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Abstract
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often

used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine

mediated and immune correlates of protection. However, knowledge of the structure of the

SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function

and potential efficacy of SIV antibody responses. In this study we describe the use of a com-

petitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV

Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs

directed against major sites of SIV Env vulnerability analogous to broadly neutralizing anti-

body (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-

site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets

of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of

neutralization breadth and potency as well as others that demonstrated binding but not neu-

tralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel

of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV

mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for

understanding the variables in development of a HIV vaccine or immunotherapy.

Author Summary

An antibody-based approach targeting human immunodeficiency virus (HIV) envelope
(Env) protein may eventually prove to be effective in treating or preventing HIV infection.
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However, before any candidate HIV treatment or vaccine can be tested in humans, it must
first be evaluated in nonhuman primates (NHPs)–the closest living relatives to humans.
Simian immunodeficiency virus (SIV) is the closest available non-chimeric virus—NHP
model for studying and testing HIV vaccines or therapies. The SIV model complements
the simian-human immunodeficiency virus (SHIV) model in distinctive ways, although
less is known about SIV Env-specific antibody responses in NHPs. There are several sites
on HIV Env that are vulnerable to antibody-mediated protection, and here we isolated
and analyzed monoclonal antibodies (mAbs) from NHPs targeting analogous sites on SIV
Env. In particular, we studied mAbs for their ability to bind the viral Env protein and to
block infection of cells by widely divergent strains of SIV. These well-characterized SIV
Env-specific antibodies will allow for more thorough NHP pre-clinical testing of various
antibody-based SIV/HIV vaccine and immunotherapeutic strategies before proceeding to
human clinical trials and may yield unanticipated findings relating to molecular mecha-
nisms underlying the unusual breadth of neutralization observed in HIV-2 infection.

Introduction
Generating protective antibody responses by vaccination is the ultimate goal of an effective
HIV vaccine [1–4]. As such, a number of highly potent bnAbs targeting major sites of HIV-1
Env vulnerability such as the CD4bs [5–8], peptido-glycans of variable loops V1, V2 and V3
[9–12], the membrane-proximal external region (MPER) [13–15] and the gp41-gp120 interface
[16, 17] have been isolated and examined for their potential impact on HIV vaccine design
[18–20]. The specificity and effector functions of protective, non-neutralizing antibodies
(pnnAbs) are likewise being scrutinized for their potential complementary role toward protec-
tion against HIV infection [21–24]. However, recent studies highlight the challenges to devel-
oping an effective HIV-1 vaccine [25–34] and suggest that a better understanding of SIV Env-
specific antibody responses might complement and inform HIV vaccine design. This possibil-
ity is underscored by the protective effects of Env targeted antibodies elicited by adenovirus-
vectored immunogens in SIV protection trials [35–38] and the surprising discovery that HIV-
2, a derivative of SIVsmm, commonly elicits bNabs in natural human infection [39–41]. A bet-
ter understanding of protective SIV Env-specific antibody responses may thus facilitate more
effective use of the SIV challenge model to evaluate candidate vaccines and immunotherapies
before proceeding to costly, time consuming and resource intensive human clinical trials.

Design of a HIV immunogen that can i) focus the antibody response to protective yet sub-
dominant or sterically hindered epitopes, ii) engage Abs encoded by germline B cell receptors
(BCRs) and iii) drive sufficient antibody affinity maturation to generate protective antibody
responses will likely require iterative immunogen design [42]. Additional work will be required
to optimize the antibody specificities and functions, alone or in combination, which are neces-
sary and sufficient to protect against HIV infection. Finally, it will be necessary to assess which
vaccine regimens and adjuvant combinations can achieve the desired germline BCR engage-
ment, affinity maturation, antibody persistence and ultimately, protective efficacy against HIV
challenge. All of these unanswered questions necessitate a relevant NHP model for HIV vac-
cine research

The SHIV—NHP model of HIV infection has been used extensively to study antibody-
mediated correlates of protection [43–46]. Chimeric SHIVs are often constructed by replacing
the envelope gene and additional accessory proteins of the pathogenic molecular clone of SIV-
mac239 with corresponding genes from selected HIV-1 subtypes followed by in vivo passaging
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for enhanced virus replication [47]. Such constructs have proven invaluable for screening can-
didate HIV immunogens and the development of pathogenic SHIV chimeras has allowed for
testing of antibody-mediated protection [48–53]. However, SHIVs have limited genetic diver-
sity [54, 55] compared with SIV challenge stocks that reflect the diversity present in primary
circulating isolates of HIV-1 [56]. Thus, protection against SIV may better estimate the protec-
tive efficacy of a HIV vaccine and may complement the SHIV model used with clinically rele-
vant reagents. Indeed, vaccine protection against acquisition of neutralization resistant SIV
challenges in rhesus macaques suggests a role for antibody-mediated protection [35–37, 57].
However, the epitope specificities and effector functions of SIV-specific antibodies mediating
protection have yet to be fully characterized. Thus, developing reagents to study SIV-specific
antibody responses in NHP can provide an informative model for defining antibody-mediated
correlates of protection.

Our overall goal was to identify SIV-specific antibodies from macaques that may inform the
development of effective HIV antibody-based interventions. Some of the most potent HIV-1
bnAbs target the CD4bs, variable regions V1/V2 and the glycan/V3 loop of gp120 [1]. Given
the paucity of SIV-specific probes, we designed scaffolded probes to isolate SIV V1V2-specific
mAbs and developed a novel competitive probe binding procedure for isolation of SIV mAbs
targeting the CD4bs as well as high-mannose glycans on gp120. Both the scaffolded probes and
competitive probe binding technique were highly efficient for the targeted isolation of SIV-spe-
cific B cells. Subsequent cloning, expression and characterization of individual mAbs identified
many novel, potent mAbs targeting multiple sites of SIV Env vulnerability, including the first
reported SIV CD4bs-specific neutralizing mAbs isolated from SIV-infected rhesus macaques.

Materials and Methods

Indian-origin rhesus macaque specimens
SIV-positive plasma and peripheral blood mononuclear cells (PBMC) were obtained from pre-
viously completed animal study protocols [35, 38, 58] (S1 Table).

Plasmids
A protein scaffold (1JO8) [59] that provides an appropriate hairpin was identified to suitably
incorporate the SIV Env V1V2 region based on stable expression, clash score and solvent acces-
sibility. This scaffold allows V1V2 to be expressed at high yield in a context that maintains
proper conformation of a native V1V2 protomer [60]. A soluble trimeric SIVmac239 gp140
foldon protein expression vector was generated by encoding SIVmac239 from residues 1 thru
722, followed by the foldon trimerization motif as previously described [61]. The following
mammalian expression vectors were used for synthesis of SIV proteins: pcDNA3.1(-) encoding
SIVmac239 gp140 foldon trimer (FT) and pVRC8400 [62] encoding either 1JO8-scaffolded
SIVsmE660.CP3C or SIVsmE660.CR54 V1V2 loop sequences (GenScript). All constructs con-
tained C-terminus 6X His-tag for protein purification followed by an Avi-tag motif for biotiny-
lation. The SIVmac239 ΔV1V2V3 gp120 plasmid encoding gp120 residues 44 to 492 (HXBc2
numbering) with truncations in the V1V2 and V3 regions as in previously reported HIV-1
CoreE gp120 proteins [63], in which residues 124 to 198 in the V1V2 loop and residues 302 to
323 in the V3 loop of SIV gp120 were replaced with GG and GGSGSG linkers, respectively and
kindly provided by Andrés Finzi. Construction of a synthetic gene encoding full-length cyano-
virin-N (CVN) inserted into a pET-26(+) vector (Novagen) has been previously described
[64]. The CD4-Ig plasmid encoding the first two N-terminal domains of the CD4 molecule
which are sufficient for high-affinity gp120 binding fused with the Fc region of human IgG1
was kindly provided by Joseph Sodroski [65].
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Protein production and purification
All SIV proteins and CD4-Ig were expressed by transient transfection of 293Freestyle (293F)
cells in serum-free medium using 293fectin transfection reagent (Invitrogen) according to
manufacturer’s instructions. Cell culture supernatants were harvested 6 days post-transfection,
passed through a 0.22 μm filter to remove any cell debris and supplemented with protease
inhibitor tablets (Roche). All SIV proteins were purified using Ni Sepharose excel affinity
media (GE Healthcare) followed by size exclusion chromatography (SEC) on a HiLoad 16/600
200 pg Superdex column (GE Healthcare). CD4-Ig was purified using a recombinant protein A
affinity column (GE Healthcare) as previously described [66]. Recombinant CVN was pro-
duced as previously reported [67]. Briefly, CVN was expressed in the BL21-DE3 E. coli strain
(New England Biolabs), followed by purification using reversed-phase chromatograpy (Sep-
Pak Vac 35cc (10g) tC18 cartridges, Waters) and gel-filtration (Superdex 75, GE Healthcare) to
ensure separation of monomeric and domain-swapped dimeric CVN.

Targeted isolation of SIV-specific B cells by fluorescence activated cell
sorting (FACS)
Cryopreserved PBMC were thawed and stained with LIVE/DEAD Fixable Violet Dead Cell
Stain (Life Technologies) as previously described [68, 69]. Cells were washed and stained with
an antibody cocktail of CD3 (clone SP34-2, BD Biosciences), CD4 (clone OKT4, BioLegend),
CD8 (clone RPA-T8, BioLegend), CD14 (clone M5E2, BioLegend), CD20 (clone 2H7, BioLe-
gend), IgG (G18-145, BD Biosciences) and IgM (clone G20-127, BD Biosciences) at room tem-
perature in the dark for 20 mins. The cells were washed twice with PBS and subsequently
stained with fluorescently labeled SIV probes to stain for CD4bs-, cyanovirin binding site
(CVNbs)- or V1V2-specific B cells.

For staining of CD4bs-and CVNbs-specific B cells, SIVmac239 gp140 FT was used in com-
bination with 4-fold or 5-fold molar excess of CD4-Ig fusion protein or CVN protein, respec-
tively. Cells were first re-suspended in 200 μl PBS with CD4-Ig:SIVmac239 gp140-PE or CVN:
SIVmac239 gp140-PE, respectively, incubated at room temperature in the dark for 20 mins fol-
lowed by 3 washes with PBS and then re-suspended in 200 μl PBS containing SIVgp140-APC
and incubated further for 20 mins at room temperature in the dark. For staining of V1V2-spe-
cific B cells, cells were re-suspended in 200 μl PBS containing PE-labeled 1JO8 SIVsmE660.
CP3C V1V2 and/or 1JO8 SIVsmE660.CR54 V1V2 and incubated for 20 mins at room temper-
ature in the dark. The stained cells were washed 3 times and re-suspended in 1 ml of PBS,
passed through a 70 μm cell mesh (BD Biosciences) then analyzed and sorted with a modified
3-laser FACSAria cell sorter using the FACSDiva software (BD Biosciences). Probe-positive B
cells were sorted as single cells into wells of a 96-well plate containing lysis solution as previ-
ously described [5]. Flow cytometric data was subsequently analyzed using FlowJo (v9.7.5).

