performed on for-

malin-fixed, paraffin-embedded samples. Sections of 5

lm were deparaffinized in xylene and rehydrated in a

graded ethanol series. Staining with the rabbit poly-

clonal 5-aminoimidazole-4-carboxamide ribonucleotide

formyltransferase/IMP cyclohydrolase (ATIC) antibody

(HPA021012; Sigma-Aldrich, St. Louis, MO, USA) at

1 : 200 dilution or anti-adenylosuccinate lyase (ADSL)

antibody (HPA000525; Sigma-Aldrich) at 1 : 100 dilu-

tion was performed overnight at 4 °C. Staining was

evaluated as follows: 0, no staining or faint staining in

< 10% of the cells; 1,10–25% of stained cells; 2, 26–
50% of stained cells; 3, 51–75% of stained cells; 4, more

than 74% of stained cells.

2.4. mRNA extraction and qPCR

Total RNA was isolated from tissues stored in RNAla-

ter� using the RNeasy Plus Universal Mini Kit, the Tis-

sueLyser LT and a QIAcube (Qiagen, Hilden,

Germany) according to the manufacturer’s protocol.

Total RNA concentration and integrity (RNA integrity

number (RIN) > 9) were analyzed using an Experion�
automated electrophoresis station (Bio-Rad, Hercules,

CA, USA). Isolated RNA was converted to cDNA

using the iScript cDNA Synthesis Kit (Bio-Rad). Real-

time PCR was employed with GoTaq qPCR Master

Mix (Promega, Madison, WI, USA) in an iCYCLER

detection system (Bio-Rad). The amplification profile

consisted of an initial denaturation for 5 min at 95 °C
and then 39 cycles of 30 s at 95 °C, annealing for 10 s at

a temperature of 60 °C (GMPR, GMPS, IMPDH2,

XDH, ADA genes); 57.3 °C (ADSL, ADSS, ATIC

genes); 63 °C (HPRT gene) or 62.2 °C (ITPA gene),

30 s at 72 °C for extension and one denaturation step of

1 min at 97 °C. Amplification efficiencies were validated

and normalized against b-actin, and fold change in

genetic expression was calculated using the 2�DDCt

method. The following primers were used: ADA, for-

ward, 50-CCATTTCTGCACACACGTATACC-30,
reverse, 50-TGGCCAGGGCACATAATCA- 30;
IMPDH2, forward, 50-AGGGAAAGTTGCCCATTG-

TAAA-30, reverse, 50-TGGGTAGTCCCGATTCT

TCTTC-30; GMPS, forward, 50-ATGGCTCTGTG-

CAACGGAG-30, 50-CCTCACTCTTCGGTCTAT-

GACT-30; GMPR, forward, 50-AATGTAGCCG

TGAGTTCAGGC-30, 50-GCCATAATGGTGTGTT-

CAGGAAA-30; XDH, forward, 50-ACCGCTTCCAC-

TACTTCAGCTAT-30,50-TTAGACTGGAGCCAACA

TCCATG-30; ATIC, forward, 50-TCTGATGCCT

TCTTCCCTTT-30, 50-AGGTTCGTATGAGCGAG-

GAT-30; HPRT1, forward, 50-AATTATGGACAG

Table 1. Patient characteristics.

Characteristics AC (n = 33)

Squamous

cell (n = 35) P-value

Age (mean) 62.11 � 9.73 68.71 � 7.46 0.002

Sex

Male 24 35 0.032

Female 9 0

Comorbidities 26 33 0.018

Neoplasms 8 2 0.54

Metastases in follow-up 3 2 0.005

Tumor size 3.52 � 1.98 4.5 � 2.01 0.039

SUV(max)* 11.07 � 8.19 13.4 � 5.73 0.15

pTNM

IA 10 5 0.38

IB 7 12

IIA 6 7

IIB 4 6

IIIA 5 5

IIIB 1 0

Grade differentiation

I 4 2 0.11

II 16 16

III 11 6

N.S. 2 11

*Data available in 50 cases.
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GACTGAACGTCTTGCT-30, 50-TCCAGCAGGT-

