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This study examines the world’s Top 100 age class performance times by Master
athletes in marathon running. The predominant paradigm for this type of research
assumes that the outcomes represent a “virtual” cross-sectional study with important
implications about aging. This article critiques this perspective and presents alternative
models that include temporal dimensions that relate to cohort differences, age changes
and historical transitions. One purpose of this study is to compare these models
with respect to goodness of fit to the data. A second purpose is to evaluate the
generalizability of findings from the fastest divisional age class quartile to the slower
quartiles. Archival listings by the Association of Road Racing Statisticians include a
maximum of 100 fastest age class performances in marathon running performances by
men and women. This database includes 937 performances by 387 men performances
and 856 performances by 301 women. The mean ages are 62.05 years for men and
60.5 years for women. The mean numbers of performances per runner are 6.64 for
men and 6.4 for women. Analysis by mixed linear modeling (MLM) indicates best
goodness of fit for logarithms of performance time by a model that includes linear and
quadratic expressions of age at entry into the database (termed “entry cohort”) and
subsequent age changes (termed “elapsed age”) as variables. Findings with this model
show higher performance times in women than men. Rates of increase in performance
time are higher at older cohort ages and elapsed ages. Performance time increases with
interactions between cohort age and elapsed age, cohort age and gender, and elapsed
age and gender (i.e., with greater increases in women than men). Finally, increases in
performance time with cohort age and elapsed age are higher in slower than faster
performance quartiles, with athletes in the faster quartiles more likely to have multiple
data entries and athletes in the slower quartiles single data entries. Implications of these
findings are discussed.

Keywords: aging, age trends, human potential, cohort effects, longitudinal trend, physical performance, master
athlete

INTRODUCTION

What Stones and Kozma (1985) and Rittweger et al. (2009) term optimum physical performance
encompasses the study of age trends in peak athletic performance. These studies began in the mid-
1970s, about a decade after the emergence of competitions for athletes “past their prime” (i.e., aged
40 years and older) – now known as master athletes (Weir et al., 2010). The earliest studies include
analyses of running (Moore, 1975; Salthouse, 1976; Stones and Kozma, 1980), track and field

Frontiers in Psychology | www.frontiersin.org 1 September 2019 | Volume 10 | Article 2161

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.02161
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2019.02161
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.02161&domain=pdf&date_stamp=2019-09-20
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02161/full
http://loop.frontiersin.org/people/351435/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02161 September 19, 2019 Time: 18:34 # 2

Stones Marathon Running by Master Athletes

athletics (Stones and Kozma, 1981) and swimming (Rahe and
Arthur, 1975; Hartley and Hartley, 1984; Stones and Kozma,
1984). The data for the majority of those studies derive from
archival listings of age class records, yearly performance rankings,
and medal-winning performances in major championships. The
main forms of analysis include simple regressions of performance
on age, followed by comparison of the age trends across events.

Rittweger et al. (2009) provide a cogent summary of
assumptions about the methodology and applied significance
of the preceding approach to modeling human performance
potential. First, they propose that “world records . . . can be
regarded as results of one of the largest human experiments ever
accomplished, taking into account the large underlying sample
group, the well-defined criteria and the meticulous surveillance
involved” (p. 683). Second, “record data from master athletes can
be regarded as a ‘virtual’ cross-sectional study that can provide
important insights into the aging process” (p. 683). Third, master
athletes “may be regarded as a model for ‘successful’ aging”
because “they allow assessment of the relative contribution of
senescence (i.e., an irreversible biological process) as opposed to
sedentarism or co-morbidity” (p. 683).

This author agrees that peak performances by master
athletes provide a unique opportunity to study human physical
performance potential with a rigor that satisfies the exacting
standards of good science. However, questions can be raised
about the validity of the other assumptions. For example:
do “virtual” cross-sectional age trends provide an adequate
representation of effects due to aging? Does an answer to the
preceding depend on the type of database available for analysis?
Are the traditional statistical procedures still appropriate for
analytic purposes? Do age trends in peak performance generalize
to those at lower ability levels? The following paragraphs
address these concerns.