RT-PCR, cloning and expression of immunoglobulin genes
Single B cell RNA was reverse transcribed as previously described [5], diluted 2-fold by addition
of 26 μl nuclease-free water and the cDNA plates were stored at -20°C. Individual rhesus immu-
noglobulin (Ig) heavy (H), light kappa (Lκ) and light lambda (Lλ) chain genes were amplified
by nested PCR using 5 μl cDNA as template. All PCR reactions were performed in 96-well PCR
plates in a total volume of 50 μl. For first round amplification, first-round rhesus-specific PCR
primers (S2–S4 Tables) were used to amplify gene transcripts containing 2 U of HotStar Taq
Plus DNA Polymerase (QIAGEN), 1 μl dNTP-Mix (10 mM each nucleotide) (QIAGEN), 0.5 μg
carrier RNA, 1 mMMgCl2, 1 μl forward primer mix (50 μM each primer), 1 μl reverse primer
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(25 μM each primer), using the following PCR program: 5 min at 94°C; 50 cycles of 30 sec at
94°C, 45 sec at 50°C, 45 sec at 72°C: followed by 10 min at 72°C. One-twentieth the volume of
first-round PCR product was amplified by nested PCR with second-round rhesus-specific PCR
primers (S2–S4 Tables) under the same conditions used for first round PCR. The second round
of PCR was performed for 5 min at 94°C followed by 30 cycles of 30 sec at 94°C, 45 sec at 60°C,
45 sec at 72°C and a final 10 min extension at 72°C. Amplified PCR products were analyzed on
2% agarose gels (Embi-Tec) and positive reactions sequenced directly. PCR products with pro-
ductive Igγ and IgLκ or IgLλ sequence were re-amplified with 3 μl of unpurified first round
PCR product as template and combinations of single gene-specific V and J gene primers incor-
porating unique restriction digest sites. Resulting PCR products were run on a 1% agarose gel
and purified with QIAGENGel Extraction Kit (QIAGEN) and eluted with 25 μl nuclease-free
water (Quality Biolgical). Purified PCR products were digested with appropriate restriction
digest enzymes AgeI, Nhel, BsiWI and ScaI (all from ThermoScientific) before ligation into rhe-
sus Igγ, IgLκ and IgLλ expression vectors containing a murine Ig gene signal peptide sequence
(GenBank accession number DQ407610) and a multiple cloning site upstream of the rhesus Igγ,
Igκ or Igλ constant regions (all 3 expression vectors were kindly provided by Kevin Saunders).
Transcription of these expression vectors is under the influence of human cytomegalovirus
(HCMV) promoter allowing clones to be selected based on resistance to kanamycin. Full-length
IgG was expressed as previously described [5] by co-transfecting 293F cells with equal amounts
of paired heavy and light chain plasmids then purified using Protein A Sepharose beads (GE
Healthcare) according to manufacturer’s instructions.

Immunoglobulin gene family analysis. The IgG heavy chain nucleotide sequences were
assigned to a germline variable gene using local implemented IgBlast (http://www.ncbi.nlm.
nih.gov/igblast/). A new germline V gene database was used for heavy chain germline gene
assignment and somatic mutation calculation [70]. Antibody light chain sequences were com-
pared to the rhesus monkey immunoglobulin germline sequences using IMGT/V-QUEST
from IMGT [71, 72]. Each antibody heavy chain sequence and the assigned germline V gene
were aligned using Muscle and then the nucleotide (nt) divergence was calculated. The heavy-
chain complementary determining region 3 (CDR3) sequence was extracted using the con-
served C at the end of V region and WGXGmotif for heavy chain (X represents any of the 20
amino acids) and the conserved C at the end of V region and FGXG motifs for kappa and
lambda chains. All extracted CDR3 regions were under manual inspection.

Protein and peptide binding and competition assays
Binding of SIV-specific mAbs to purified proteins or synthetic peptides was measured by
enzyme-linked immunosorbent assay (ELISA) as previously described [5]. For CD4bs competi-
tion ELISA, plates were coated with 2 μg/ml SIVmac239 gp140 FT in PBS at 4°C overnight.
After blocking with 200 μl B3T buffer (150mMNaCl, 50mM Tris-HCl, 1mM EDTA, 3.3% fetal
bovine serum, 2% bovine albumin, 0.07% Tween-20), serial dilutions of unlabeled competitor
mAbs were added to captured SIVmac239 gp140 FT in 100 μl B3T buffer for 15 mins prior to
addition of biotinylated CD4-Ig (at a concentration determined to yield O.D. of roughly 1.0–
2.0). Alternatively, competition with sCD4 was performed by addition titrating amounts of
sCD4 to SIVmac239 gp140 FT-coated plates for 15 mins prior to addition of individual mAbs
(at a concentration determined to yield O.D. of roughly 1.0–2.0) and binding was detected by
HRP-conjugated anti-monkey IgG (Rockland Immunochemicals) at a 1:5,000 dilution for 1
hour. Antibody cross-competition ELISA was performed by adding titrations of unlabeled com-
petitor mAbs to SIVmac239 gp140 FT-coated plates for 15 mins prior to addition of individual
biotinylated mAbs (at a concentration determined to yield O.D. of roughly 1.0–2.0). Plates were
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incubated for 1 hr at 37°C, washed 3 times with B3T buffer followed by incubation with strepta-
vidin-horseradish peroxidase (HRP) for 1 hr at 37°C. For peptide competition ELISA, titrations
of peptides were added to SIVmac239 gp140 FT-coated plates for 15 mins prior to addition of
individual mAbs (at a concentration determined to yield O.D. of roughly 1.0–2.0) and binding
detected by HRP-conjugated anti-monkey IgG (Rockland Immunochemicals) as above. The sig-
nal was developed by addition of 3,30,5,50-tetramethylbenzidine (TMB) substrate (SureBlue;
KPL) for 10 min. Reactions were terminated with 1 N sulfuric acid, and the optical density
(OD) was read at 450 nm. The following reagent was obtained through the NIH AIDS Reagent
Program, Division of AIDS, NIAID, NIH: SIVmac239 Env Peptide Set. The following reagent
was obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: Soluble
Human CD4 from Progenics and sCD4-183 from Pharmacia, Inc. [73]

Viral neutralization and competition assays
Plasmid DNA encoding SIV gp160 was used in combination with a luciferase reporter plasmid
containing the essential HIV structural genes to produce SIV Env pseudoviruses as described
previously [74]. Plasmids encoding SIV gp160 for clones SIVsmE660.11 [75], SIVmac239.cs.23
[76], SIVmac251.6 [76] and SIVmac251.cs.41 [77] were generously provided by David Monte-
fiori. Plasmids encoding SIV gp160 for clones SIVsm (FFv 18Nov04 ENVPL2.1, FJv 15Nov06
ENVPL2.1, FWk 12Aug04 ENVPL4.1 and RSo8 17Jan06 ENVPL1.1) and SIVmac251 (RSo8
17Jan06 ENVPL1.1 and RZj5 9Apr09 ENVPL2.1) were kindly provided by Cynthia Derdeyn
[78]. Full-length infectious molecular clones of transmitted/founder viruses corresponding to
SIVsmm lineage 1 (RM174.V1,V2,V3.tf), 5 (FTq) and “outlier” (SL92b) were derived by meth-
ods previously described [79]. In brief, naïve Indian rhesus macaques were inoculated intrave-
nously with plasma from sooty mangabey monkeys naturally infected with the SIVsmm
lineage 1 or 5 viruses or with a primary lymphocyte culture of SIVsmm SL92b obtained from a
naturally infected sooty mangabey. All three rhesus macaques became productively and chron-
ically infected. Chronic plasma from these three animals was then inoculated intravenously
into three naïve Indian rhesus macaques. Twelve days later, acute infection plasma was col-
lected, plasma viral RNA isolated, viral cDNA generated, full-length T/F SIVsmm sequences
single genome amplified by limiting dilution PCR, and the products molecularly cloned, as
described [79]. IMC sequences (GenBank accession numbers KU182919-23) were identical to
the respective inferred T/F viral genomes, which represent examples of highly diverse natu-
rally-occurring strains of SIVsmm [80]. Virus neutralization was measured using single round
infection of TZM-bl target cells by SIV Env-pseudovirus or replication-competent viruses i.e.
infectious molecular clones (IMC) in the presence of the protease inhibitor indinavir as previ-
ously described [81]. The 50% inhibitory concentration (IC50) was defined as the antibody con-
centration that caused a 50% reduction in relative light units (RLU) compared to virus control
wells after subtraction of background RLU. Half-maximal inhibitory concentration (HalfMax)
was defined as the antibody concentration that caused a 50% reduction in maximum neutrali-
zation for a given mAb while the maximum neutralization (VMax) was defined as the maxi-
mum % neutralization observed over the range of mAb concentrations tested.

Results

Isolation of rhesus antibodies targeting SIV CD4bs by competitive probe
binding
To identify SIV CD4bs-specific B cells, we prepared 2 probes exhibiting differential binding
capacity for CD4bs-specific B cells (Fig 1). A CD4bs-occluded SIVmac239 gp140 FT probe was
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prepared by mixing PE-conjugated SIVmac239 gp140 FT with a 4-fold molar excess of CD4-Ig
fusion protein [66]. An APC-conjugated SIVmac239 gp140 FT served as a CD4bs-accessible
SIVmac239 gp140 probe. SIV CD4bs-specific B cells were identified by first staining cells with
CD4-Ig:SIVmac239 gp140-PE to label all SIV-specific B cells except those blocked by excess
CD4-Ig (Fig 1). After extensive washing to remove unbound CD4-Ig:SIVmac239 gp140-PE
and excess CD4-Ig, cells were stained with SIVmac239 gp140-APC in order to label all SIV-
specific (including CD4bs-specific) B cells (Fig 1). Thus, cells stained negative for CD4-Ig:SIV-
mac239 gp140-PE but positive for SIVmac239 gp140-APC identified putative CD4bs-specific
B cells. B cells binding to both CD4-Ig:SIVmac239 gp140-PE and SIVmac239 gp140-APC
would be expected to bind to gp140 at epitopes outside of the CD4bs.

In combination with a rhesus B cell staining panel (Fig 2A) we used this competitive probe
binding staining procedure to sort 160 putative CD4bs-specific B cells from 4.4 million PBMC
(0.02% of total B cells) from a SIVmac251-infected rhesus macaque (DBM5) [58] (S1 Table;
Fig 2B). Amplification of immunoglobulin heavy and light chain variable regions yielded 37

Fig 1. Targeted isolation of SIV CD4bs-specific B cells. Schematic illustrating competitive probe binding strategy for targeted isolation of CD4bs-specific
B cells. Cells are first stained with a CD4bs-occluded probe (i.e. CD4-Ig:SIVgp140-PE) to label all SIV-specific B cells (red) except those that are specific for
the CD4bs (blue) (Step 1) as shown in FACS plot (top right). After extensive washing to remove unbound CD4-Ig:SIVgp140-PE from first stain (Step 1), cells
are stained with a CD4bs-accessible probe (i.e. SIVgp140-APC in the absence of any competing CD4-Ig) (Step 3). All SIV-specific B cells, including those
specific for the CD4bs, will bind to this probe with putative CD4bs-specific B cells (blue) being positive for SIVgp140-APC and negative for CD4-Ig:
SIVgp140-PE as shown in FACS plot (bottom right).

doi:10.1371/journal.ppat.1005537.g001
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matched heavy and light chain pairs belonging to 13 clonal families. We cloned and expressed
16 mAbs to characterize their binding and neutralization activity (Table 1). Among these 16
mAbs were 3 distinct clonal families including ITS07 and ITS16 mAbs. Rhesus heavy chain V
gene usage of cloned mAbs was mostly restricted to IGHV4 alleles although ITS07 mAbs were
IGHV3. Mutation frequency of heavy and light chain genes within the V region (based on nt
sequence divergence from nearest assigned germline sequence) ranged from 2–11%.

Binding and neutralizing activity of SIV CD4bs-specific mAbs
All putative CD4bs-specific mAbs were tested by ELISA for binding to SIVmac239 gp140 FT
used for cell sorting. While 4 mAbs showed no detectable binding, 12 mAbs bound to SIV-
mac239 gp140 FT with varying affinities (Fig 3). These 12 mAbs also bound to monomeric
SIVmac251.30 gp140 and in most cases to SIVsmE660.CP3C and/or smE660.CR54 gp120s as
well. To evaluate whether mAbs cloned from B cells isolated using our 2-step competitive
probe binding staining protocol were indeed specific for the CD4bs, we re-evaluated binding
of the 12 SIV-specific mAbs to SIVmac239 gp140 FT by competition ELISA with CD4-Ig.