CAGCAAAGAATTTATAGC-30; ITPA, forward, 50-
AGCTGGCTCTGCTCTGAGAAA-30, 50-GCTGTA

GGAGAGAGCAGTGAATCC-30; ADSL, forward, 50-
TGGTGACAGAAAAGGCAGGA-30, 50-GCGTATG

TCGGTGCAAATCT-30; ADSS, forward, 50- AGG

GGTAGAGAGTTTGGTGT-30, 50-GTGCCAACG

CAGTAAATCCA-30.

2.5. Analysis of public data from cancer

genomics studies

To analyze ADSL and ATIC genetic alterations including

mRNA expression z-scores (Microarray, threshold 2.0),

data from The Cancer Genome Atlas Research Network

(TCGA; Lung AC and Lung Squamous Cell Carcinoma

Provisional sequenced tumors sample sets) were analyzed

using CBIOPORTAL software (http://www.cbioportal.org/)

and visualized using the standard Oncoprint output show-

ing altered columns. The effect of ADSL andATIC genetic

expression on LC patient prognoses was evaluated by

Kaplan–Meier survival curves of LC patients with low or

high expression of ADSL and ATIC with data from

Kaplan–Meier plotter (KMPLOTTER; www.kmplot.com/anal

ysis). Data were collected using all available patients

restricted to histological subtype for 120 months. Kaplan–
Meier plots were constructed using GRAPHPAD PRISM version

6.0c (GraphPad Software, La Jolla, CA, USA), and a log-

rank test was calculated to determine differences in overall

survival according toADSL andATICmRNA levels using

SPSS 11.5.0 forWindows (IBMCorp., Armonk, NY,USA).

3. Results

3.1. Metabolomic profile of lung tissues

A total of 136 lung tissue samples were selected, and

histologically reviewed and classified as AC (n = 33) or

SCC (n = 35), together with their corresponding sam-

ples of adjacent normal lung tissue from the same

patient. All the samples were obtained, classified and

stored by pathologists following biobank quality assur-

ance steps. The clinicopathological characteristics of

the entire patient cohort are summarized in Table 1. A

total of 851 metabolites were identified through meta-

bolomic analysis in both histological subtypes, which

gave a comprehensive snapshot of the metabolic state

of lung tissues. Unsupervised analysis by PCA applied

to the complete dataset revealed a clear discrimination

pattern for both histological subtypes, AC and SCC,

vs. normal lung tissue, as shown in Fig. S1. This dis-

crimination was supported on critical metabolic

changes occurring in lung tissues. In fact, we identified

a total of 280 compounds in AC and 623 in SCC with

significant concentration differences between the exper-

imental groups, and a total of 237 metabolites com-

mon to both (Data S1).

According to these results, we analyzed the different

metabolic profiles obtained from normal and tumor tis-

sues through visualization in heatmaps, where data were

normalized and prioritized in different metabolic path-

ways, and also ordered according to the differential

expressions between tumor and healthy tissues. As

shown in Fig. 1A, the obtained results divide the tumor

and normal tissue samples into two clearly different

groups in nearly all cases. Although there are differences

between AC and SCC in the hierarchy of metabolic path-

ways, the most altered in tumor tissue are those related to

peptides, nucleotides, amino acids and lipids. Next, we

examined the expression changes found between the same

patient samples (tumor vs. healthy) in the list of common

metabolites of both pathologies. As shown in Fig. 1B,

although major differences were not detected, there was an

increase in the induction levels of metabolites related to

peptides and amino acids in the case of SCC. Together,

these data show the existence of a clearmetabolic alteration

not only between tumor vs. healthy tissue in each patient,

but also inherently intrinsic to both pathologies.