Temporal Trends Relevant to Aging
Research
Cross-sectional trend is one of three temporal trends that
Schaie (1977) identifies as relevant to research on aging. The
others are longitudinal and historical trends. Cross- sectional
trend compares performance differences between individuals
from different age groups at a single time of measurement.
Researchers refer to these age groups as cohorts, with cohort
membership contingent on birth date in studies that sample
from the population. Longitudinal trend refers to age changes
within a given cohort (or cohorts) when measured at two or
more times. Historical effects refer to contextual differences
that relate to measurement at distinctive historical periods
(cf. Rubin and Rahe, 2010, on masters swimming). Although
differentiation among these trends has clear implications for
quasi-experimental studies of aging in the general population,
Schaie (1977) reasons that the same dimensions have comparable
relevance to exploratory designs with sampling biased toward the
upper or lower extremes of a normative distribution.

Confounds associated with these temporal trends include the
following. Cross-sectional designs confound cohort differences
and age changes. Longitudinal designs confound age changes

and historical effects. Consequently, any inference that cross-
sectional age differences are “virtually” the same as longitudinal
age changes is true only in the absence of both cohort differences
and historical change.

Schaie (2009) reports about cognitive performance that cohort
differences (rather than age changes) are the main reason for
discrepant findings between cross-sectional and longitudinal age
trends. Because cross-sectional and longitudinal age trends in
athletic performance show similar discrepancies (Young and
Starkes, 2005), it is reasonable to question whether cross-sectional
trends in physical performance also provide what Schaie (2009)
terms “fallacious” evidence about aging effects. In attempt to
provide an answer, let us consider properties of the databases.

Archived Data on Athletic Performance
Previous research includes two main types of database relevant
to athletic performance. “Ordinary” performances include those
below peak levels, such as longitudinal data from samples of
typical master athletes; all finishers in a given competition, etc.
“All time best” performances include age class records; inclusion
in Top N rankings, and top finishers in a prestigious competition.
Distinctions between these types of data give rise to different
expectations about age trend.

Examples of “ordinary” performance data include
longitudinal archives that typify long- term master athletes
without major injury during the measurement period. The data
usually include personal best and less estimable performances
but without a framework of interpersonal comparison to justify
data inclusion. Such data are subject performance variation
due to factors other than aging: for example, waxing and
waning of competitive interest, general motivation, training
practices, incentives to compete (cf. Medic et al., 2009) and
minor injuries. The same factors may also affect performances
below the top ranks of competitors in championships or
regular competitions. Because aging is only one of many
influences on performance in such data, it is unsurprising
that performance variation with age tends to be lower than
in databases restricted to best ever performance (Stones and
Kozma, 1982; Young and Starkes, 2005).

Best performance archives typically collapse the age
continuum into 5 years competitive categories. Moreover,
the entry and retention of data depend on comparisons with
age peers. For example, a record holder in a given age category
may become a record holder in a later age category despite a
decline in performance across times of measurement. What is
important to data retention is performance time relative to age
peers not the absolute level of performance. On the other hand,
any entry (e.g., in a listing of age class records) may eventually
undergo replacement by a subsequent superior performance
by the same or another athlete. Because inclusion in such a
database depends only on meeting “best ever” criteria, there is no
reason to anticipate major differences between cohort differences
and age changes.

A final property characteristic of database analysis relates to
cohort identification. For archival data with a prolonged time
period for inclusion (e.g., “all time” records or performance
rankings), athletes with entries in the same age category may
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differ in birth date. It is for this reason that Stones and Hartin
(2017) broke with tradition by defining cohort membership as age
at entry into the database rather than date of birth. Differentiation
of cohorts based on age at initial data entry rather than birth
date seems reasonable because master athletes differ in the
ages at which they begin to compete and/or achieve best ever
performances (Rubin and Rahe, 2010). For example, one such
classification separates master runners into lifelong athletes, those
new to the sport and those returning after many years of absence
(Pfitzinger and Latter, 2015).

Analysis of Temporal Trends
Nearly all the studies of “best ever” athletic performances use
general linear modeling for purposes of analysis. Such modeling
assumes that the residuals are independent, which in statistical
terminology implies an absence of correlated error. Correlated
error is probable in data that includes repeat measures by some
individuals (e.g., the same athlete holds records in multiple
competitive events and/or age classes; the athlete appears more
than once in annual lists of performance rankings; the athlete
finishes near the top in successive championships). Furthermore,
the frequency of repeat observations is substantial in archival data
on “best ever” performances by master athletes. For example,
approximately half the 2007 World Masters Athletics age class
records in sprinting, middle distance running, race walking and
jumping are multiple entries by athletes, with the other half being
single entries (Stones, 2010).