Fig 2. Isolation of CD4bs-specific B cells. A) Gating strategy for isolating rhesus macaque memory B cells i.e. lymphocytes / singlets / Live /
CD3-CD4-CD8-CD14- / CD20+ / IgM- / IgG+ and B) FACS data overlay of individually sorted CD4bs-specific B cells (multicolored) as a percentage of total
memory B cells (gray). C) Competition ELISA of biotinylated CD4-Ig binding to plate-bound SIVmac239 gp140 FT in the presence of individual competing
mAbs graphed as percent inhibition = (OD without competitor—OD with competitor)/ OD without competitor X100. D) ELISA of non-binding mAbs at 5 μg/ml
to plate-bound SIVmac239 gp140 FT in the presence of varying concentrations of sCD4.

doi:10.1371/journal.ppat.1005537.g002
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Binding of CD4-Ig to SIVmac239 gp140 FT was effectively competed by 11 out of 12 mAbs
(Fig 2C) confirming their specificity for the CD4bs.

For those mAbs that failed to bind to SIVmac239 gp140 FT, we hypothesized that residual
CD4-Ig in the staining protocol may have facilitated SIVgp140-APC labeling of CD4-induced
(CD4i)-specific B cells, i.e. binding to an epitope at or near the host cell co-receptor binding
site which is exposed following binding of the primary receptor CD4. We tested whether the
presence of soluble CD4 (sCD4) could facilitate binding of mAbs DBM5-2E10, 2E11, 2B3 and
1A11 to SIVmac239 gp140 FT. The addition of sCD4 had no effect on binding of these mAbs
to SIVmac239 gp140 FT indicating these mAbs bound neither CD4bs- nor CD4i-specific B
cells (Fig 2D). Nonetheless, our sort strategy was highly efficient for isolating CD4bs-specific B
cells, as 11 out of 12 SIV-binding mAbs were CD4bs-specific.

We next assessed neutralizing activity of the 11 CD4bs-specific mAbs by TZM-bl assay
against 4 SIV Env pseudoviruses and the IMC HIV-27312A. All but one CD4bs-specific mAbs
neutralized the highly neutralization-sensitive (tier 1) isolates SIVsmE660.CP3C and SIV-
mac251.H9.15, the moderately neutralization-resistant (tier 2) isolate SIVsmE660.CR54 as well
as the primary isolate HIV-27312A (Fig 4). ITS02 was unique among the CD4bs-specific mAbs
for its strain-specific neutralization of SIVmac251.H9 but not SIVsmE660, SIVmac251.30 or
HIV-27312A. None of the CD4bs-specific mAbs cross-neutralized the highly neutralization-
resistant (tier 3) SIVmac239 (S1 Fig). As previously reported by other groups we observed that
neutralization curves of tier 2 isolates of SIVsmE660 and SIVmac251 plateaued below 100%,
and in some instances, below 50% neutralization despite using clonal, pseudo-typed viruses
[39, 56, 82]. In order to compare the potency of individual mAbs, irrespective of neutralization
plateau levels, we also calculated half-maximal (HalfMax) concentrations (i.e., the concentra-
tion required to achieve half-maximal neutralization) as well as maximum percent neutraliza-
tion (VMax) values (i.e. the maximum % neutralization over the range of mAb concentrations
tested) for individual mAbs (Fig 4). Based on these values, we determined that ITS01 and

Table 1. Genetic characteristics of mAbs isolated from animal DBM5 by CD4bs competition B cell sort. Clonally related mAbs share mAb ID numbers
(i.e. ITS07) with additional numbering to denote individual clonal members (i.e. ITS07.01 and ITS07.02)

mAb ID Rhesus heavy
chain V gene

% Divergence (nt)
from germline

CDRH3 Rhesus light
chain V gene

% Divergence (nt)
from germline

CDRL3

ITS01 IGHV4B*02 7% ARGGNIWTGYHSTYFYY IGLV1-14*01 6% QSFDSSVSVQV

ITS02 IGHV4C*01 2% ARDRSSYYTRGLDS IGLV3-1*01 1% QVWDSSSDHYI

ITS07.01 IGHV3M*01 10% VRDGALDCTGSGCWVFDY IGLV5-14*01 5% AIGHSRGYT

ITS07.02 IGHV3M*01 10% VRDGALDCTGSSCWVFDY IGLV5-14*01 4% AIGHSRGYT

ITS08 IGHV4G*02 10% ARTWGIFGLVKNMRFDV IGKV2S17*01 2% MQGLEFPLT

ITS16.01 IGHV4L*02 5% ARHSAGITAAWIGGNRRKTDY IGKV1-12*01 3% QQYNSDPHS

ITS16.02 IGHV4L*02 6% ARHSAGLTAAWIGGRRRKTDY IGKV1-12*01 3% QQYTSDPHS

ITS16.03 IGHV4L*02 6% ARHSAGLTAAWIGGRRRKTDY IGKV1-12*01 4% QQYNSDPHS

ITS19 IGHV4L*03 6% ARHSAGLTAAWIGGSRRKTDY IGKV1-14*01 2% QQRNGYPWT

ITS20 IGHV4L*02 7% ARHSTGLTAAWIGGRRRKIDY IGKV3-5*01 6% QETSDLFT

ITS23 IGHV4F*02 11% ARDETKFGLVVS IGLV1-7*01 5% QSYDTNLRIL

ITS27 IGHV4G*01 11% ARGSNIWTSYYDNWFDV IGLV1S1*01 8% STWDSSLSTGL

DBM5.2E10 IGHV4K*01 6% ASDLLDFWTGYYTGWFDV IGKV1-14*01 3% QQRNGYPWT

DBM5.2E11 IGHV4K*01 6% ASDLLDFWTGYYTGWFDV IGKV1-12*01 4% QQYNSDPHS

DBM5.2B3 IGHV4K*01 6% ASDLLDFWTGYYTGWFDV IGKV2S17*01 2% MQGLEFPLT

DBM5.1A11 IGHV7-B*01 10% ARRGFYWSDRGLDS IGKV3S7*01 9% QQTGDWPLS

doi:10.1371/journal.ppat.1005537.t001
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Fig 3. ELISA binding profiles of SIV-specific mAbs.mAbs cloned from individually sorted SIV Env-specific B cells were evaluated for binding to selected
SIV Env proteins. ELISA binding was categorized as indicated by the legend. ND = not determined.

doi:10.1371/journal.ppat.1005537.g003
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Fig 4. Summary of neutralization potency and cross-reactivity of SIV-specific mAbs. SIV mAbs cloned from targeted B cell sorts to isolate CD4bs-,
CVNbs-and V1V2-specific B cells. Individually sorted SIV CD4bs-, CVNbs- and pre- and post-SIV infection V1V2-specific B cells were evaluated for
neutralization of SIV pseudoviruses and HIV-27312A. Values >50 indicate no neutralization while >50 with asterisk (*) indicates neutralization curve plateaued
below 50%. ND = not determined.

doi:10.1371/journal.ppat.1005537.g004
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ITS20 were also weakly neutralizing against tier 2 SIVmac251.30 and that the potency of indi-
vidual CD4bs mAbs was similar irrespective of the VMax levels.

Antibodies targeting the cyanovirin binding site of SIV
Given the efficiency of our CD4bs competitive binding sort technique, we used the same strat-
egy to isolate antibodies specific for the SIV Env glycan targets of cyanovirin (CVN), a potent
inhibitor of primary and lab-adapted isolates of HIV and SIV [83]. Cyanovirin selectively
binds to Man8 D1D3 and Man9 residues on N-linked glycans present on gp120 [67]. Binding
of CVN also occludes the unique 2G12 neutralization epitope of HIV-1 Env gp120 [84]. We
sorted putative cyanovirin binding site (CVNbs)-specific B cells from 4 SIVsmE660-infected
rhesus macaques (05D247, A4V014, ZB08, ZB42) [35] (S1 Table; Fig 5A) and cloned and
expressed a total of 32 mAbs from these 4 macaques (Table 2). Although 29 out of 32 mAbs

Fig 5. Isolation of CVNbs-specific B cells. A) FACS data overlay of individually sorted CVNbs-specific B cells (multicolored) from 4 SIV-infected rhesus
macaques as a percentage of total memory B cells (gray). B) Summary of competition ELISA of individual mAbs showing percent inhibition: 75–100%
competition (+++); 50–74% competition (++); 25–49% competition (+); <25% competition (-) or increased binding (Enhanced) in the presence of competing
CVN.

doi:10.1371/journal.ppat.1005537.g005
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cloned from the CVNbs competition sort bound to SIVmac239 gp140 FT (Fig 3), only 11 of
these mAbs competed with CVN for binding to gp140 (Fig 5B). Intriguingly, the presence of
CVN rescued the binding of 2 mAbs (ITS56 and ITS57) that failed to bind to SIVmac239
gp140 FT alone suggesting recognition of an epitope on both gp140 and CVN that is only pres-
ent when they are bound together or conformational change(s) induced upon CVN binding
that facilitated binding by these mAbs.

Antibodies isolated by CVNbs competition primarily target nonlinear Env
epitopes
The anti-HIV-1 activity of CVN is reportedly mediated through high affinity interactions with
oligomannose residues suggesting multiple potential binding sites [67]. However, previous

Table 2. Genetic characteristics of mAbs isolated from CVNbs competition B cell sort.