3.2. Metabolism of glucose in lung cancer

We next performed a detailed analysis of relevant

metabolites showing significant changes hierarchically in

the most important pathways. As shown in Fig. 2, we

detected a significant decrease in the levels of various gly-

colysis metabolites involved in both tumor subtypes,

such as glucose, 3- and 2-phosphoglycerate and phos-

phoenolpyruvate. These were also accompanied by a sig-

nificant accumulation of lactate and pyruvate (at least in

SCC), the final products of glycolysis. A significant

increase in the pentose phosphate pathway was also evi-

dent, including ribose, ribose 5-phosphate, sorbitol and

fructose. As regards the tricarboxylic acid pathway

metabolites, we observed an increase in several interme-

diate metabolites, such as fumarate and malate in both

tumor subtypes, and oxalacetate in SCC. In the same

sense, we found other changes suggesting an increase in

the use of glucose; for example, a significant increase in

the levels of sugar alcohols and amino sugars.

3.3. Glutathione levels, oxidative stress markers

and polyamine metabolism

Glutathione plays a determining role in antioxidant

defense, redox homeostasis and toxin detoxification

(Jozefczak et al., 2012). The obtained results show an
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Fig. 1. Heatmap representation of the metabolite levels obtained from each metabolomic assay. (A) The values are scaled using the

Z-score. The Y-axis order (metabolites) reflects the statistical difference between metabolite levels in tumor and normal tissues at

superpathway and metabolite levels. The X-axis order (sample) is set after applying a hierarchical clustering algorithm, using unweighted pair

group method with arithmetic mean (UPGMA) as the method and a Pearson’s correlation of 1 as the metric. (B) The log-transformed tumor/

normal tissue ratios (logFC) for both carcinomas are ordered according to the statistical difference between metabolite level changes at

superpathway and metabolite levels.
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increase in methionine sulfoxide (MetO) levels in both

tumor subtypes compared with healthy tissue, along

with reduced glutathione. Similarly, we observed an

increase in cystathionine, cysteine and glycine, which

are limiting components of glutathione synthesis

(Fig. 3A). In contrast, there are differences between

AC and SCC in the changes of both oxidized glu-

tathione levels and cysteine-glycine levels. Changes

detected in gamma-glutamyl amino acid levels suggest

an alteration in the levels of glutathione. Equally,

tumor samples showed high levels of antioxidants,

such as ascorbate and alpha/gamma-tocopherol. These

findings show an accumulation of oxidative stress

markers and antioxidants.

Arginine metabolism has an important role in the

remodeling of the extracellular matrix and the produc-

tion of polyamines, creatine and nitric oxide (Rath

et al., 2014). As shown in Fig. 3B, we observed a light

increase in arginine, ornithine and citrulline levels, as

well as in aspartate in the tumor tissue compared with

the healthy tissue. In contrast, tumor tissues showed

significant high levels of polyamines such as putres-

cine, spermine and spermidine, as well as numerous

molecules related to polyamines, such as N-acetylpu-

trescine and 5-methylthioadenosine (MTA). As regards

the remodeling markers of the extracellular matrix, we

found a significant increase in proline, trans-4-hydro-

xyproline and pro-hydroxy-pro, as well as in asymmet-

ric dimethylarginine.

3.4. Fatty acids, lipid mediators and one-carbon

metabolism

Fatty acids are a valuable energy source for mitochon-

drial oxidation and ATP cell generation (Lehner and

Quiroga, 2016). The metabolomic profile of tumor tis-

sues showed a significant increase in monoacylglycerols

and glycerol, as well as elevated levels of medium- and

Fig. 2. Glucose metabolism pathway. The heatmap shows the mean of the log-transformed tumor/normal ratios for metabolites in AC

