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Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes 
via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of 
pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell 
culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 
75% helium, neon, argon, krypton, or xenon instead of nitrogen. the replacement of nitrogen with noble gases per se had 
no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, 
neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, 
the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to 
the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-
sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon 
inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated 
image analysis. the antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.
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Introduction

The inhibition or delay of ischemic cell death is an important 
therapeutic goal, since it widens the temporal window that 
allows for the (at least partial) recovery of tissues at reperfusion. 
The signal transduction cascades that mediate cell death upon 
ischemia/reperfusion have been extensively investigated, yet 
nowadays limited therapeutic options are available for patients 
undergoing a cerebral or cardiac ischemic episode. The 
development of novel interventions that may prevent or retard 
cell death in this setting, therefore, has major implications for 
the management of common ischemic disorders of the brain and 
heart.1,2

According to an increasing amount of studies, some noble 
gases might exert cytoprotective effects that could be harnessed 
for several clinical applications, including the prevention/
inhibition of ischemia/reperfusion-induced tissue damage.3-5 
Noble gases (i.e., helium, argon, krypton, neon, xenon, and 

radon) are naturally found in a monatomic form. According 
to the Rutherford-Bohr model, this originates from the fact 
that the outermost electron shell (also known as valence shell) 
of these elements is saturated with electrons. Such a unique 
physicochemical property is visually represented by the position 
occupied by noble gases in Mendeleev’s periodic table and de 
facto prevents them from forming covalent bonds with other 
molecules. Thus, noble gases are chemically inert under standard 
temperature and pressure conditions. Nonetheless, at least some 
of these elements can interact in a stabilizing fashion with the 
active site of specific enzymes and receptors.6,7 Of note, argon 
and xenon (but less so helium, krypton, neon, and radon) 
have been shown to mediate consistent neuroprotective,8-15 
cardioprotective,16-18 and nephroprotective4,19,20 effects in vitro, ex 
vivo, and in vivo. Though the molecular mechanisms underlying 
these observations remain largely undefined, it has been 
proposed that the cytoprotective effects of noble gases might 
result from the opening of the mitochondrial ATP-sensitive K 
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(mitoK
ATP

) channels.16,21 Thus, some inert gases may mediate 
organoprotective effects via a signaling pathway that overlaps—at 
least in part—with that activated by ischemic preconditioning.22

Cell death can be classified according to the morphological 
appearance of the lethal process23,24 or to specific biochemical/
functional markers.25-27 The most common form of regulated 
cell death, apoptosis, generally manifests with the progressive 
shrinkage of the cytoplasmic and nuclear compartments followed 
by blebbing, a peculiar phenomenon that generates discrete 
apoptotic corpses containing nuclear fragments and relatively 
intact cytoplasmic organelles.23,24 Such a morphologically 
stereotyped form of cell death can be initiated by both 
extracellular and intracellular cues, which are converted into 
a lethal response via two distinct, yet partially overlapping, 
signal transduction cascades.25,26 In particular, intrinsic 
apoptosis is activated by a wide variety of intracellular stress 
conditions (e.g., DNA damage, endoplasmic reticulum stress, 
Ca2+ overload, oxidative stress) and is mediated by a cascade of 
biochemical events that culminate in widespread mitochondrial 
membrane permeabilization (MMP).23,24 Upon MMP, not only 
is mitochondrial ATP synthesis abrogated as a result of the 
dissipation of the mitochondrial transmembrane potential (Δψ

m
), 

but also, several cytotoxic proteins that normally reside within 
the mitochondrial intermembrane space, such as cytochrome c 
and apoptosis-inducing factor,28,29 are released into the cytosol. 
Extra-mitochondrial cytochrome c orchestrates the assembly 
of the so-called “apoptosome”, a supramolecular complex that 
catalyzes the proteolytic maturation of the central execution of 
apoptotic cell death, i.e., caspase-3.25,26

Here, we report that 2 noble gases, argon and xenon, are able 
to limit intrinsic apoptosis as stimulated by the broad-spectrum 
kinase inhibitor staurosporine (STS), the DNA-damaging agent 
mitoxantrone (MTX), and several mitochondrial toxins. Argon 
and xenon inhibited several manifestations of STS-induced 

apoptosis, including Δψ
m
 dissipation and caspase-3 activation, 

thus far resembling the widely employed pan-caspase blocker 
Z-VAD-fmk.