Before this millennium, the use of general linear modeling
is understandable because of an absence of readily accessible
statistical procedures that enable appropriate analysis of
repeated measures in unbalanced designs. Researchers at
that time could either ignore the implications of correlated
error or exclude repeated measures from the database.
However, mixed linear modeling (MLM) procedures are
now readily accessible that circumvent the problems of
correlated error. In unbalanced designs with repeated
measures, MLM procedures assume independence of residuals
among individuals (i.e., athletes) rather than observations of
those individuals.

Generalizability of Age Trends
A final concern relates to the generalizability of age trends.
Because the majority of studies report findings from record
or top ranked performances, the generality of trends to lower
levels of the ability spectrum remains a matter for conjecture.
Moore (1975) considers that the age trends “comprise the marks
of many individual athletes but they can be thought of as
those set by a “super” runner, one who is in a top condition
throughout the life span” (p. 256). He contrasted super runners
with “ordinary” runners, whom he hypothesized to be slower
but with a similar rate of age decline. Fair (2007) thinks
that age trends based on “best ever” performances overcome
methodological problems of selection bias (e.g., because of
dropout) but might not generalize to those for “average” people.
In contrast, Suominen (2010) reasons that selection bias (e.g.,
because of cohort differences) could result in overestimated age
decline in peak performances compared to that in athletes of

lower ability levels. However, none of these authors provide
empirical support for their conjectures.

This author knows of only four studies that directly or
indirectly provide data relevant to such generalizability (Seiler
et al., 1998; Fairbrother, 2007; Ahmadyar et al., 2015; Nikolaidis
et al., 2019). Although these studies sampled performance
differently (e.g., “best ever” versus “ordinary” performances)
and some have other methodological limitations, a tentative
overview suggests lower performance loss with age at higher
performance levels.

The Present Study
The present study evaluates models of temporal trend and
generalizability of findings in extensive array of “best ever”
performances in marathon running by master athletes. Marathon
races attract thousands of competitors from across the world. For
example, a 2015 article by a renowned running magazine reports
that approximately 1,100 marathon races in the United States
attract approximately half-a-million competitors, comprising
44% women and 56% men, with respective mean ages of
36.7 years and 40.4 years (Runningusa.org, 2015). In other words,
many competitors are master runners. Studies of age trend in
their peak performance times in running consistently show an
exponential increase with age (Moore, 1975; Stones and Kozma,
1980, 1981; Baker et al., 2003; Fair, 2007; Rittweger et al., 2009;
Knechtle et al., 2014). The specific aims are to evaluate the
respective effects of cohort differences, age changes, and historical
influences and generalizability of cohort and age change trends
across performance levels.

Table 1 summarizes the terms and their relationships in
the models analyzed. The traditional model, termed here the
Concurrent Age model, predicts performance (P) by age at
the time of performance. In terms of date arithmetic, this
expression of age equals the difference between the date of the
nth performance (Dn) and date of birth (Db). Where Pn is the
nth performance, the model predicts this performance as follows:
Pn = β0 + β1(Dn

− Db), where β0 and β1 are constants.
What is termed here the birth cohort model exemplifies

Schaie’s (1977) perspective that date of birth identifies an
important dimension in aging research. In order to retain
consistency with the Concurrent Age model, the Birth Cohort
model decomposes concurrent age into independent components
that by date arithmetic equal its value. These components
represent historical time of measurement (i.e., performance date)
and birth date. They are combined in the Concurrent Age
model but separated in the Birth Cohort model. Consequently,
this model generates the following predictive expression:
Pn = β2 + β3(Dn)− β4(Db), where β2, β3, and β4 are constants.