(orange) and squamous cell cancer (blue). Increase (red) or decrease (green) in metabolite level. *P < 0.05, **P < 0.01 and ***P < 0.001.
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Fig. 3. Glutathione (A) and polyamines (B) metabolism pathways. Heatmaps show the mean of the log-transformed tumor/normal ratios for

metabolites in AC (orange) and squamous cell cancer (blue). Increase (red) or decrease (green) in metabolite level. *P < 0.05, **P < 0.01

and ***P < 0.001.
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Fig. 4. Fatty acids (A) and carbon (B) metabolism pathways. Heatmaps show the mean of the log-transformed tumor/normal ratios for

metabolites in AC (orange) and squamous cell cancer (blue). Increase (red) or decrease (green) in metabolite level. *P-value < 0.05, **P-

value < 0.01 and ***P-value < 0.001.
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long-chain fatty acids (Fig. 4A). Additionally, multiple

phospholipid metabolites, including choline phosphate,

phosphoethanolamine, cytidine 50-diphosphocholine,
glycerophosphorylcholine and glycerol 3-phosphate,

were significantly elevated. We observed a significant

increase in the levels of essential fatty acids such as

dihomo-linolenate and arachidonate. In contrast,

citrate, carnitine and carnitine conjugated lipids were

significantly lower. Thus, these observations suggest

lipid oxidation may be disrupted in lung tumor tissue.

Some previous studies have associated carbon meta-

bolism with carcinogenesis, mainly due to its role in

DNA synthesis (Newman and Maddocks, 2017). As

shown in Fig. 4B, we detected a significant increase in

the levels of glycine, sarcosine, S-adenosylhomocys-

teine (SAH), methionine and homocysteine. By con-

trast, a decrease in the levels of betaine and ornithine

was observed. These changes were also accompanied

by an increase in the levels of 5-methyltetrahydrofo-

late, as well as in the number of metabolites related to

riboflavin metabolism in both tumor subtypes.

3.5. Nucleotide catabolism

As explained above in Fig. 2, we observed a significant

increase in ribose-5-phosphate levels in tumor tissue,

the initial substrate in purine pathway. A detailed

analysis of this pathway also shows a significant

increase in its first products, such as AMP or IMP;

Fig. 5A). In addition, we detected a significant accu-

mulation of multiple products from purine catabolism

such as inosine, hypoxanthine, xanthine and xan-

thosine, as well as adenosine, adenine and guanosine.

In contrast, it should be noted that we found signifi-

cant changes in the expression of xanthosine 50-mono-

phosphate only in SCC, as well as a decrease in

guanine levels. We also detected light changes in urate

expression, especially in AC, as a result of the degra-

dation of purine metabolism. Similarly, alterations in

the pyrimidine pathway were detected. Significantly

high levels of CMP were detected in tumor tissue, as

well as pyrimidine metabolites such as uridine and

cytidine, which were accompanied by significantly

elevated levels of the catabolites uracil, dihydrouracil

and beta-alanine.

3.6. Analysis of the genetic expression profile in

purine metabolism: histological expression of

ATIC and ADSL

As we have shown above in Fig. 1A, the most altered

metabolic pathways in both histological subtypes were

those related to peptides and nucleotides. This statisti-

cal difference between metabolite levels in tumor and

normal tissues, together with the clear relevance of the

nucleotide metabolism in the development of tumori-

genesis, led us to analyze this pathway in more detail.

The first evaluation consisted in an unsupervised anal-

ysis by PCA to look for discrimination patterns using

metabolites included in the nucleotide metabolic path-

way for AC and SCC vs. normal tissue (Fig. S2). The

clearest discrimination in the metabolism of nucleo-

tides was the one found between SCC and normal tis-

sues. Nevertheless, discrimination trends were also

observed between AC and normal tissues, and between

AC and SCC tissues.

The same scenario was found by PLS-DA (Fig. 5B),

which showed a clear discrimination effect both in AC

and SCC vs. normal tissue when considering altered

metabolites. The percentage of variability explained

was above 50% in both cases. An additional analysis

considering only those metabolites commonly altered

in AC and SCC was performed to study the existence

of discrimination patterns, showing the existence of

differences in the levels of metabolites. Accuracy, R2

and Q2 parameters for the three PLS-DA models,

detailed in Fig. S3, provide an overview of their dis-

criminatory performance.