Results and Discussion

Automated fluorescence microscopy reveals the 
cytoprotective activity of argon and xenon

To evaluate the possible cytoprotective effects of inert gases, 
we designed an experimental system that allows for the automated 
fluorescence microscopy-based assessment of cell number upon 
the culture of human osteosarcoma U2OS cells stably expressing 
a histone 2B-red fluorescent protein (RFP-H2B) chimera (which 
labels chromatin) in the presence of pre-determined gas mixtures. 
Thus, U2OS cells were grown in the presence of a control 
atmosphere (75% N

2
, 20% O

2
, and 5% CO

2
) or atmospheres in 

which N
2
 was selectively replaced by 6 alternative gases (He, Ne, 

Ar, Kr, Xe, or N
2
O), while O

2
 and CO

2
 concentrations were kept 

unaltered (Fig. 1). Of note, to avoid possible bias resulting from 
the gaseous component of culture media, these were invariably 
pre-saturated with the atmosphere of choice.

Along with the substitution of atmospheric conditions, U2OS 
cells were placed in drug-free culture medium or in medium 
supplemented with STS (a broad-spectrum kinase inhibitor 
that interrupts most—if not all—trophic signaling cascades),30 
mitoxantrone (a DNA-damaging anthracycline),31 rotenone (an 
inhibitor of the complex I of the mitochondrial respiratory chain),32 
antimycin A (an inhibitor of the complex III of the mitochondrial 
respiratory chain),33 or menadione (a redox-cycling agent that 
stimulates the overproduction of reactive oxygen species),34 for 
6 or 16 h. At the end of the experiment, culture plates were fixed 
and processed by a robotized fluorescence microscopy-based 
imaging platform for the automated quantification of residual 
cell number.

Figure 1. experimental setup employed in this study. Human osteosarcoma U2OS cells stably expressing a histone 2B-red fluorescent protein (H2B-
rFP) chimera were maintained in control conditions or exposed to a panel of cytotoxic compounds within gas tight chambers containing a standard 
atmosphere (20% O2, 5% CO2, and 75% N2) or a gas mixture in which N2 was specifically replaced with He, Ne, Ar, Kr, Xe, or N2O, while O2 and CO2 
concentrations were kept unaltered. After 6 or 16 h, cells were fixed in the presence of Hoechst 33342, optionally stained for the detection of cytochome 
c release and caspase-3 activation, and subjected to robotized (immuno)fluorescence microscopy followed by automated image acquisition.
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This experimental approach revealed that Ar and Xe, but 
not He, Ne, Kr, and N

2
O, can prevent the apparent cell loss 

(reflecting either antiproliferative effects, either lethal effects, 
or a combination of both) induced by several distinct cytotoxic 
agents (Fig. 2). The cytoprotective activity of Ar and Xe was 
nearly complete at an early time point (6 h post-stimulation, 
Fig. 2A and C), yet progressively declined (as demonstrated 
at 16 h post-stimulation, Fig. 2B and C). However, even after 
a cell death induction period of 16 h, Ar and Xe were able to 
significantly blunt the cell loss induced by STS and antimycin A  
(Fig. 2B and C).

Collectively, these results suggest that Ar and Xe can 
counteract the antiproliferative and cytotoxic effects of several 
agents through a cell-autonomous effect that is measurable in 
vitro on cultured human cells.

Mechanisms of cytoprotection by argon and xenon
STS is well known to stimulate the intrinsic pathway of 

apoptosis, which involves an obligatory step of MMP near-to-
invariably accompanied by caspase activation.35,36 Accordingly, 
human osteosarcoma U2OS cells exposed to STS manifested Δψ

m
 

dissipation, as quantified with the Δψ
m
-sensitive fluorochrome 

DiOC
6
(3), followed by the loss of plasma membrane integrity, 

as assessed with the vital dye propidium iodide (PI). The 
substitution of N

2
 with Ar or Xe reduced both such signs 

of apoptotic cell death, similar to the administration of the 

pan-caspase inhibitor Z-VAD-fmk (Fig. 3A and B). Of note, the 
administration of Z-VAD-fmk to U2OS cells exposed to STS in 
the presence of Ar or Xe (rather than of N

2
) failed to generate 

additive cytoprotective effects (Fig. 3B), suggesting that Ar and 
Xe inhibit cell death by acting on a signal transduction pathway 
that is sensitive to Z-VAD-fmk (and hence presumably involves 
caspases).