Previous research by Stones and Hartin (2017) defines the
cohort dimension not by birth date but by age at entry into the
database. If the date of entry is De, date arithmetic gives entry age
(Ae) as the difference between an athletes earliest performance
date and birth date (i.e., Ae = De

− Db). A further term in this
Entry Cohort model refers to elapsed age (An) as the interval
between a repeated entry and the initial entry. Date arithmetic
expresses the interval between the nth repeated entry and the
entry date as follows: An = Dn

− De. This model decomposes
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TABLE 1 | Nomenclature and expressions used in modeling.

Nomenclature Description Expressions used in
modeling

Birth date Date of birth D
b

Race date Date of nth race D
n

Concurrent age Age at nth race Dn
− Db

Performance Performance in nth race P
n

Entry date Date of entry into database D
e

Entry age Age at entry into database Ae = De
− Db

Elapsed age Interval between a athletes’
entry and a repeat entry

An = Dn
− De

Equation
constants

Coefficients in modeling β0, β1, β2, β3, β4, β5, β6, β7

Concurrent age
model

The traditional on ∗10
component model

Pn = β0 + β1(Dn
− Db)

Birth cohort
model

A two-component model of
birth date and race date

Pn = β2 + β3(Dn) - β4(Db)

Entry age model A two-component model of
entry age and elapsed age

Pn = β5 + β6(Ae) + β7(An) =
β5 + β6(De

− Db) + β7(Dn
−

De)

concurrent age into components that represent a summation of
entry age and elapsed age. It generates the following expressions
for the nth performance: Pn = β5+ β6(Ae)+ β7(An) = β5+ β6(De

− Db) + β7(Dn
− De), where β5, β6, and β7 are constants. This

model thereby differentiates between entry cohort differences
and age changes.

Based on prior discussion, the hypotheses for the study are as
follows:

1. Performance times increase more rapidly at older age
levels, with this effect greater in women than men (Stones
and Kozma, 1982);

2. Models that decompose concurrent time into components
(i.e., the Birth Cohort and Entry Cohort models) provide
better fit to the data than the modeling without such
decomposition (i.e., the Concurrent Age model);

3. The Entry Cohort model provides better fit to the data than
the Birth Cohort model;

4. Performance time increases more rapidly at higher levels of
the cohort and age change variables;

5. Performance times show shallower declines among faster
than slower runners.

MATERIALS AND METHODS

Data
Historically, the Veterans List of All-Time Rankings by the
Association of Racing Statisticians’ (Association of Road Racing
Statisticians [ARRS], 2017) provides the most comprehensive
database on marathon running performances by master athletes.
The data include up to 100 best ever running times per 5 years
age by gender categories that meet the Association’s qualifying
criteria. The performances downloaded during February 2018
date from 1963 to 2016.

The All-Time Veterans Rankings contain text files specific to
5 years age groups (40–44 to 90–94 years) for males and females.
Each file includes data on performance time, the runner’s name
and nationality, the date of performance, age of the runner (in
years, months, days), date of birth, and place of performance. The
maximal number of performances per age group by gender cell is
100, each of which meets a qualifying level intended to produce
a consistent set of standards over the age ranges for each gender
group. The files for males contain 100 performances for all age
categories up to and including 80–84 years.

Thereafter, the number of performances is 33 for age category
85–89 years and 4 for age category 90–94 years. The files for
females contain information on 100 runners for all age categories
to 70–74 years. Thereafter, the numbers of entries are 69 for age
category 75–79 years, 54 for 80–84 years, 27 for 85–89 years,
and 6 for age category 90–94 years. Because the two 90–94
year categories contain few observations for either gender, they
were collapsed into the 85–89 year category when computing
divisional quartile rankings.

Analytic Procedures
Because of a large sample size, the significance level is set
at p < 0.01. The dependent variable in all analyses is a
natural logarithmic of performance time. This logarithmic
transformation builds on earlier findings that performance
time in running increases exponentially with age; hence an
expectation that the logarithm of performance time would closely
approximate a linear relationship with age (Stones and Kozma,
1980; Baker et al., 2003). Analyses of the dependent variable use
mixed linear modeling (MLM) procedures in SPSS 25. Terms
common to all analyses are runners as a random intercept
and days elapsed from an athlete’s initial entry as a repeated
measure, with a scaled identity covariance structure for the
repeated measure. Estimation of the coefficients is by maximum
likelihood ratios.