Further random forest analysis provided the top 10

metabolites with the highest discrimination power for

AC and SCC tissues vs. the corresponding normal tis-

sues (Fig. 5C). 5,6-Dihydrouracil and inosine were the

two metabolites with the highest discriminatory capa-

bility for AC, and 20-O-methylguanosine and 5-methy-

luridine for SCC cases. We analyzed the predictive

capability of the top five metabolites for diagnostic

Fig. 5. (A) Nucleotide metabolism pathway. The heatmap shows the mean of the log-transformed tumor/normal ratios for metabolites in AC

(orange) and squamous cell cancer (blue). Increase (red) or decrease (green) in metabolite level. *P < 0.05, **P < 0.01 and ***P < 0.001. (B)

PLS-DA obtained for AC and SCC tissues using significant nucleotides and metabolites between normal and cancerous tissue. The datasets

included those metabolites that were statistically significant in AC and SCC compared with normal tissue (37 and 61 metabolites for AC and

SCC, respectively). The third PLS-DA was obtained using the fold change value of each metabolite between normal and cancerous tissue in

order to compare both types of carcinomas. For this purpose, we only considered those metabolites that were commonly altered in AC and

SCC cases compared with normal tissue (34 metabolites). (C) Top 10 nucleotides and derivatives ranked by their discriminatory capability

(expressed as mean decrease accuracy) provided by random forest analysis for AC and SCC cases.
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Fig. 6. Box plots and receiver operating characteristic curves obtained for the top five nucleotides and metabolites to discriminate between

normal and cancerous tissue according to the random forest analysis for AC (A) and SCC (B). The area under the curve is also shown, as

well as the sensitivity and specificity for the threshold providing highest accuracy.
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purposes. Figure 6 shows the box plots and receiver

operating characteristic curves obtained for each com-

pound for AC and SCC cases.

Finally, we decided to study, in both histological

subtypes, the most relevant enzymes involved in the

regulation of purine catabolism, selecting the top 10

according to their role in the pathway (Fig. S4). As

shown in Fig. 7A, we found significant changes in the

genetic expression of six enzymes, four of which pre-

sented different expression patterns in both histological

subtypes. Due to the importance of purinosome as a

possible new therapeutic target in the treatment of LC

(Jackson et al., 2013), we decided to look closely into

the analysis of ATIC and ADSL. First, analyses of

available data from The Cancer Genome Atlas (TC

GA) (n = 230 for AC and n = 179 for SCC) revealed

that 7% of the human SCC cases and 9% of the AC

cases present genetic alterations in ATIC, which are

associated with deep deletion and mRNA downregula-

tion in SCC, and amplification and mRNA upregula-

tion in AC. Similarly, in the case of ADSL, 18% of

the human SCC cases and 8% of the AC cases present

genetic alterations, generally mRNA upregulation

(Fig. 7B). These results are similar to those obtained

with our series of data. The analysis of ATIC and

ADSL protein expression through immunohistochem-

istry (Fig. 7C,D) showed much more intense expres-

sion in tumor than in healthy tissue for AC and SCC

cases. Finally, we analyzed ATIC or ADSL expression

with the information of general and relapse-free sur-

vival in both histological subtypes available from

TCGA and several Gene Expression Omnibus studies

(n = 724 for AC and n = 524 for SCC). As shown in

Fig. 8, in all cases there is a clear significant relation

between survival and ATIC or ADSL expression.

Interestingly, in the case of ADSL expression, there

are opposing associations with survival depending on

the histological subtypes analyzed.

4. Discussion

This study represents, to our knowledge, the widest

research to date performed in lung tissue to find the

metabolic differences between tumors of the most

important histological subtypes and normal tissue

from the same patient. We have mainly selected

tumors at an early stage, so that we could keep track

of the initial biochemical perturbations taking place in

the process of tumorigenesis.