To further substantiate the capacity of Ar and Xe to interfere 
with the intrinsic pathway of apoptosis, we measured the 
capacity of these noble gases to limit the cytosolic redistribution 
of cytochrome c and the subsequent activation of caspase-3 
as triggered by STS. To this aim, we employed a 2-color 
fluorescence staining protocol that allows for the combined 
assessment of cytochrome c subcellular localization (changing 
from a punctuate, filamentous mitochondrial pattern to a 
diffuse, uniform distribution in the course of apoptosis) and 
caspase-3 proteolytic activation (generating a neo-epitope which 
can be recognized by means of specific monoclonal antibodies). 
Ar and Xe were indeed able to reduce the frequency of cells 
that, in response to STS, exhibited the mitochondrial release of 
cytochrome c and the activation of caspase-3 (Fig. 4).

Taken together, our findings indicate that Ar and Xe 
effectively inhibit an early step in the cascade of events leading to 
mitochondrial apoptosis, de facto preventing MMP, cytochrome 
c release, caspase activation, and, hence, avoiding cell death.

Figure  2. Cytoprotective profile of inert gases. (A–C) Human osteosarcoma U2OS cells engineered for the stable expression of a histone 2B-red 
fluorescent protein (H2B-rFP) chimera were left untreated of exposed to increasing concentrations (0.1×, 0.33×, 1×, 3×, or 10× LD50) of menadione (MeN), 
rotenone (rOt), staurosporine (StS), antymicin A (ANt), or mitoxantrone (MtX), in control atmospheric conditions (N2) or in the presence of gasmixtures 
in which N2 was specifically replaced with He, Ne, Ar, Kr, Xe, or N2O for 6 (A and C) or 16 h (B and C). thereafter residual cell number was quantified by 
robotized fluorescence microscopy coupled to automated image analysis. In (A and B), quantitative results upon normalization are reported as means 
± SD, the upper and lower limits of statistical significance relative to control conditions (standard N2-containing atmosphere) being indicated by dashed 
black lines. In (C), normalized quantitative data (means) are reported in the form of heat map (dynamic range = 50–100%).
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Concluding remarks
The data contained in this report indicate that gas mixtures 

containing 5% CO
2
, 20% O

2
, and 75% argon or xenon (as opposed 

to nitrogen) confer some degree of cytoprotection to cultured 
human cells. Indeed, the antiproliferative and pro-apoptotic effects 
of several cytotoxic chemicals, including STS, mitoxantrone, and 
various mitochondrial poisons, were significantly reduced by the 
presence of argon or xenon, but not by that of other noble gases, 
including helium, neon and krypton. In sharp contrast, argon and 
xenon failed to influence the autophagic response of cultured cells 
to stress (measured as the aggregation of a fluorescent LC3 variant 
in cytoplasmic dots upon the administration of rapamycin)37,38 
and the incidence of aberrant mitosis (quantified by means of a 
fluorescent centrin-based biosensor)39 (data not shown). Rather, 
argon and xenon suppressed multiple manifestations of the 
intrinsic pathway of apoptosis, including two distinct signs of 
MMP as well as the activation of caspase-3.

Xenon has been shown to mediate prominent neuro-
protective,8,11-15 cardioprotective16-18 and nephroprotective4,19,20 
effects in vivo. Thus, xenon protects the fetal brain in rat and 
piglet models of intrauterine perinatal asphyxia, a process 
that is accompanied by a significant reduction in neuronal 
apoptosis,11,12,14,15 inhibits nitrous oxide- and isoflurane-induced 
neuronal death (and the consequent cognitive impairment) in 
newborn rats13 and blunts the death of neurons triggered by the 
occlusion of the middle cerebral artery in rodents.8 In addition, 
xenon reportedly reduces the lethal response to cold injury of 
organotypic cultures of rat hippocampus,8,9 as well as the N-methyl-
D-aspartate (NMDA)-induced influx of Ca2+ ions in cultured 
neurons,8 an event that is critically involved in excitotoxicity.29 
Xenon has also been shown to protect isolated rabbit hearts from 
ischemia/reperfusion injury,16 an effect that was abolished by the 
specific mitoK

ATP
 channel blocker 5-hydroxydecanoate.16 Along 

similar lines, xenon limits the mid-term ventricular remodeling 
triggered by myocardial infarction in neonate rats, resulting in 
improved contractility and increased ejection fraction.18 Finally, 
xenon has been shown to reduce the renal allograft injury that is 
generally associated with prolonged hypothermic graft storage in 
multiple rat models of transplantation.4,19,20 Of note, the effects 
of xenon may exhibit some degree of context dependency, as some 
reports indicate that, at least under specific circumstances, xenon 
mediates cytotoxic, rather than cytoprotective, effects in vitro 
and in vivo.40,41

In contrast to the abundant literature dealing with xenon, 
only a few studies have previously alluded to the cytoprotective 
potential of argon. One such work demonstrated that argon can 
reduce neuronal apoptosis in fetal cortical slices exposed to oxygen 
and glucose deprivation in vitro.10 In addition, argon reportedly 
shares with xenon the ability to improve the cytoprotective effects 
of hypothermic storage in a rat model of renal transplantation, 
significantly improving the functions of the graft.4 In this setting, 
however, 2 additional, potent cytoprotective interventions 
were employed, hypothermia and complete oxygen depletion. 
Conversely, here we replaced nitrogen with inert gases, leaving 
the concentrations of both oxygen and carbon dioxide unaltered, 
and used metabolically active, proliferating cells.