mAb ID Animal Rhesus heavy
chain V gene

% Divergence
(nt) from
germline

CDRH3 Rhesus light
chain V gene

% Divergence
(nt) from
germline

CDRL3

ITS50 05D247 IGHV4L*03 1% ARANYEDDYGYYYKWGGVFDY IGKV1-21*01 1% QQYDDLPYS

ITS51 05D247 IGHV1E*01 4% AASRSGNWYFDL IGLV4S4*01 3% QTWTNGIVL

ITS52 05D247 IGHV4A*02 5% ACPLSGGLNYVLDV IGKV1-21*01 8% LQYTTSPWT

ITS53 05D247 IGHV3W*02 5% ATMDL IGKV2S18*01 9% MQTLQTPFS

ITS54 05D247 IGHV4I*01 4% ARLTVRRLDV IGKV1S24*01 10% QHGYGTPLT

ITS55 05D247 IGHV4L*03 6% AREIGTTIIFRE IGKV1S26*01 4% QQGNSKPFT

ITS56 A4V014 IGHV1I*01 0% ARAQGVYYEDDYGLYFDY IGLV5-7*01 1% TWHGNSKTVL

ITS57 A4V014 IGHV3K*01 7% AMGSGGHSSRDVFDF IGKV1-13*01 2% LQGYDPPYS

ITS58 A4V014 IGHV7B*01 1% ARWDWILQSLDWRVNSLDV IGKV2S5*01 8% MQGTHFPLT

ITS59 A4V014 IGHV3W*01 4% TRDLPYTSWCRGDY IGLV1-15*01 7% AAWDDSLSGVL

ITS60 A4V014 IGHV4F*01 1% ARAFWGYEDDYGYSDNGVYFDS IGLV3-1*01 4% QVWDFSSDHPI

ITS61.01 ZB08 IGHV3K*01 7% VKGMRGDHEVESFEQIIAADPQGDV IGKV2S17*01 5% MQGVEFPWT

ITS61.02 ZB08 IGHV3K*01 8% VKGMRGDIEVESFAQIIAADPAGDV IGKV2S17*01 4% MQGVEFPWT

ITS62 ZB08 IGHV4F*01 11% ASILTGLEFDF IGLV3-1*01 10% QVWDISGDHMF

ITS63 ZB08 IGHV4F*01 8% ASGYSGYSPFDY IGKV1S9*01 12% QHNYGTPWT

ITS64 ZB08 IGHV4F*01 7% ARDSGIAAGEFDY IGKV1-22*01 8% QQYNSSPFT

ITS65 ZB08 IGHV3D*01 2% AGDYDYGSNFLVDY IGKV2S11*01 2% VQVIAFPFT

ITS66.01 ZB08 IGHV3J*01 3% ATGGWLLPFGY IGLV1S1*01 8% GAWDSSLSAGL

ITS66.02 ZB08 IGHV3J*01 5% STGGWLLPFGY IGLV1-13*01 6% GAWDSSLSAGL

ITS67 ZB08 IGHV4F*01 7% ARDGEATFDS IGKV3-8*01 1% QQENSTPT

ITS68 ZB08 IGHV7B*01 2% ARQSRENTGFDY IGKV3S6*01 1% QQESNWSLT

ITS69 ZB08 IGHV1F*02 1% ARTGIQWAQLDLGENYY IGLV3-6*01 5% QVWDSSSKYVL

ITS70 ZB42 IGHV4L*03 6% ARDLVDSEYEVVWFDV IGLV1-13*01 3% GAWDTSLSARV

ITS71 ZB42 IGHV3L*01 5% TRGSGWSEGNEEYFEF IGLV6-5*01 6% QSFDSNTYWL

ITS72 ZB42 IGHV1E*02 5% ARGPRYEDDYGYYDWYFDL IGLV3-1*01 7% QVWDLSSDHVL

ITS73 ZB42 IGHV3L*01 3% TRGNNFWSGSSHYFDY IGLV1-7*01 5% QSYDSSLSVHWV

ITS74 ZB42 IGHV3K*01 2% AKDLPEYCSGSGCYAAPFDY IGKV2-3*01 3% MQALQAPYS

ITS75 ZB42 IGHV4E*02 2% ARHLGGLNYGGRFDF IGKV1-22*01 7% LQYSSSPFT

ITS76 ZB42 IGHV3A*01 4% ARDRSIAAATYYFDY IGLV2S6*01 4% NSYAGSNTFI

ITS77.01 ZB42 IGHV4L*03 6% ARVPGIWFSKYYTFDF IGLV2S9*01 6% GSYREGSTFI

ITS77.02 ZB42 IGHV4L*03 7% ARVPGIWFTNYYVFDF IGLV2S9*01 7% GSYRDGSTFI

ZB42.1H5 ZB42 IGHV4A*02 5% ATIVVAVSAISWFDV IGLV1-10*01 2% SAWDSSLSGVL

doi:10.1371/journal.ppat.1005537.t002
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studies have reported that binding of CVN occludes subsequent binding of the bnAb 2G12 but
not mAbs targeting the V3 and V4 loops, C4 region, CD4bs or CD4i epitopes of HIV-1 indicat-
ing a more defined binding epitope for CVN [84]. To map the SIV epitope(s) targeted by
mAbs isolated by CVNbs competition we also assessed competition between these mAbs and
sCD4. The presence of competing sCD4 did not block binding of any mAbs isolated by CVNbs
competition (Fig 5B). However, one mAb (ITS51) showed enhanced binding to SIVmac239
gp140 FT in the presence of sCD4 (Fig 6A) indicating this mAb likely targets a CD4i site. Addi-
tionally, we tested mAbs from this sort for binding to overlapping SIVmac239 Env 15-mer
peptides. Of 31 mAbs that exhibited SIV gp140 FT binding, 30 were negative for binding to
SIVmac239 Env peptides. Only ITS52 was mapped to a linear peptide sequence near the V3
loop tip (Fig 6B). To further evaluate the epitope binding specificities of mAbs isolated by

Fig 6. Mapping of CVNbs-specific mAbs. A) Competition ELISA of ITS51 and ITS01 (CD4bs) binding to SIVmac239 gp140 FT in the presence or absence
of competing sCD4 or CD4-Ig. B) ELISA binding of ITS52 to SIVmac239 Env 15-mer overlapping peptides. C) ELISA binding curves showing SIVmac239
ΔV1V2V3 gp120 core-binding data of mAbs isolated from CVNbs competition B cell sort and control SIV mAbs.

doi:10.1371/journal.ppat.1005537.g006
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CVNbs competition, we tested binding of individual mAbs to a SIVmac239 ΔV1V2V3 gp120
core protein generated by deletion of the V1V2 loops and truncation of the V3 loop [63]. Of 31
mAbs that bound to SIVmac239 gp140 FT, 7 were also positive for binding to SIVmac239
ΔV1V2V3 gp120 core protein (Fig 6C). As expected, ITS01, a CD4bs-specific mAb also bound
to ΔV1V2V3 gp120 core protein while V2-specific (ITS03) and V3-specific (ITS52) mAbs did
not.

To assess overlapping SIV Env epitope-binding specificities of ITS52 and other mAbs iso-
lated by CVNbs competition, we performed a matrix cross-competition ELISA of CVNbs
mAbs. For 11 CVNbs mAbs tested there were multiple patterns of cross-competition although
most were competed efficiently by multiple mAbs suggesting overlapping specificities (Fig 7).
The ability of ITS01 to compete with ITS51 for binding to SIVmac239 gp140 FT, together with
the sCD4 and CD4-Ig competition data (Fig 6A), indicate that ITS51 targets the CD4i-site of
SIV. Overall, our CVNbs competition sort yielded mAbs targeting the V3 loop, CD4i-site and
ΔV1V2V3 SIVmac239 gp120 core protein.

Antibodies isolated by CVNbs competition neutralize SIV with high
potency
Cyanovirin has been reported to neutralize HIV-1, HIV-2 and SIV primary isolates at low
nanomolar concentrations [67, 83]. To determine whether mAbs isolated by CVNbs competi-
tion could mediate similar virus neutralization breadth and potency, we assessed neutralization
activity of all 32 mAbs isolated by the CVNbs competition sort against a small panel of SIV
Env pseudoviruses and HIV-27312A. Nineteen mAbs were non-neutralizing against all 5 viruses
tested while 13 mAbs neutralized SIVsmE660.CP3C (tier 1), SIVsmE660.CR54 (tier 2) and
SIVmac251.H9 (tier 1) (Fig 4). Of these, 8 mAbs also neutralized SIVmac251.30 (tier 2) and 3
cross-neutralized HIV-27312A. Thus, CVNbs mAbs showed similar virus neutralization cross-
reactivity as CD4bs mAbs; however, the neutralization potency of several CVNbs mAbs was
significantly higher than that of CD4bs mAbs. In some instances 10,000-fold lower IC50

(1,000-fold lower HalfMax) values were obtained for CVNbs mAbs compared with the most

Fig 7. Cross-competition patterns between selected CVNbsmAbs. The effects of unlabeled competitor mAb/protein (listed in the 2nd column) on the
binding of biotin-labeled mAbs (listed across the top) to plate-bound SIVmac239 gp140 FT were measured in duplicate. Values indicate percent inhibition
(average OD reading in the absence of competitor ligand minus average OD reading in the presence of competitor ligand) / average OD value in control wells
expressed as a percentage). Values with insignificant competition are unshaded. Values with low (50–69%), intermediate (70–89%) and high (�90%) levels
of competition are indicated as yellow, orange and red boxes, respectively.

doi:10.1371/journal.ppat.1005537.g007
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potent neutralizing CD4bs mAbs (Fig 4). Of note, neutralizing activity correlated with specific-
ity for the CVNbs. All 11 mAbs which efficiently competed with CVN for binding to SIV-
mac239 gp140 FT were neutralizing while of the remaining non-CVNbs-specific mAbs tested,
only ITS56 and ITS57, which required the presence of CVN for binding to SIVmac239 gp140
FT, were neutralizing (Figs 4 and 5B).

Isolation of V1V2-specific antibodies
Both human and non-human primate studies have shown that V1V2 serum IgG binding levels
correlate with protection against HIV/SIV infection [36–38, 85]; therefore, we were also inter-
ested in isolating SIV V1V2-specific B cells. We generated 1JO8-scaffolded SIV V1V2 probes
[60] from tier 1 (SIVsmE660.CP3C) and tier 2 (SIVsmE660.CR54) isolates of the SIVsmE660
challenge swarm used in a recently completed SIV challenge study [38]. Individual fluores-
cently labeled 1JO8-scaffolded SIV V1V2 probes were used to stain and isolate V1V2-specific
B cells from a SIVmac239-vaccinated and SIVsmE660-infected rhesus macaque (S1 Table). We
sorted 36 (0.13% of memory B cells) and 110 (0.16% of memory B cells) SIV V1V2-specific B
cells using 1JO8-scaffolded SIVsmE660.CP3C and SIVsmE660.CR54 V1V2 probes, respec-
tively (Fig 8). A total of 26 mAbs belonging to 9 distinct clonal families were cloned from 146
individually sorted cells and some of these represented identical clones (Table 3). There were
20 unique mAbs: 3 identical clones of ITS03 and 2 identical clones for each of ITS09.01,
ITS10.04, ITS12.01 and ITS30.

Binding and neutralization targets of SIV V1V2-specific mAbs
The 1JO8 SIVsmE660 probes were highly specific since only one of 20 mAbs expressed did not
bind to SIVsmE660 gp120 (Fig 3). The remaining 19 mAbs bound to both SIVsmE660.CP3C
and SIVsmE660.CR54 gp120s with several also binding to SIVmac251.30 gp120 and SIVmac239
gp140 FT. The epitope binding specificities of SIV V1V2 mAbs were assessed by ELISA binding
using overlapping 15-mer SIVmac239 Env peptides spanning the V1V2 region. Peptide map-
ping revealed that ITS06.01 and ITS06.02 bound to several peptides from V1 corresponding to
Env 109–147 (SIVmac239 numbering) (Fig 9A) suggesting a potentially discontinuous epitope
within this region while ITS12.01 and ITS12.02 targeted Env 185–195 (ETWYSADLVCE) (Fig
9B), an epitope at the C-terminus of the V2 loop. Interestingly, although both of these mAbs
bound to this SIVmac239 peptide epitope, neither mAb bound to either SIVmac239 gp140 FT
or SIVmac251.30 gp120. Another linear B cell epitope in V2 was identified by ITS03 and

Fig 8. Isolation SIV V1V2-specific B cells by FACS. FACS data overlays showing individually sorted
(multicolored) 1JO8 SIVsmE660.CP3C (left) and 1JO8 SIVsmE660.CR54 (right) V1V2-specific B cells from a
SIV-infected rhesus macaque as a percentage of total memory B cells (gray).

doi:10.1371/journal.ppat.1005537.g008
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ITS09.01–04 mAbs which bound within Env 173–183 (TGLKRDKKKEY) (Fig 9B). While Env
173–179 was sufficient for binding by ITS03, ITS09.02 and ITS09.04, additional residues were
necessary for binding by ITS09.01 and ITS09.03. All mAbs which did not bind to either SIV-
mac239 gp140 FT or 15-mer peptides were screened for binding to potentially protective
SIVsmE660 15-mer peptide sequences [38]. These mAbs all bound to a 15-mer peptide corre-
sponding to Env 142–156 (ENVINESNPCIKNNS), an epitope that is present in SIVsmE660 but
not SIVmac239 (S2 Fig).

We also assessed neutralizing activity of SIV V1V2-specific mAbs against tier 1 and 2 clonal
isolates of SIVsmE660 and SIVmac251 and HIV-27312A. Despite strong binding to peptide
ENVINESNPCIKNNS, which is present in SIVsmE660.CP3C and SIVsmE660.CR54, only 4 of
9 mAbs specific for this epitope showed weak neutralization against SIVsmE660.CP3C (Fig 4).
Likewise, ETWYSADLVCE-specific mAbs ITS12.01 and ITS12.02 showed strain-specific neu-
tralization of SIVsmE660 isolates but not SIVmac251 or SIVmac239 despite strong binding
to SIVmac239 gp140 FT and linear peptides. In contrast, ETDRWGLTKSI-specific mAbs
ITS06.01, ITS06.02 and ITS13 were cross-neutralizing for SIVsmE660 and SIVmac251 isolates
albeit with varying degrees of breadth and potency. ITS06.02 and ITS13 neutralized tier 1 and
tier 2 isolates of SIVsmE660 and the tier 1 isolate SIVmac251.H9 but not SIVmac251.30 (tier
2). ITS06.01 was the only V1-specific mAb which neutralized both tier 1 and 2 isolates of
SIVsmE660 and SIVmac251. Three V2-specific mAbs targeting the TGLKRDKKKEY epitope
(ITS03, ITS09.03 and ITS09.04) were also neutralizing against the same 4 isolates. None of the
V1V2-specific mAbs neutralized SIVmac239 or HIV-27312A.