Detailed analysis of the glucose metabolism showed

changes consistent with a Warburg effect, a signature

of cancer metabolism where rapidly dividing cells dis-

play an elevated glucose uptake and an activated

glycolysis with an increased activity of the pentose

phosphate pathway as required for the production of

nucleotides (Fig. 2) (Jiang et al., 2014). Further sup-

port of this includes the accumulation of tricarboxylic

acid cycle intermediates, together with a significant

elevation of pentose sugar alcohols and amino sugars.

Furthermore, higher levels of sorbitol can contribute

to the generation of glycation products as reported in

the LC literature (Ahmad et al., 2018), which were

also detected in the present study. Higher lactate

levels may result from the rapid shuttling of these

glycolytic metabolites to support energy generation.

Together, these findings suggest alterations in glucose

uptake and utilization, which may support an increase

in pentose phosphate pathway activity and the gener-

ation of glycation products that may potentially con-

tribute to the pathogenesis and growth of these

tumors.

Related to the glutathione levels and additional

markers of oxidative stress, the increase observed in

MetO, reduced glutathione, cysteine and glycine levels

in both tumor subtypes provides further support for

changes associated with an increase in oxidative stress

(Fig. 3A). In this sense, cysteine has been shown to be

elevated in various types of cancer including LC

(Gamcsik et al., 2012; Krepela et al., 1997), and the

glycine decarboxylase, the enzyme responsible for gly-

cine degradation, has been related to tumor-initiating

cells in NSCLC (Berezowska et al., 2017; Lin et al.,

2017). Interestingly, there were also consistently ele-

vated levels of gamma-glutamyl amino acids, which

are generated by gamma-glutamyl transpeptidase.

Altered gamma-glutamyl transpeptidase levels are a

clear marker of oxidative stress and are often signifi-

cantly increased in human malignancy (Corti et al.,

2010). Finally, the high levels of powerful antioxidants

detected, such as ascorbate and alpha/gamma-toco-

pherol, support the idea that an accumulation of

oxidative stress markers and antioxidants takes place

in lung tumors.

Regarding arginine metabolism, we observed a slight

difference in arginine ornithine and citrulline, as well

as in aspartate levels (Fig. 3B). Initially, these results

were unexpected, since previous studies reported an

increase of these metabolites in some types of cancer

(Wheatley and Campbell, 2002), and ornithine decar-

boxylase, the enzyme responsible for putrescine bio-

genesis, is significantly elevated in multiple LCs

(Grimminger et al., 2010; Tian et al., 2006). However,

a previous metabolomic study in AC showed similar

results, which suggests the need for a detailed study of

this aspect (Wikoff et al., 2015). In contrast, higher

levels in tumor tissues of other polyamines (putrescine,
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spermine and spermidine), as well as related molecules

(N-acetylputrescine and MTA), critical regulators of

nucleic acid stabilization and cell cycle progression,

were detected (Gerner and Meyskens, 2004; Pegg,

2009). These results, along with the higher levels

detected of proline, Pro-hydroxy-Pro or dimethy-

larginine in the tumor samples, suggest an increase in

extracellular matrix remodeling, cellular proliferation

and lung function (Rafikova et al., 2016; Wells et al.,

2009).

These alterations are consistent with the changes

observed in the metabolism of fatty acids and lipid

mediators. Cancerous lung tissue exhibited a signifi-

cant accumulation of multiple long-chain fatty acids,

Fig. 7. Purine metabolism and expression of ATIC and ADSL. (A) Total RNA was extracted from AC and SCC tissues, integrity evaluated

and changes in expression of the indicated genes in tumor samples compared with normal lung samples from the same patient analyzed by

qPCR and expressed as a fold change. Amplification efficiencies were validated and normalized against b-actin, and fold change in genetic

expression was calculated using the 2�DDCt method. Results are given as mean � SD. (B) Genetic alterations in ADSL and ATIC genes in

AC and SCC human samples. Data from TCGA were analyzed using CBIOPORTAL software. Each column represents a patient and displays

only the percentage of altered cases. (C) Expression of ADSL and ATIC in AC and SCC analyzed by immunohistochemistry. Representative

images of lung tumor and adjacent normal tissue stained with ADSL or ATIC antibody (920) and hematoxylin–eosin (HE; 920). (D) ATIC and