Figure  3. Antiapoptotic effects of argon and xenon. (A  and B) Wild-
type human osteosarcoma U2OS cells were left untreated or treated 
with 1 μM staurosporine (StS), 50 μM Z-VAD-fmk (Z-VAD), or both in 
control atmospheric conditions (N2) or in the presence of gas mixtures, 
in which N2 was specifically replaced with Ar or Xe, for 8 h. thereafter, 
cells were processed for the cytofluorometric assessment of apoptosis-
related upon DiOC6(3)/propidium iodide (PI) co-staining. representative 
dot plots are depicted in (A), while quantitative data are in (B). In (B), 
black and white column illustrate the percentage of dead (PI+) or dying 
(PI-DiOC6[3]low) cells, respectively (means ± SD). *P < 0.05 (Student t test), 
as compared with untreated cells maintained in control atmospheric 
conditions. #P < 0.05 (Student t test), as compared with cells treated with 
StS in control atmospheric conditions; ns, non significant (Student t test), 
as compared with cells treated with StS and Z-VAD in equal atmospheric 
conditions.

The expression “noble gas” translates the German word 
“edelgas”, a term that points to the extremely low chemical 
reactivity of these elements. It may therefore seem surprising 
that only 2 among the 5 noble gases tested here turned out to 
mediate cytoprotective effects. Moreover, these 2 gases, argon 
and xenon, are separated in Mendeleev’s periodic table by another 
element, krypton. These observations underscore the difficulty 
to apprehend the mode of action of noble gases and their effects 
on biological systems. Notwithstanding these caveats, argon 
and xenon appear to share a broad antiapoptotic activity that 
might be harnessed for several distinct experimental and clinical 
applications.
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Material and Methods

Cell culture and treatments
Unless otherwise indicated, chemicals were purchased from 

Sigma-Aldrich, while media and supplement for cell culture 
were from Gibco®-Life Technologies™. Wild-type human 
osteosarcoma U2OS cells were obtained from the American 

Type Culture Collection (ATCC) and maintained in Dulbecco 
modified essential medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS), 10 mM HEPES buffer, 100 units/
mL penicillin sodium, 100 μg/mL streptomycin sulfate, and 1X 
non-essential amino acids. The generation of U2OS cells stably 
expressing H2B-RFP or green fluorescence protein (GFP)-LC3 
chimeras has previously been described.42-44 Genetically modified 
U2OS cells were propagated in the presence of 5 μg/mL 
blasticidine.

Gas exposure
Five thousand H2B-RFP- or GFP-LC3-expressing cells were 

seeded in 96-well BD Falcon™ black/clear imaging plates (BD 
Biosciences) and maintained under standard culture conditions 
(200 μL medium/well, 37 °C, 5% CO

2
) for 24 h. Thereafter, 

160 μL medium were removed from each well and replaced 
with 150 μL of fresh medium that had previously been saturated 
with pre-determined gas mixtures by bubbling (flow rate = 1 L/
min, 10 min). Ten μL of drug-free culture medium or medium 
containing a 20× concentration of the chemicals employed in 
this study were employed to restore a final culture volume of 
200 μL, and plates were transferred into System Duetz gas-
tight chambers (Enzyscreen). Upon verification of the tightness 
of the chamber, gas mixtures were washed in (flow rate = 10 L/
min), until CO

2
 concentrations at the outlet and inlet ports of 

the chamber, measured by a g100 gas analyzer (GeoTech), were 
equivalent. Chambers were incubated at 37 °C in the dark for 6 
or 16 h, after which cells were fixed with 3.7% paraformaldehyde 
(w:v in PBS), optionally supplemented with 1 μg/mL Hoechst 
33342 (Molecular Probes®-Life Technologies™) for 20 min. 
Eventually, the fixative was replaced with PBS, and plates were 
either destined to automated imaging as such (for the assessment 
of cell number) or further processed for immunostaining (to 
determine cytochrome c release and caspase-3 activation). Gases 
were manipulated and stored following common safety rules 
and institutional guidelines. Gas mixtures were kept at room 
temperature for at least 48 h before the experiment to avoid 
liquefaction-related changes in composition.