Table 3. Genetic characteristics of mAbs isolated from animal 08D038, a SIVmac239-vaccinated, SIVsmE660-challenged rhesusmacaque using
1JO8 SIVsmE660 V1V2-scaffolded probes.

mAb ID 1JO8 SIV
V1V2 sort
probe

Rhesus heavy V
chain gene

% Divergence (nt)
from germline

CDRH3 Rhesus light
chain V gene

% Divergence (nt)
from germline

CDRL3

ITS03 E660.CR54 IGHV1J*01 5% ATEGTAAPTAF IGKV4-3*01 2% QQYYSTRLT

ITS06.01 E660.CR54 IGHV3Q*02 8% ARWASRGYFDY IGKV2S17*01 6% MQVLDFPFT

ITS06.02 E660.CP3C IGHV3Q*02 9% ARWASRGYFDS IGKV2S17*01 6% MQVLDFPFT

ITS09.01 E660.CP3C IGHV1J*01 9% ATDPEYNCA IGKV4-3*01 7% QQYLSSPFT

ITS09.02 E660.CR54 IGHV1J*01 5% ATDPEYGCT IGKV4-3*01 3% QQYYRSPFT

ITS09.03 E660.CR54 IGHV1J*01 11% ATDPEYGCT IGKV4-3*01 9% QQYLNAPFT

ITS09.04 E660.CR54 IGHV1J*01 10% ATDPGYGCT IGKV4-3*01 7% QQYLNAPFT

ITS10.01 E660.CP3C IGHV3AB*01 9% TRGSGYNVY IGKV3S3*01 12% QQFAKWPHG

ITS10.02 E660.CR54 IGHV3AB*01 8% TRGSGYNLY IGKV3S3*01 10% QQFANWPHG

ITS10.03 E660.CR54 IGHV3AB*01 9% TRGSGYNVY IGKV3S3*01 12% QQFAKWPHG

ITS10.04 E660.CR54 IGHV3AB*01 9% TRGSGYNIY IGKV3S3*01 10% QQFAKWPHG

ITS12.01 E660.CP3C IGHV3AB*01 9% ISQEVSGSYHYFDY IGKV2S18*01 4% MQALRSPWT

ITS12.02 E660.CR54 IGHV3AB*01 9% ISQEVSGSYHYFDY IGKV2S18*01 4% MQALRSPWT

ITS13 E660.CR54 IGHV3Q*02 13% ARVGVAADKRYSFIDS IGKV2S13*01 14% MQSKEFPFT

ITS30 E660.CP3C IGHV3AB*01 13% TRGSGYNIY IGKV3S3*01 9% QQFSSWPHDV

ITS34.01 E660.CP3C IGHV3AB*01 7% ARGSGCSIY IGKV3-4*01 8% QQYSNWPHG

ITS34.02 E660.CR54 IGHV3AB*01 8% ARGSGCSIY IGKV3-4*01 6% QQYSNWPHG

ITS34.03 E660.CR54 IGHV3AB*01 8% ARGSGCSIY IGKV3-4*01 10% QQYSDWPHG

ITS37 E660.CR54 IGHV3AB*01 VRGSGCNLF IGKV3-4*01 10% QQYNDWPHG

08D038.2C2 E660.CR54 IGHV3J*02 8% TRPYYSGSYYWDY IGKV3-2*01 4% QKYSNSPYS

doi:10.1371/journal.ppat.1005537.t003
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1JO8-scaffolded SIV V1V2 probes identify heterologous vaccine-elicited
B cells
The 1JO8-scaffolded V1V2 probes efficiently labeled V1V2-specific B cells from the chronic
phase of SIV infection; however, we wanted to determine whether these probes could also be
used to isolate low-frequency vaccine-elicited B cells that might be cross-reactive for heterolo-
gous challenge virus. We used the 1JO8 SIVsmE660 V1V2 probes to sort B cells from a pre-
challenge, SIVmac239-vaccinated macaque (ZG12) [38] (S1 Table). In order to maximize probe
binding to heterologous, low frequency pre-challenge memory B cells, we used both 1JO8
SIVsmE660.CP3C and SIVsmE660.CR54 V1V2 probes in combination to sort 74 (0.8% of
memory B cells) SIV V1V2-specific B cells (Fig 10A). We cloned 7 unique mAbs belonging to 6
clonal families (Table 4) and characterized their binding specificities and neutralization activity.

Fig 9. Epitopemapping of SIV-specific mAbs. ELISA testing of SIV V1V2-specific mAbs binding to SIVmac239 Env 15-mer overlapping peptides within A)
V1 and B) V2 regions.

doi:10.1371/journal.ppat.1005537.g009
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Six out of 7 mAbs tested bound to the 1JO8 SIV probes used for cell sorting and to SIVmac239
gp140 FT (Fig 3). Peptide mapping revealed that ZG12-2H10, which failed to bind SIVmac239
gp140 FT, did not bind to any SIVmac239 Env 15-mer overlapping peptides and was non-neu-
tralizing against all viruses tested (Fig 4). Five mAbs were mapped to 1 of 3 epitopes including
two new epitopes not identified by infection-related V1V2 mAbs (Fig 3). Both ITS40 and ITS41
which targeted the V2 epitope EQEQMISCKFNMTGL (Fig 10B), only neutralized tier 1
SIVsmE660.CP3C (Fig 4) while ITS45 targeted Env 101–115 (CVKLSPLCITMRCNK) (Fig
10C) but was non-neutralizing against all isolates tested. Similar to ITS06.01 and ITS06.02
mAbs isolated from chronic SIV infection, ITS42 and ITS44, bound to several peptides from V1
corresponding to Env 109–147 (Fig 10C) and neutralized tier 1 isolates of SIVsmE660 and SIV-
mac251 as well as the tier 2 isolate SIVsmE660.CR54 (Fig 4).

Fig 10. Vaccine-elicited SIV V1V2-specific B cells andmAbs. A) FACS data overlay showing vaccine-elicited (multicolored) 1JO8 SIVsmE660.CP3C and
SIVsmE660.CR54 V1V2-specific B cells from a pre-challenge, SIV vaccinated rhesus macaque as a percentage of total memory B cells (gray). ELISA testing
of vaccine-elicited SIV V1V2-specific B mAbs binding to SIVmac239 Env 15-mer overlapping peptides from B) V2 or C) V1.

doi:10.1371/journal.ppat.1005537.g010

Table 4. Genetic characteristics of mAbs isolated from animal ZG12, a SIV-vaccinated, unchallenged rhesusmacaque using 1JO8 SIV V1V2-scaf-
folded probe.

mAb ID Rhesus heavy
chain V gene

% Divergence (nt)
from germline

CDRH3 Rhesus light chain
V gene

% Divergence (nt)
from germline

CDRL3

ITS40 IGHV4L*03 10% VRLSLVGLDS IGLV1S6*01 3% GTWDSSLSAWV

ITS41 IGHV4L*03 11% ARLGLIGVDY IGLV1S6*01 4% GTWDTSLSAWV

ITS42 IGHV2A*01 5% ARSALTGVTSILDS IGLV3S16*01 12% QSADISDNLL

ITS43 IGHV3Q*02 4% ARWGCTGSGCYASFDY IGKV2S17*01 2% MQGLEFPPR

ITS44 IGHV3Q*02 13% VRELFYGGSYFFYN IGLV3S15*01 14% QSLDITGSYPF

ITS45 IGHV3L*01 3% SRGENFWSGYSTEYWFDV IGLV3S16*01 11% QSADFSGNHWI

ZG12.2H10 IGHV3AB*01 8% TRVLYSEDFDY IGKV2S4*01 4% GQGAHWPWT

doi:10.1371/journal.ppat.1005537.t004
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Neutralization breadth and potency of SIV mAbs
While several SIV mAbs were cross-neutralizing for SIVmac251 and SIVsmE660 isolates
tested, the small panel of closely related SIV Env pseudoviruses used to test neutralization
activity limits our ability to assess neutralization breadth of individual SIV mAbs. Therefore,
we tested selected SIV mAbs for neutralization against an additional 15 SIV isolates including
10 SIV Env pseudoviruses and 5 transmitted/founder IMCs (Fig 11). Combined with the
SIVmac251, SIVsmE660 and HIV-27312A viral isolates initially tested (Fig 4), this expanded
21-virus panel (Fig 11A) more closely reflects inter-clade genetic diversity of HIV-1 (Fig 11B)
[80]. Most SIV mAbs tested showed neutralization of multiple SIV strains including neutraliza-
tion of genetically diverse tier 2 and tier 3 SIV isolates. (Fig 12). In general, SIV CD4bs and
CVNbs mAbs displayed greater neutralization breadth than SIV V1V2 mAbs while CVNbs
mAbs were among the most potent (Fig 13, S6–S8 Figs). Neutralization breadth, as measured
by the percentage of SIV/HIV-2 isolates neutralized, was greatest for CD4bs mAbs ITS01 and
ITS20, which neutralized up to 81% and 85% of viruses tested, respectively (Fig 13).

Unsurprisingly, strain-specific mAbs ITS02 (CD4bs) and ITS10.01 (V1) had the lowest neu-
tralization breadth, 20% and 14%, respectively, while the neutralization breadth of CVNbs
mAbs ranged from 62–76%.

Broadly neutralizing mAbs isolated from HIV-1 infected individuals exhibit some unique
features such as high diversity in the variable heavy chain region (VH) genes due to extensive
somatic hypermutation (SHM) [86] and long, protruding CDRH3 sequences [87]. The level
of SHM for HIV-1 bnAbs ranges from 11–32% divergence from putative VH germline nucleo-
tide sequence [88] while HIV-specific antibodies with low or no neutralizing activity display
approximately 9–12% VH sequence divergence from germline [89, 90]. Compared with HIV-1
bnAbs or even rhesus memory B cells, which are approximately 5% divergent from VH

Fig 11. Genetic diversity of SIV and HIV Envs. Phylogenetic tree depicting (A) genetic diversity of SIV Env sequences from a 21 virus panel used to assess
SIV mAb neutralization breadth and potency. (B) Overlay of phylogenetic trees depicting genetic diversity of Env sequences from a multi-clade (indicated in
blue letters) panel of 19 HIV-1 pseudoviruses (blue) and a panel of 20 SIV viral isolates as well as HIV-2 isolate 7312A (red). Tree topology was inferred from
the neighbor-joining method based on ClustalW alignment of protein sequences.

doi:10.1371/journal.ppat.1005537.g011
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Fig 12. Breadth of SIV-specific mAbs.mAbs cloned from individually sorted SIV Env-specific B cells were evaluated for neutralization of SIV
pseudoviruses and transmitted founder (TF) virus IMCs. Values >50 indicate no neutralization while >50* indicates neutralization curve plateaued below
50%. ND = not determined.

doi:10.1371/journal.ppat.1005537.g012
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germline nucleotide sequence [91], the SIV-specific bnAbs isolated here have relatively low lev-
els of SHM. With regard to CDRH3 length, HIV-1 CD4bs bnAbs have relatively short CDRH3
sequences while those targeting quaternary bnAb epitopes of the V1/V2 and V3 loops have
long CDRH3s likely to facilitate penetration of the glycan shield and access to the V1/V2 and
V3 loops [12, 87]. Based on the distribution of CDRH3 length in rhesus naïve B cells [91], we
did not observe unusually long CDRH3 sequences among SIV V1V2-specific mAbs and this
was not altogether surprising since the V1V2 mAbs isolated in this study all targeted linear
peptide epitopes and displayed limited neutralization breadth against our 21 virus panel. By
comparison, some of the SIV CD4bs and CVNbs bnAbs had longer CDRH3 sequences; how-
ever, there is no structural data as yet to support the requirement for long CDRH3s to access
recessed epitopes by SIV bnAbs as is the case for HIV-1 quaternary-preferring bnAbs with
long CDRH3s. In general, neutralizing SIV mAbs did not display some of the unique features
frequently observed in HIV-1 bnAbs.