For comparative purposes, separate MLM analyses of the
Concurrent Age, Birth Cohort and Entry Cohort models include
gender, components that identify the models (cf. Table 1) and
their 2-way interactions as fixed effects. The gender term is
categorical and model components are covariates centered on
their grand means. Preliminary MLM analyses include models
with only linear covariates to those with added quadratic
covariates in order to test for any additional curvilinearity.

The main MLM analyses compare the Concurrent Age, Birth
Cohort, and Entry Cohort models to ascertain which model
provides best fit to the data. The estimation of goodness of fit
is by deviance statistics, where deviance is the difference in –2
Log Likelihood estimates between models. Lower values for –2
Log Likelihood indicates better fit. The significance differences in
-2 Log Likelihood is given by Chi squared (χ2) with degrees of
freedom equal to differences in the number of model parameters.

A subsequent analysis adds to the best fitting model quartile
rankings of performance time. These quartile rankings are within
divisional groupings (i.e., age category by gender groups). The
purpose of this analysis is to evaluate the generality of temporal
trends across a continuum that represents the highest to lowest
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levels of performance. A final analysis attempts to clarify reasons
that underlie the findings on generality.

RESULTS

Preliminary Analyses
The data include 937 performances by 387 men performances
and 856 performances by 301 women. The mean ages are
62.05 years for men (s.d. = 13.61 years) and 60.5 years for
women (s.d. = 13.11), with birth dates ranging from 1895 to
1976. The mean numbers of performances per runner are 6.64
for men (s.d. = 7.13) and 6.4 for women (s.d. = 5.5). The mean
Elapsed Ages are 36.71 months for men (s.d. = 55 months) and
34.34 months for women (s.d. = 46.18 months).

The distribution of the dependent variable – the natural
logarithm of performance time in minutes – approximates
normality. It has a mean value of 5.26 (s.d. = 0.28), with moderate
skew (1.07), moderate kurtosis (0.94) and a histogram that
shows only moderate departure from a normal curve. Pearson
correlations of the dependent variable with Concurrent Age –
in months – are 0.93 for men and 0.95 for women, which for
descriptive purposes indicate strong linear age trends.

MLM Analyses
The preliminary MLM analyses show significantly better fit for all
the Concurrent Age, Birth Cohort, and Entry Cohort models after
inclusion of quadratic covariates as fixed effects (all p < 0.01).
Consequently, the following analyses report finding for models
with polynomial expressions of their components. Table 2 shows
goodness of fit statistics for Birth Cohort and Entry Cohort
models compared to the Concurrent Age model. The findings
indicate significantly better fit for the Concurrent Age than the
Birth Cohort model but significantly better fit for the Entry
Cohort than the Concurrent Age model.

Because of the unexpectedly low fit for the Birth Cohort
model, the following analysis queries whether addition of linear
and quadratic covariates relevant to Elapsed Age would improve
model fit. This extended version therefore subsumes all three
temporal dimensions of cohort difference, age change and
historical effects. Although the findings indicate better fit for the
extended over the original version of the Birth Cohort model
(χ2 =−108.667, df = 2, p < 0.001), goodness of fit is still inferior
to that for the Entry Cohort model (χ2 = 77.794) despite two

TABLE 2 | Goodness of fit of the birth cohort and entry cohort models compared
to the concurrent age model.

Model Number of Number of Deviations Significance of
fixed random from -2 log deviation from the
effect effect likelihood concurrent

parameters parameters for the age model
concurrent
age model

Concurrent age 7 1 – –

Birth cohort 12 1 51.285 <0.001

Entry cohort 12 1 −135.176 <0.001

additional degrees of freedom. For the sake of completeness, the
author must mention that the addition of terms representative of
historical transition (i.e., linear and quadratic performance date
covariates) results in lower goodness of fit for this extended over
the original Entry Cohort model despite two additional degrees of
freedom (χ2 = 33.987). Consequently, the original Entry Cohort
model provides better goodness of fit than any other model.

The coefficients in the Entry Cohort model show only
minor differences after inclusion of performance level quartiles.
Consequently, Table 3 includes findings for the latter. The
findings indicate that performance times (1) are higher in women
than men; (2) increase at a higher rate at older ages for both
the entry cohort and elapsed age terms (i.e., as indicated by
significant and positive quadratic coefficients; (3) increase with
the interaction between the entry cohort and elapsed age terms;

TABLE 3 | Fixed effect statistics for entry cohort model with performance time
quartiles.