ADSL expression in AC and SCC compared with surrounding healthy tissue. Expression was quantified as detailed in Materials and

methods. The results are expressed as relative intensity values and represent the mean � SD. *P < 0.05.
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Fig. 8. Association between ADSL/ATIC genetic expression and survival in LC cohorts. Kaplan–Meier plots for ADSL and ATIC genetic

expression (high and low levels) in LC cohorts available from KMPLOTTER (n = 724 for AC and n = 524 for SCC). Log-rank P-values and hazard

ratios (HR; 95% confidence interval in parentheses) are shown. The P-value represents the equality of survival curves based on a log-rank test.
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as well as monoacylglycerols and glycerol (Fig. 4A),

which is indicative of increased or altered beta-oxida-

tion (Nomura et al., 2010). Differences in phospho-

lipid metabolism can reflect the growth and turnover

of tissue as well as the increase after degradation of

membranes during apoptosis (Beloribi-Djefaflia et al.,

2016; Santos and Schulze, 2012). Notably, citrate, car-

nitine and carnitine-conjugated lipids were significantly

lower in LC tissue. Decreased levels of citrate may

suggest a limited availability of this metabolite to sup-

port lipid synthesis, and reductions in carnitine conju-

gate lipids may reflect a decrease in lipid transport

capacity into the mitochondria (Currie et al., 2013). In

summary, these changes support membrane growth

and cellular proliferation, which is consistent with the

changes in polyamine levels observed.

Another pathway of intense interest in cancer in

recent years is one-carbon metabolism, mainly due to

the need of cancer cells to support enhanced prolifera-

tion and survival (Ducker and Rabinowitz, 2017; New-

man and Maddocks, 2017). In this study, multiple

pathway metabolites were significantly altered (glycine,

sarcosine, SAH, methionine, homocysteine; Fig. 4B).

Previous literature shows that to sustain a one-carbon

supply for proliferation, cancer cells convert serine to

glycine, generating methylene-5-methyltetrahydrofolate

(Tibbetts and Appling, 2010). Moreover, it has been

suggested that glycine promotes cancer cell growth in

lung tumor-initiating cells (Zhang et al., 2012). The

significant accumulation of sarcosine may result in

increased biogenesis, as supported by SAH, and has

been shown to be correlated with increased methyla-

tion and tumor aggressiveness in other cancers (Cernei

et al., 2013).

Finally, and as discussed above, we observed a sig-

nificant increase in ribose-5-phosphate levels in tumor

tissue. Recently, it has been described that tumor cells

redirect glucose flow to generate ribose-5-phosphate in

order to increase the synthesis of nucleotides and thus

maintain a high rate of growth (Ciou et al., 2015).

These data, together with the relevant role of nucleo-

tide catabolism for DNA replication, led us to analyze

this pathway in detail. First, higher levels of initial

products such as AMP were detected in tumor tissues,

which were accompanied by the absence of significant

changes in GMP (Fig. 5A). These data suggest a shift

in the pathway favoring AMP synthesis. The analysis

of the differential expression of the enzymes involved

in this pathway showed a significant increase in

GMPR and ADSL expression in SCC and AC as com-

pared with normal tissue (Fig. 7A). The enzyme

GMPR catalyzes a reverse reaction which turns GMP

into IMP, keeping these metabolite levels high.

Supporting these results, we also found an overexpres-

sion of ADSL, the enzyme in charge of AMP synthe-

sis, both at a genetic and at a protein level in tumor

tissue for AC and SCC cases (Fig. 7). These data

prove the existence of an activation of the de novo syn-

thesis favoring AMP synthesis, which reflects enhanced

ATP/AMP turnover as supported by significantly

higher levels of multiple purine catabolic products such

as inosine, hypoxanthine, xanthine and xanthosine.