Discussion
The SIV NHP model for HIV-1 is useful for studying vaccine mediated and immune correlates
of protection but little is known about binding or neutralizing epitopes on SIV Env. Our goal
was to isolate and characterize SIV Env-specific mAbs that might facilitate effective use of this
NHP model for understanding the variables in development of a HIV vaccine or immunother-
apy. We demonstrate the use of a novel competitive probe binding strategy for the targeted iso-
lation of SIV Env-specific mAbs from rhesus macaques and present a detailed assessment of
nearly 70 SIV mAbs targeting the CD4bs, CD4i-site, CVNbs and V1, V2 and V3 loops of SIV
Env. We characterized individual SIV mAbs with regard to immunoglobulin genetics, epitope
specificity, peptide and protein binding as well as virus neutralization breadth and potency.

Various studies have characterized neutralization epitopes of SIV using murine, guinea pig,
rabbit and goat antisera [92, 93] as well as murine- [94–98] or rhesus-derived [99–102] SIV-
specific mAbs. The range of epitopes described includes SIV mAbs targeting linear epitopes in
variable loops 1–4 [38, 92, 93, 95–97, 100–102] and conformational epitopes involving the
V3-V4 region [100, 101] as well as those overlapping or proximal to the CD4bs [95, 98] and
co-receptor binding site [95]. However, SIV-specific mAbs isolated to date have been produced
exclusively from hybridomas [94–98], EBV-transformed B cells [99–101] or phage display

Fig 13. Neutralizing activity of SIV mAbs against a 21-virus panel. The percentage of viruses neutralized with half maximal neutralization (HalfMax)
<50 μg/ml and <1 μg/ml as well as the median HalfMax values for viruses neutralized with HalfMax < 50 μg/ml.

doi:10.1371/journal.ppat.1005537.g013
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[102]. Ours is the first study to describe the targeted isolation of SIV epitope-specific B cells
from rhesus macaques using direct and indirect binding to novel SIV probes.

Given the paucity of reagents for the targeted isolation of SIV-specific B cells we developed
a simple competitive probe binding strategy to sort CD4bs-directed B cells from which we
cloned multiple SIV CD4bs mAbs. Nearly 70% of mAbs isolated by this method were con-
firmed to target the CD4bs—significantly improved efficiency as compared to the isolation of
HIV CD4bs mAbs using HIV-1 resurfaced stabilized core 3 (RSC3) protein [5]. By substituting
CVN in place of CD4-Ig as competitor ligand, we were able to modify the target cell population
to sort CVNbs-specific B cells. We subsequently cloned several mAbs from sorted B cells and
confirmed their specificity for the CVNbs, thereby validating this competitive probe binding
strategy as a powerful technique for the targeted isolation of SIV-specific B cells. Based on the
simplicity and efficiency of our competitive probe binding sort strategy we propose that this
method may be preferable to the use of engineered probes for targeted isolation of epitope-spe-
cific B cells—at least epitopes for which probe binding ligands are available. With this method,
even antibodies could serve as competitive ligands for Env trimer probes to facilitate isolation
of additional antibodies targeting a given epitope without the need for time-consuming probe
development. Competitive ligands cross-reactive for divergent HIV/SIV Env probes could
extend the applicability of this competitive sort strategy to diverse strains of HIV/SIV. This
simple and effective competitive probe sort technique may also prove useful for the isolation of
virus-specific B cells in general. The 1JO8-scaffolded SIV V1V2 probes we designed and tested
were also remarkably efficient at labeling both high frequency infection-related and low fre-
quency vaccine-elicited SIV V1V2-specific B cells. Several of the SIV V1V2 epitopes targeted
by mAbs isolated with the 1JO8-scaffolded SIV V1V2 probes have previously been identified
following isolation of B cells using other strategies [103] thereby validating the use of these
probes for targeted isolation of V1V2-specific B cells. Overall, the ability to efficiently target
SIV mAbs of defined specificities will increase the usefulness and relevance of the SIV model
for studying the induction and maturation of virus-specific B-cells.

Many SIV-specific B cell epitopes previously reported have been identified using murine
derived or HIV-2-specific mAbs exhibiting cross-reactivity with SIV [103]. Here, we provide
the most extensive study of SIV Env-specific mAbs isolated from rhesus macaques including
the first reported rhesus SIV CD4bs-specific mAbs. Of nearly 70 SIV Env-specific mAbs iso-
lated the most broadly neutralizing SIV mAbs were CD4bs-specific, likely due to the conserved
nature of the CD4bs for maintaining functional contact with its primary receptor CD4. Indeed,
cross-reactivity of HIV-2 CD4bs mAbs for SIV has previously been reported [39]. Among the
CD4bs mAbs, ITS02 was notable for its strain-specific neutralization of SIVmac251 (tier 1)
only, suggesting that despite strong competition with CD4-Ig for binding to SIV Env, its epi-
tope is likely proximal to rather than directly at the CD4bs.

As with the CD4bs mAbs, CVNbs mAbs also displayed considerable neutralization breadth
against our 21-virus panel; however, only a fraction of CVNbs mAbs cross-neutralized HIV-2.
Given the lack of information regarding epitope specificity of most of the CVNbs mAbs it is
unclear whether the lack of cross-reactivity for HIV-2 is due to sequence, glycosylation or
other conformational differences between SIV and HIV-2 or some combination thereof. The
single CVNbs mAb for which we determined peptide-binding specificity within the V3 loop,
neutralized 62% of isolates tested despite minimal sequence variation in this epitope among
SIVs and HIV-27312A. Of note, several CVNbs mAbs were significantly more potent than either
the SIV CD4bs- or V1V2-directed mAbs. Among these were 2 clonally related CVNbs mAbs
(ITS61.01 and ITS61.02) with extraordinarily high potency and unusually long (25 residues)
heavy chain complementarity determining region 3 (CDRH3) loops similar to V2 and V3 gly-
can reactive mAbs that are among the most potent HIV-1 bnAbs [9, 12, 104–106]; however,
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these high potency mAbs do not target V2 or V3 glycans since they bind to V1,V2,V3-deleted
SIV gp120 core protein.

Compared with the relatively minor sequence variation between the V3 loops of SIV/HIV-
2, there is considerable sequence diversity between SIV and HIV-2 within the V1 and V2 loops
and this was reflected by the fact that all SIV V1V2 mAbs isolated were non-neutralizing
against HIV-2. Interestingly, all SIV V1V2 mAbs were mapped to linear peptide epitopes
although it is unclear whether this was due primarily to the 1JO8-scaffolded probe used for iso-
lating B cells and/or the immunization history or immune response of animals used for cell
sorting. Among the major sites of HIV-1 Env vulnerability, the V1V2 loops are of particular
interest for an HIV vaccine based on results of both human and NHP vaccine efficacy trials
showing that levels of V1V2-specific serum binding, but not neutralizing activity, directly cor-
relate with resistance to HIV/SIV infection [38, 85]. Among the SIV V1V2 mAbs isolated we
identified both neutralizing as well as binding, non-neutralizing mAbs which may serve as use-
ful reagents for delineating the role of V1V2-binding mAbs towards protection against infec-
tion. An important caveat is the presence of two conserved cysteine residues in the V2 region
of most SIV and HIV-2 strains, which are absent in all HIV-1 strains [107]. These twin-cyste-
ine residues may form a disulfide bond that contributes to Env trimer stabilization since twin-
cysteine mutants exhibit decreased gp120 association with the Env trimer cell-cell fusion and
virus infectivity. Future studies will need to address whether the conserved twin-cysteine motif
may contribute to structural or functional differences between SIV/HIV-2 and HIV-1 and any
potential impact on V1V2-directed mAb responses in SIV/HIV-2.

Overall, we isolated multiple SIV mAbs directed against major targets of SIV Env vulnera-
bility analogous to bnAb targets of HIV-1, namely the CD4bs, peptide epitopes of V1/V2 and
V3 loops and potentially glycan targets of SIV Env (Fig 14). We did not isolate SIV mAbs tar-
geting the V4 loop although it is possible that some of the SIV mAbs from the CVNbs sort may
map to this region. Targeted isolation of V4-specific SIV mAbs could prove useful as the V4
region of SIV contains immunodominant epitopes and represents an early target for neutraliz-
ing mAbs [108, 109]. Compared with HIV-1 bnAb targets, we were unable to isolate quater-
nary-structure-preferring SIV-specific mAbs. While a pre-fusion SIV trimer structure has yet

Fig 14. Neutralization epitopes of SIV Envmodeled onto the 3D structure of HIV-1 BG505 SOSIP.664 trimer. Pre-fusion HIV-1 BG505 trimer structure
(PDB ID: 4TVP) is displayed in ribbon representation with red for CD4-binding-site-directed antibody specificities (VRC01-, b12-, CD4-, and HJ16-like),
purple for 8ANC195-like, green for V1V2-directed (PG9-like), blue for glycan-V3 specificities (PGT128- and 2G12-like), orange for 35O22-like specificities,
and green-yellow for PGT151-like specificities. Epitope targets of SIV Env neutralizing mAbs are shown as spheres with red for CD4-binding-site-, green for
V1V2-, and blue for V3-directed specificities. Top (left) and side (right) views are shown.

doi:10.1371/journal.ppat.1005537.g014
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to be determined, it is likely that the SIV foldon trimer and 1JO8-scaffolded probes used for B
cell sorting adopt an open quaternary conformation, analogous to HIV-1 soluble, uncleaved
trimers [32, 110], which likely precluded us from isolating SIV quaternary-structure-preferring
neutralizing mAbs. In fact, structural analysis of vaccine-induced HIV CD4bs-directed mAbs
has revealed that despite high affinity binding to soluble Env ligands such as foldon trimers,
such mAbs display a suboptimal angle of approach resulting in non-bnAbs with limited
breadth and lack of neutralization activity against neutralization-resistant isolates such as JRFL
[111]. Additional methods will be needed to isolate SIV bnAbs targeting quaternary epitopes,
V1, V2 or V3 glycans, the immunodominant V4 region, the gp120-gp41 interface and MPER
region.

The range of SIV mAbs isolated includes binding, non-neutralizing mAbs as well as strain-
specific and cross-neutralizing mAbs exhibiting varying degrees of neutralization breadth and
potency. We isolated SIV mAbs from SIV-vaccinated, pre-challenge as well as SIV-vaccinated
and infected macaques. All but one of the SIV mAb epitopes identified from the latter showed
high sequence similarity among SIV isolates tested making it difficult to determine whether
individual mAb responses were elicited by the immunogen or the challenge virus Env. Only
one of the SIV mAb epitopes identified (Env 142–15) was present in the SIVsmE660 challenge
virus but not the SIVmac239 immunogen indicating that mAbs targeting this region were elic-
ited following infection.

Comparison of the neutralization profiles for individual mAbs and corresponding serum
samples for most animals revealed that the isolated mAbs recapitulated the breadth of serum
neutralization in most cases (S9 Fig). In addition, the neutralization plateau effect reported for
some HIV-1-specific mAbs [16] was also evident for neutralization curves of SIV mAbs against
tier 2 isolates of both SIVmac251 and SIVsmE660, irrespective of mAb specificity. While differ-
ences in Env trimer glycosylation may explain incomplete neutralization by glycan-dependent
mAbs [112], emerging data suggests conformational heterogeneity of Env trimers even within
a clonal pseudovirus population may account for neutralization curve plateaus for glycan-inde-
pendent mAbs [38, 113]. Other groups have also observed striking heterogeneity in neutraliza-
tion sensitivities between SIV isolates [78, 82]. While the majority of clones within the well-
characterized SIVsmE660 vaccine challenge stock are highly neutralization sensitive, approxi-
mately 10–25% exhibit an intermediate neutralization sensitivity phenotype and 10% are out-
right neutralization resistant [82]. Despite the broad range of epitopes targeted by SIV mAbs
isolated and their capacity to bind SIVmac239 gp140 FT protein, none were able to neutralize
the highly neutralization resistant SIVmac239. This was not wholly unexpected since sera from
these animals also failed to neutralize SIVmac239 (Fig 12). This discrepancy between binding
and neutralizing activity against a particular Env protein/virus has also been observed for HIV-
1 CD4bs-directed mAbs and is thought to be result from inefficient recognition of cognate epi-
tope due to quaternary packing conformational constraints in the context of functional, mem-
brane-bound trimer despite high affinity binding to soluble Env ligands [111, 114, 115].