Model term Coefficient significance 95% Confidence
interval

Lower Upper

Intercept 5.143 0.000 5.137 5.148

Female 0.182 0.000 0.175 0.188

Male 0 . . .

Performance
quartile = 76–100

0.074 0.000 0.068 0.079

Performance
quartile = 51–75

0.054 0.000 0.049 0.059

Performance
quartile = 26–50

0.031 0.000 0.026 0.036

Performance
quartile = 1–25

0 . . .

Entry cohort −0.003 0.000 −0.003 −0.003

Entry cohort quadratic 2.91∗10−6 0.000 2.78∗10−6 3.03∗10−6

Elapsed age 0.001 0.000 0.001 0.001

Elapsed age quadratic 1.97∗10−6 0.000 1.55∗10−6 2.38∗10−6

Entry cohort ∗ Elapsed age 4.64∗10−6 0.000 4.33∗10−6 4.96∗10−6

Entry cohort ∗ FEMALE 2.33∗10−4 0.000 1.93∗10−4 2.72∗10−4

Entry cohort ∗ MALE 0 . . .

Elapsed age ∗ FEMALE 2.13∗10−4 0.000 1.31∗0−4 2.95∗10−4

Elapsed age ∗ MALE 0 . . .

Entry cohort ∗ Performance
quartile = 76–100

2.77∗10−4 0.000 2.42∗10−4 3.11∗10−4

Entry cohort ∗ Performance
quartile = 51–75

1.71∗10−4 0.000 1.38∗10−4 2.04∗10−4

Entry cohort ∗ Performance
quartile = 26–50

7.17∗10−5 0.000 3.97∗10−5 1.04∗10−4

Entry cohort ∗ Performance
quartile = 1–25

0 . . .

Elapsed age ∗Performance
quartile = 76–100

3.81∗10−4 0.000 2.87∗10−4 4.76∗10−4

Elapsed age ∗ Performance
quartile = 51–75

1.92∗10−4 0.000 1.02∗10−4 2.83∗10−4

Elapsed age ∗ Performance
quartile = 26–50

2.26∗10−4 0.000 1.36∗10−4 3.16∗10−4

Elapsed age ∗ Performance
quartile = 1–25

0 . . .
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TABLE 4 | Regression of performance time quartiles against age at entry and
single or multiple age entries.

Performance Exponential 95% confidence
time Model term (coefficient) Significance interval for
quartiles Exp(coefficient)

Lower Upper

(76–100) Intercept 0.107 0.000 0.066 0.174

Age at entry 1.002 0.007 1.001 1.004

Single entry 42.626 0.000 23.392 77.676

Multiple entries . . . .

(51–75) Intercept 0.361 0.000 0.269 0.484

Age at entry 1.001 0.036 1.000 1.003

Single entry 7.922 0.000 4.930 12.729

Multiple entries . . . .

(26–50) Intercept 0.535 0.000 0.414 0.691

Age at entry 1.001 0.251 0.999 1.002

Single entry 3.763 0.000 2.357 6.007

Multiple entries . . . .

(4) increase more for women than men with increases in the entry
cohort and elapsed age terms; (5) are expectedly higher in the
slower than faster performance quartiles; and (6) increase to a
greater extent in the slower than the faster quartiles with increases
in entry cohort age and elapsed age.

Final analyses by multinomial logistic regression
explore reasons why slower rather than faster runners

show greater performance deterioration in both cross-
sectional and longitudinal trends. The data for these
analyses are aggregated within athletes. The target variable
is divisional performance rankings (i.e., performance
time quartiles), with the fastest quartile as the reference
category in an initial analysis. The fixed effect terms
include entry cohort as a covariate centered on its grand
mean with the elapsed age variable simplified to indicate
the presence of single or multiple data entries. Alternate
reference categories for the latter are multiple followed by
single data entries.