Assessment of cytochrome c release and caspase-3 activation
Cytochrome c release and caspase-3 activation were monitored 

by automated imaging upon immunostaining with specific 
antibodies, as previously described45,46 To this aim, cells fixed 
and stained with Hoechst 33342 as described above were washed 
once in PBS and permeabilized with 0.1% Triton X100 (v:v in 
PBS), followed by the blocking of unspecific binding sites with 
2% bovine serum albumin (w:v in PBS). Thereafter, cells were 
sequentially immunostained with primary antibodies, specific 
for cytochrome c (rabbit monoclonal IgG1 # 556432, BD 
Biosciences) and active caspase-3 (CASP3a, rabbit monoclonal 
IgG #9661, Cell Signaling Technology Inc), and appropriate 
Alexa Fluor conjugates (Molecular Probes®-Life Technologies™). 
Upon 2 washes in PBS, plates were subjected to automated 
imaging.

Automated image acquisition and analysis
For automated (immuno)fluorescence microscopy, a 

robot-assisted BD Pathway 855 High-Content BioImager 
(BD Biosciences) equipped with Photofluor light sources 

Figure  4. Argon- and xenon-mediated inhibition of mitochondrial 
membrane permeabilization and caspase activation. (A–C) Wild-
type human osteosarcoma U2OS cells were left untreated or treated 
with 1 μM staurosporine (StS), 50 μM Z-VAD-fmk (Z-VAD) or both, in 
control atmospheric conditions (N2) or in the presence of gas mixtures 
in which N2 was specifically replaced with Ar or Xe for 8 h. thereafter, 
cells were processed for the assessment of cytochrome c (Cyt C) release 
and caspase-3 (Casp-3) activation by robotized immunofluorescence 
microscopy coupled to automated imaging. representative images are 
reported in (A and B) (scale bar = 10 μm), while normalized quantitative 
data on Casp-3 activation (rU, means ± SD, calculated on > 500 cells per 
conditions) are illustrated in (C). *P < 0.05 (Student t test), as compared 
with untreated cells maintained in control atmospheric conditions. #P < 
0.05 (Student t test), as compared with cells treated with StS in control 
atmospheric conditions.
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(Chroma), multiple excitation and emission filters (Semrock) 
and an ORCA-AG Deep Cooled Digital Camera (Hamamatsu 
Photonics) was used to acquire at least 4 viewfields per sample 
(20× magnification).

Images were automatically processed by means of the BD 
AttoVision™ software version 1.7 (BD Biosciences). In particular, 
the following regions of interests (ROIs) were defined: nuclei, 
identified using the H2B-RFP or Hoechst 33342 signals; and 
cells, defined by the nuclear area plus a perinuclear extension 
of 10 pixels. Objects were equalized and contrasted from the 
background by means of shading and rolling-ball pre-processing 
filters, followed by automatic signal-to-noise thresholding. To 
exclude events corresponding to more than one nucleus from 
the analysis, successful segregation of each nucleus as a unique 
ROI was conducted using an open pre-processing filter combined 
with a watershed erosion algorithm. The putative bias coming 
from cellular debris of overlapping clusters of nuclei was eluded 
by applying a “scrap” algorithm set to minimal and maximal size 
limits of 50 and 2500 pixels, respectively.

Cytofluorometry
To monitor apoptosis-associated parameters, cells were 

co-stained with 1 μg/mL propidium iodide (PI) (Sigma-Aldrich), 
which identifies cells with ruptured plasma membranes, and 40 
nM 3,3′dihexiloxalocarbocyanine iodide (DiOC

6
[3]; Molecular 

Probes®-Life Technologies™), which measures Δψ
m
, as previously 

reported.47,48 Cytofluorometric acquisitions were performed 
on a FACSCalibur™ cytometer (BD Biosciences), and first-line 
statistical analyses were with the CellQuest™ software (BD 

Biosciences) upon gating on the events characterized by normal 
forward and side scatter.

Statistical procedures
Unless otherwise specified, experiments were performed in 

triplicate instances. Data were analyzed with Excel (Microsoft 
Co) and Prism 5 (GraphPad Software Inc). Raw data on cell 
number and caspase-3 activation were obtained from a population 
of at least 100 cells per experimental condition, in duplicate 
parallel instances, and normalized to appropriate control values. 
Statistical significance was assessed by means of Student t-tests.  
P values < 0.05 were considered statistically significant.
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