In relation to these results, the ADSL enzyme has

been described as relevant to the formation of a com-

plex called purinosome, formed by six enzymes in

charge of performing 10 sequential reactions in the

step from phosphoribosyl pyrophosphate to IMP (An

et al., 2008). This complex is formed under situations

of high purine demand in order to increase the meta-

bolic flow of the de novo synthesis and complement

the recovery path. Although in some respects the exis-

tence of this complex can be discussed, the alterations

in the de novo pathway in several human diseases has

caused the purinosome to be considered a therapeutic

target for clinical treatments (Zhao et al., 2013),

including in oncology (Zhang et al., 2015). In this

sense, other groups have described the deficiency of

ADSL and ATIC as affecting the formation and

assembly of purinosome, and there is evidence that

both enzymes are key in the regulation of the synthesis

pathway of purines during tumor development (Bare-

sova et al., 2012; Jurecka et al., 2015). Our results

prove the existence of an increase in the expression of

both enzymes at the protein level in lung tumor tissue

compared with healthy tissue from the same patient in

SCC and AC. These results are also validated by anal-

ysis of available data from public cancer genomics

studies. Furthermore, we show the existence of a clear

significant relation between survival and ATIC or

ADSL expression (Fig. 8). The opposite association

with survival observed in the expression of ADSL

depending on the histological subtypes analyzed is

especially relevant, since it could be due to a gene with

a key role in the differentiation between both histolog-

ical subtypes. All these data confirm the potential role

of purinosome as a therapeutic treatment for LC.

We also detected an increase in the expression of

metabolites involved in the pyrimidine pathway, such

as CMP, uridine, cytidine, uracil and 5,6-dihydrouracil

(Fig. 5A), in tumors. In this sense, dihydropyrimidine

dehydrogenase, the enzyme responsible for the produc-

tion of 5,6-dihydrouracil as the uracil oxidation pro-

duct in humans, shows a higher activity and

expression in lung AC than in control tissue. More-

over, its activity has also been related to improved effi-

cacy of cytotoxic effects from common postoperative
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adjuvant therapy NSCLC (Miyoshi et al., 2005; Shin-

tani et al., 2011). Recently, 5,6-dihydrouracil has been

shown to be elevated in AC (Wikoff et al., 2015).

Finally, the statistical analysis of the results of the

present study is evidence of the existence of changes in

the nucleotide metabolism in LC tissue vs. normal tis-

sue, which were in particular more relevant in SCC

rather than in AC. These results also revealed the exis-

tence of differences in the levels of metabolites in AC vs.

SCC cases, which means that both histological subtypes

regulate the nucleotide metabolism in a different man-

ner (Fig. 5B). This fact was supported by the compar-

ison of the metabolites with the highest discrimination

capability for AC and SCC (Fig. 5C). In the case of AC,

the predictive capability of the top five metabolites ana-

lyzed was highly relevant. Sensitivity was always above

0.787 and specificity above 0.818, especially noted for

5,6-dihydrouracil (Fig. 6A). The predictive capability

was even better for the SCC subtype; sensitivity and

specificity values were always above 0.914, with special

emphasis on 20-O-methylguanosine and 5-methyluri-

dine, the two metabolites with the highest discrimina-

tory capacity. In fact, there was practically no overlap

in SCC tissue and the corresponding normal tissue seen

in the box plots of the concentration range detected for

both metabolites in lung tissue (Fig. 6B). A trend found

for nucleotides was that their concentrations were char-

acterized by a common pattern. They were always more

concentrated in the cancerous tissues than in normal tis-

sues, both for AC and SCC cases, which is clearly

indicative of hypermetabolism.

5. Conclusions

This work provides a detailed analysis of the metabo-

lomic changes taking place in relevant biochemical

pathways of the most important histological subtypes

of LC, with a special interest in nucleotide metabolism.

Additionally, the obtained results allow identification

of the potential discriminatory role of metabolites for

the two most diagnosed lung carcinoma types and,

therefore, their possible predictive capability and their

use as diagnostic markers. Detailed knowledge of these

alterations also opens the door for the discovery of

new therapeutic intervention targets.
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