Table 4 shows findings for exponential coefficients (i.e.,
odds ratios). Compared to the fastest quartile, only the slowest
quartile has older entry ages at p < 0.01. With multiple
entries as the reference category for the nominal variable, the
fastest quartile has the lowest likelihood of single entries. The
likelihood of single entries increases significantly across quartiles,
with the odds of a single entry in the slowest quartile being
42,626 times higher than in the fastest quartile. Conversely,
with the slowest quartile and single data entries as reference
categories, the odds of multiple entries in the fastest quartile
are 42,626 times higher than in the slowest category. Figure 1
illustrates these findings.

DISCUSSION

The best fitting model in this study includes variables termed
entry cohort and elapsed age. Findings with this model show

FIGURE 1 | Percent single and multiple data entries by performance quartiles.
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the following: (1) higher performance times in women than
men; (2) higher rates of increase in performance time at
older cohort ages and elapsed ages; and (3) increases in
performance time with interactions between cohort age and
elapsed age, cohort age and gender, and elapsed age and
gender (i.e., with greater increases in women than men).
Also, increases in performance time with cohort age and
elapsed age are higher in slower than faster performance
quartiles, with athletes in the faster quartiles more likely to
have multiple data entries and athletes in the slower quartiles
single data entries.

The beginning of this article includes discussion of the
methodology of early studies of age trends in performances by
master athletes. Such methodology falls here under a rubric
of the Concurrent Age model. This approach to modeling
endures today – despite historical progress in the quality
of available data and more sophisticated analytic procedures.
Such models have relative simplicity that satisfies scientific
requirements for parsimony but may fall short on requirements
for scientific precision. Criteria for the latter combine data
analytic premises that are reasonable (e.g., independence of
athletes rather than observations) with high goodness of fit.
This study may be the first to provide quantitative comparison
of the Concurrent Age model against alternative models that
decompose concurrent age into components that represent
different temporal trends. It is also the first to examine the
generalizability of cohort differences and age changes across
levels of athletic performance.

The findings replicate earlier evidence that performance
decline is greater at older ages and in women than men.
As hypothesized, the Entry Cohort model provides better
fit to the data than the Concurrent Age and Birth Cohort
models. This finding provides justification to include
entry cohort and age change terms in future research.
Trends on both of these components exhibit greater rates
of performance decline at older ages, with the declines
steeper in women than men. Finally, the findings for
both cohort differences and age changes support the
hypothesis of greater performance decline in slower
than faster runners.

The use of performance rankings to predict performance
time is compatible with earlier research (Fairbrother, 2007).
That study includes analysis of U.S. Masters Swimming’s annual
Top-Ten rankings for 50 m freestyle swimming. However,
Fairbrother (2007) examines performance trends on concurrent
age to derive inferences about generalizability from residual
error. Inferences about generalizability in the present study
follow from predicted scores for performance trends on
entry cohort age and elapsed age. Despite these differences
in methodology, the findings uniformly indicate shallower
performance declines on the respective temporal dimensions by
faster than slower athletes.

Moreover, analysis of the quartile rankings suggests reasons
why the faster runners show shallower age declines. The
fastest runners (1) are more likely to enter the database
at a younger age than the slowest runners and (2) have a
higher frequency of multiple data entries. An interpretation is

that a combination of multiple entries by younger runners
provide evidence for high levels commitment by these
runners, which implies prolonged continuation of effective
training practices, which in turn implies greater retention of
faster racing times.

Consequently, information for coaches and master marathon
runners might advisedly include planning for continued
participation in order to realize and retain performance
potential. Such planning could include competition against
high performers in surrounding age classes, participation
in races on faster courses, and extra commitment upon
entry into a higher age class (Medic et al., 2009). The
planning might also include adequate nutrition, sleep, and
rest times in order to facilitate recovery from strenuous
training and racing. Finally, coaches and master athletes might
model their own practices on those of master athletes that
demonstrably retain high levels of performance over prolonged
historical periods.

Although the strengths of the study include analytic
innovations applied to the most extensive database
available on “best ever” marathon performances by master
athletes, a concluding comment must also mention
the study’s limitations. Analysis of any such database
can only be retrospective. Master athletes may exhibit
high-level or low-level performances but assignment
to such conditions cannot be by random assignment.
Consequently, drawing causal inferences requires caution.
Moreover, the database provides information mainly on
performance times and demographics. It requires more
exhaustive investigations to fully understand why and
how some master athletes retain elite status over prolonged
historical periods.
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