With the development of our novel competitive probe binding sort strategy and subsequent
isolation and detailed characterization of nearly 70 SIV Env-specific mAbs we now have the
necessary reagents with which to study immune and vaccine mediated correlates of protection
in the SIV NHP challenge model of HIV-1. This includes testing of SIV bnAb passive immuni-
zation alone or as an adjunct to antiretroviral therapy (ART) by direct injection or gene ther-
apy. As well, the binding, non-neutralizing SIV Env-specific mAbs identified here will serve as
useful reagents for delineating the contribution of antibody-dependent cellular cytotoxicity
(ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and additional FcR-
mediated activities toward control and/or prevention of HIV/SIV infection. Finally, use of
additional probes and methods to isolate SIV-specific B cells will facilitate more thorough and
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rigorous pre-clinical evaluation of mAb-based immunotherapies for treatment and/or preven-
tion of SIV infection in NHPs.

Supporting Information
S1 Table. Summary of vaccination and infection history of rhesus macaque PBMC/serum
samples.
(TIF)

S2 Table. Primer sequence pools for amplifying rhesus IgG V-regions.
(TIF)

S3 Table. Primer sequence pools for amplifying rhesus IgLκ V-regions.
(TIF)

S4 Table. Primer sequence pools for amplifying rhesus IgLλ V-regions.
(TIF)

S1 Fig. Neutralization-resistant SIVmac239.
(TIF)

S2 Fig. Amino acid sequence alignment of SIV/HIV-2 Env isolates.
(TIF)

S3 Fig. Amino acid sequence alignment of SIV/HIV-2 Env isolates.
(TIF)

S4 Fig. Amino acid sequence alignment of SIV/HIV-2 Env isolates.
(TIF)

S5 Fig. Amino acid sequence alignment of SIV/HIV-2 Env isolates.
(TIF)

S6 Fig. Neutralization activity of SIV CD4bs mAbs.
(TIF)

S7 Fig. Neutralization activity of SIV mAbs isolated by CVN competitive binding to SIV
gp140.
(TIF)

S8 Fig. Neutralization activity of SIV V1V2 mAbs.
(TIF)

S9 Fig. Serum neutralization.
(TIF)

Acknowledgments
We gratefully acknowledge the technical assistance and expertise provided by Stephen Perfetto
and the Flow Cytometry Core (Vaccine Research Center, NIAID, NIH) and we thank Drs. Pra-
tip Chattopadhyay and Nicole Doria-Rose for critical evaluation of this article.

Author Contributions
Conceived and designed the experiments: RDMMR JRM. Performed the experiments: RDM
HCW CA RN. Analyzed the data: RDM HCW CA JG ZS. Contributed reagents/materials/

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 26 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005537.s013


analysis tools: BKC JG TZ SO SL CAB HL GMS LS RW PDK. Wrote the paper: RDM GMS
MR JRM.

References
1. Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature's pathways. Immuno-

logical reviews. 2013; 254(1):225–44. Epub 2013/06/19. doi: 10.1111/imr.12075 PMID: 23772623;
PubMed Central PMCID: PMC3738265.

2. Haynes BF, McElrath MJ. Progress in HIV-1 vaccine development. Current opinion in HIV and AIDS.
2013; 8(4):326–32. Epub 2013/06/08. PMID: 23743722; PubMed Central PMCID: PMC3947525.

3. Overbaugh J, Morris L. The Antibody Response against HIV-1. Cold Spring Harb Perspect Med.
2012; 2(1):a007039. doi: 10.1101/cshperspect.a007039 PMID: 22315717; PubMed Central PMCID:
PMC3253031.

4. Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immu-
nol. 2015; 16(6):571–6. doi: 10.1038/ni.3158 PMID: 25988889.

5. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, et al. Rational design of envelope iden-
tifies broadly neutralizing humanmonoclonal antibodies to HIV-1. Science. 2010; 329(5993):856–61.
Epub 2010/07/10. doi: 10.1126/science.1187659 PMID: 20616233; PubMed Central PMCID:
PMC2965066.

6. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, et al. Sequence and structural
convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011; 333
(6049):1633–7. Epub 2011/07/19. doi: 10.1126/science.1207227 PMID: 21764753; PubMed Central
PMCID: PMC3351836.

7. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution of a broadly neutralizing
HIV-1 antibody and founder virus. Nature. 2013; 496(7446):469–76. Epub 2013/04/05. doi: 10.1038/
nature12053 PMID: 23552890; PubMed Central PMCID: PMC3637846.

8. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, Finzi A, et al. Structural basis for broad and potent neutrali-
zation of HIV-1 by antibody VRC01. Science. 2010; 329(5993):811–7. Epub 2010/07/10. doi: 10.
1126/science.1192819 PMID: 20616231; PubMed Central PMCID: PMC2981354.

9. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad and potent neutraliz-
ing antibodies from an African donor reveal a new HIV-1 vaccine target. Science. 2009; 326
(5950):285–9. Epub 2009/09/05. doi: 10.1126/science.1178746 PMID: 19729618; PubMed Central
PMCID: PMC3335270.

10. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, et al. Analysis of a clonal lineage of
HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their
inferred unmutated common ancestors. J Virol. 2011; 85(19):9998–10009. Epub 2011/07/29. doi: 10.
1128/JVI.05045-11 PMID: 21795340; PubMed Central PMCID: PMC3196428.

11. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, et al. Broad neutralization cover-
age of HIV by multiple highly potent antibodies. Nature. 2011; 477(7365):466–U117. doi: 10.1038/
Nature10373WOS:000295080500041. PMID: 21849977

12. Doria-Rose NA, SchrammCA, Gorman J, Moore PL, Bhiman JN, DeKosky BJ, et al. Developmental
pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature. 2014; 509(7498):55–62. doi:
10.1038/nature13036 PMID: 24590074.

13. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, et al. Broad and potent neutraliza-
tion of HIV-1 by a gp41-specific human antibody. Nature. 2012; 491(7424):406–12. Epub 2012/11/16.
doi: 10.1038/nature11544 PMID: 23151583.

14. Morris L, Chen X, AlamM, Tomaras G, Zhang R, Marshall DJ, et al. Isolation of a human anti-HIV
gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. PLoS
One. 2011; 6(9):e23532. Epub 2011/10/08. doi: 10.1371/journal.pone.0023532 PMID: 21980336;
PubMed Central PMCID: PMC3184076.

15. Zhu Z, Qin HR, ChenW, Zhao Q, Shen X, Schutte R, et al. Cross-reactive HIV-1-neutralizing human
monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol. 2011; 85(21):11401–
8. Epub 2011/09/02. doi: 10.1128/JVI.05312-11 PMID: 21880764; PubMed Central PMCID:
PMC3194990.

16. Huang J, Kang BH, Pancera M, Lee JH, Tong T, Feng Y, et al. Broad and potent HIV-1 neutralization
by a human antibody that binds the gp41-gp120 interface. Nature. 2014; 515(7525):138–42. doi: 10.
1038/nature13601 PMID: 25186731; PubMed Central PMCID: PMC4224615.

17. Scharf L, Scheid JF, Lee JH, West AP Jr., Chen C, Gao H, et al. Antibody 8ANC195 reveals a site of
broad vulnerability on the HIV-1 envelope spike. Cell Rep. 2014; 7(3):785–95. doi: 10.1016/j.celrep.
2014.04.001 PMID: 24767986; PubMed Central PMCID: PMC4109818.

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 27 / 33

http://dx.doi.org/10.1111/imr.12075
http://www.ncbi.nlm.nih.gov/pubmed/23772623
http://www.ncbi.nlm.nih.gov/pubmed/23743722
http://dx.doi.org/10.1101/cshperspect.a007039
http://www.ncbi.nlm.nih.gov/pubmed/22315717
http://dx.doi.org/10.1038/ni.3158
http://www.ncbi.nlm.nih.gov/pubmed/25988889
http://dx.doi.org/10.1126/science.1187659
http://www.ncbi.nlm.nih.gov/pubmed/20616233
http://dx.doi.org/10.1126/science.1207227
http://www.ncbi.nlm.nih.gov/pubmed/21764753
http://dx.doi.org/10.1038/nature12053
http://dx.doi.org/10.1038/nature12053
http://www.ncbi.nlm.nih.gov/pubmed/23552890
http://dx.doi.org/10.1126/science.1192819
http://dx.doi.org/10.1126/science.1192819
http://www.ncbi.nlm.nih.gov/pubmed/20616231
http://dx.doi.org/10.1126/science.1178746
http://www.ncbi.nlm.nih.gov/pubmed/19729618
http://dx.doi.org/10.1128/JVI.05045-11
http://dx.doi.org/10.1128/JVI.05045-11
http://www.ncbi.nlm.nih.gov/pubmed/21795340
http://dx.doi.org/10.1038/Nature10373
http://dx.doi.org/10.1038/Nature10373
http://www.ncbi.nlm.nih.gov/pubmed/21849977
http://dx.doi.org/10.1038/nature13036
http://www.ncbi.nlm.nih.gov/pubmed/24590074
http://dx.doi.org/10.1038/nature11544
http://www.ncbi.nlm.nih.gov/pubmed/23151583
http://dx.doi.org/10.1371/journal.pone.0023532
http://www.ncbi.nlm.nih.gov/pubmed/21980336
http://dx.doi.org/10.1128/JVI.05312-11
http://www.ncbi.nlm.nih.gov/pubmed/21880764
http://dx.doi.org/10.1038/nature13601
http://dx.doi.org/10.1038/nature13601
http://www.ncbi.nlm.nih.gov/pubmed/25186731
http://dx.doi.org/10.1016/j.celrep.2014.04.001
http://dx.doi.org/10.1016/j.celrep.2014.04.001
http://www.ncbi.nlm.nih.gov/pubmed/24767986


18. Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vac-
cine: the end of the beginning. Nat Rev Immunol. 2013; 13(9):693–701. Epub 2013/08/24. doi: 10.
1038/nri3516 PMID: 23969737.

19. Girard MP, Picot V, Longuet C, Nabel GJ. Report of the 2014 Cent Gardes HIV Vaccine Conference
—Part 1: Neutralizing Antibodies; Fondation Merieux Conference Center, Veyrier du Lac, France, 5–7
October 2014. Vaccine. 2015. PMID: 25769208.

20. Wibmer CK, Moore PL, Morris L. HIV broadly neutralizing antibody targets. Current opinion in HIV and
AIDS. 2015; 10(3):135–43. PMID: 25760932; PubMed Central PMCID: PMC4437463.

21. Cavacini LA, Emes CL, Wisnewski AV, Power J, Lewis G, Montefiori D, et al. Functional and molecu-
lar characterization of human monoclonal antibody reactive with the immunodominant region of HIV
type 1 glycoprotein 41. AIDS Res Hum Retroviruses. 1998; 14(14):1271–80. Epub 1998/10/09. PMID:
9764911.

22. Ferrari G, Pollara J, Kozink D, Harms T, Drinker M, Freel S, et al. An HIV-1 gp120 envelope human
monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-depen-
dent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1
serum. J Virol. 2011; 85(14):7029–36. Epub 2011/05/06. doi: 10.1128/JVI.00171-11 PMID:
21543485; PubMed Central PMCID: PMC3126567.

23. Robinson HL. Non-neutralizing antibodies in prevention of HIV infection. Expert Opin Biol Ther. 2013;
13(2):197–207. Epub 2012/11/08. doi: 10.1517/14712598.2012.743527 PMID: 23130709.

24. Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, WilliamsWT, et al. Vaccine-induced Env V1-
V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Science trans-
lational medicine. 2014; 6(228):228ra39. Epub 2014/03/22. doi: 10.1126/scitranslmed.3007730
PMID: 24648342; PubMed Central PMCID: PMC4116665.

25. Hoot S, McGuire AT, Cohen KW, Strong RK, Hangartner L, Klein F, et al. Recombinant HIV envelope
proteins fail to engage germline versions of anti-CD4bs bNAbs. PLoS Pathog. 2013; 9(1):e1003106.
Epub 2013/01/10. doi: 10.1371/journal.ppat.1003106 PMID: 23300456; PubMed Central PMCID:
PMC3536657.

26. McGuire AT, Glenn JA, Lippy A, Stamatatos L. Diverse recombinant HIV-1 Envs fail to activate B cells
expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and
447-52D. J Virol. 2014; 88(5):2645–57. Epub 2013/12/20. doi: 10.1128/JVI.03228-13 PMID:
24352455; PubMed Central PMCID: PMC3958080.

27. Mikell I, Sather DN, Kalams SA, Altfeld M, Alter G, Stamatatos L. Characteristics of the earliest cross-
neutralizing antibody response to HIV-1. PLoS Pathog. 2011; 7(1):e1001251. Epub 2011/01/21. doi:
10.1371/journal.ppat.1001251 PMID: 21249232; PubMed Central PMCID: PMC3020924.

28. Gray ES, Madiga MC, Hermanus T, Moore PL, Wibmer CK, Tumba NL, et al. The neutralization
breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline
and high viral load during acute infection. J Virol. 2011; 85(10):4828–40. Epub 2011/03/11. doi: 10.
1128/JVI.00198-11 PMID: 21389135; PubMed Central PMCID: PMC3126191.

29. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S, et al. HIV therapy by a
combination of broadly neutralizing antibodies in humanized mice. Nature. 2012; 492(7427):118–22.
doi: 10.1038/nature11604 PMID: 23103874; PubMed Central PMCID: PMC3809838.

30. Moore PL, Sheward D, Nonyane M, Ranchobe N, Hermanus T, Gray ES, et al. Multiple pathways of
escape from HIV broadly cross-neutralizing V2-dependent antibodies. J Virol. 2013; 87(9):4882–94.
Epub 2013/02/15. doi: 10.1128/JVI.03424-12 PMID: 23408621; PubMed Central PMCID:
PMC3624332.

31. Sanders RW, Derking R, Cupo A, Julien JP, Yasmeen A, de Val N, et al. A next-generation cleaved,
soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutral-
izing but not non-neutralizing antibodies. PLoS Pathog. 2013; 9(9):e1003618. Epub 2013/09/27. doi:
10.1371/journal.ppat.1003618 PMID: 24068931; PubMed Central PMCID: PMC3777863.

32. Ringe RP, Sanders RW, Yasmeen A, Kim HJ, Lee JH, Cupo A, et al. Cleavage strongly influences
whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc Natl Acad
Sci U S A. 2013; 110(45):18256–61. Epub 2013/10/23. doi: 10.1073/pnas.1314351110 PMID:
24145402; PubMed Central PMCID: PMC3831437.

33. Burton DR, Hessell AJ, Keele BF, Klasse PJ, Ketas TA, Moldt B, et al. Limited or no protection by
weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a
strongly neutralizing antibody. Proc Natl Acad Sci U S A. 2011; 108(27):11181–6. Epub 2011/06/22.
doi: 10.1073/pnas.1103012108 PMID: 21690411; PubMed Central PMCID: PMC3131343.

34. Dugast AS, Chan Y, Hoffner M, Licht A, Nkolola J, Li H, et al. Lack of Protection following Passive
Transfer of Polyclonal Highly Functional Low-Dose Non-Neutralizing Antibodies. PLoS One. 2014; 9

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 28 / 33

http://dx.doi.org/10.1038/nri3516
http://dx.doi.org/10.1038/nri3516
http://www.ncbi.nlm.nih.gov/pubmed/23969737
http://www.ncbi.nlm.nih.gov/pubmed/25769208
http://www.ncbi.nlm.nih.gov/pubmed/25760932
http://www.ncbi.nlm.nih.gov/pubmed/9764911
http://dx.doi.org/10.1128/JVI.00171-11
http://www.ncbi.nlm.nih.gov/pubmed/21543485
http://dx.doi.org/10.1517/14712598.2012.743527
http://www.ncbi.nlm.nih.gov/pubmed/23130709
http://dx.doi.org/10.1126/scitranslmed.3007730
http://www.ncbi.nlm.nih.gov/pubmed/24648342
http://dx.doi.org/10.1371/journal.ppat.1003106
http://www.ncbi.nlm.nih.gov/pubmed/23300456
http://dx.doi.org/10.1128/JVI.03228-13
http://www.ncbi.nlm.nih.gov/pubmed/24352455
http://dx.doi.org/10.1371/journal.ppat.1001251
http://www.ncbi.nlm.nih.gov/pubmed/21249232
http://dx.doi.org/10.1128/JVI.00198-11
http://dx.doi.org/10.1128/JVI.00198-11
http://www.ncbi.nlm.nih.gov/pubmed/21389135
http://dx.doi.org/10.1038/nature11604
http://www.ncbi.nlm.nih.gov/pubmed/23103874
http://dx.doi.org/10.1128/JVI.03424-12
http://www.ncbi.nlm.nih.gov/pubmed/23408621
http://dx.doi.org/10.1371/journal.ppat.1003618
http://www.ncbi.nlm.nih.gov/pubmed/24068931
http://dx.doi.org/10.1073/pnas.1314351110
http://www.ncbi.nlm.nih.gov/pubmed/24145402
http://dx.doi.org/10.1073/pnas.1103012108
http://www.ncbi.nlm.nih.gov/pubmed/21690411


(5):e97229. Epub 2014/05/14. doi: 10.1371/journal.pone.0097229 PMID: 24820481; PubMed Central
PMCID: PMC4018276.

35. Letvin NL, Rao SS, Montefiori DC, Seaman MS, Sun Y, Lim SY, et al. Immune and Genetic Correlates
of Vaccine Protection Against Mucosal Infection by SIV in Monkeys. Science translational medicine.
2011; 3(81):81ra36. Epub 2011/05/06. doi: 10.1126/scitranslmed.3002351 PMID: 21543722;
PubMed Central PMCID: PMC3718279.

36. Barouch DH, Liu J, Li H, Maxfield LF, Abbink P, Lynch DM, et al. Vaccine protection against acquisi-
tion of neutralization-resistant SIV challenges in rhesus monkeys. Nature. 2012; 482(7383):89–93.
doi: 10.1038/nature10766 PMID: 22217938; PubMed Central PMCID: PMC3271177.

37. Barouch DH, Alter G, Broge T, Linde C, Ackerman ME, Brown EP, et al. HIV-1 vaccines. Protective
efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science. 2015;
349(6245):320–4.

38. Roederer M, Keele BF, Schmidt SD, Mason RD, Welles HC, Fischer W, et al. Immunological and viro-
logical mechanisms of vaccine-mediated protection against SIV and HIV. Nature. 2014; 505
(7484):502–8. Epub 2013/12/20. doi: 10.1038/nature12893 PMID: 24352234; PubMed Central
PMCID: PMC3946913.

39. Kong R, Li H, Bibollet-Ruche F, Decker JM, Zheng NN, Gottlieb GS, et al. Broad and potent neutraliz-
ing antibody responses elicited in natural HIV-2 infection. J Virol. 2012; 86(2):947–60. doi: 10.1128/
JVI.06155-11 PMID: 22031948; PubMed Central PMCID: PMC3255805.

40. de Silva TI, Aasa-Chapman M, Cotten M, Hue S, Robinson J, Bibollet-Ruche F, et al. Potent autolo-
gous and heterologous neutralizing antibody responses occur in HIV-2 infection across a broad range
of infection outcomes. J Virol. 2012; 86(2):930–46. doi: 10.1128/JVI.06126-11 PMID: 22072758;
PubMed Central PMCID: PMCPMC3255814.

41. Ozkaya Sahin G, Holmgren B, da Silva Z, Nielsen J, Nowroozalizadeh S, Esbjornsson J, et al. Potent
intratype neutralizing activity distinguishes human immunodeficiency virus type 2 (HIV-2) from HIV-1.
J Virol. 2012; 86(2):961–71. doi: 10.1128/JVI.06315-11 PMID: 22072782; PubMed Central PMCID:
PMCPMC3255861.

42. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, et al. Proof of principle for epi-
tope-focused vaccine design. Nature. 2014; 507(7491):201–6. Epub 2014/02/07. doi: 10.1038/
nature12966 PMID: 24499818.

43. Brocca-Cofano E, McKinnon K, Demberg T, Venzon D, Hidajat R, Xiao P, et al. Vaccine-elicited SIV
and HIV envelope-specific IgA and IgGmemory B cells in rhesus macaque peripheral blood correlate
with functional antibody responses and reduced viremia. Vaccine. 2011; 29(17):3310–9. Epub 2011/
03/09. doi: 10.1016/j.vaccine.2011.02.066 PMID: 21382487; PubMed Central PMCID: PMC3079049.

44. Page M, Stebbings R, Berry N, Hull R, Ferguson D, Davis L, et al. Heterologous protection elicited by
candidate monomeric recombinant HIV-1 gp120 vaccine in the absence of cross neutralising antibod-
ies in a macaque model. Retrovirology. 2012; 9:56. Epub 2012/07/18. doi: 10.1186/1742-4690-9-56
PMID: 22799593; PubMed Central PMCID: PMC3418562.

45. BogersWM, Davis D, Baak I, Kan E, Hofman S, Sun Y, et al. Systemic neutralizing antibodies induced
by long interval mucosally primed systemically boosted immunization correlate with protection from
mucosal SHIV challenge. Virology. 2008; 382(2):217–25. Epub 2008/10/25. doi: 10.1016/j.virol.2008.
09.016 PMID: 18947849; PubMed Central PMCID: PMC2723753.

46. DeVico A, Fouts T, Lewis GK, Gallo RC, Godfrey K, Charurat M, et al. Antibodies to CD4-induced
sites in HIV gp120 correlate with the control of SHIV challenge in macaques vaccinated with subunit
immunogens. Proc Natl Acad Sci U S A. 2007; 104(44):17477–82. Epub 2007/10/25. doi: 10.1073/
pnas.0707399104 PMID: 17956985; PubMed Central PMCID: PMC2077281.

47. Li J, Lord CI, HaseltineW, Letvin NL, Sodroski J. Infection of cynomolgus monkeys with a chimeric
HIV-1/SIVmac virus that expresses the HIV-1 envelope glycoproteins. Journal of acquired immune
deficiency syndromes. 1992; 5(7):639–46. PMID: 1613662.

48. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, et al. Protection of
macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion
of neutralizing antibodies. Nat Med. 2000; 6(2):207–10. Epub 2000/02/02. doi: 10.1038/72318 PMID:
10655111.

49. Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, McNally AG, et al. Protective effi-
cacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.
Cell. 2013; 155(3):531–9. Epub 2013/11/19. doi: 10.1016/j.cell.2013.09.061 PMID: 24243013;
PubMed Central PMCID: PMC3846288.

50. Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, et al. Therapeutic efficacy of potent neu-
tralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013; 503
(7475):224–8. doi: 10.1038/nature12744 PMID: 24172905; PubMed Central PMCID: PMC4017780.

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 29 / 33

http://dx.doi.org/10.1371/journal.pone.0097229
http://www.ncbi.nlm.nih.gov/pubmed/24820481
http://dx.doi.org/10.1126/scitranslmed.3002351
http://www.ncbi.nlm.nih.gov/pubmed/21543722
http://dx.doi.org/10.1038/nature10766
http://www.ncbi.nlm.nih.gov/pubmed/22217938
http://dx.doi.org/10.1038/nature12893
http://www.ncbi.nlm.nih.gov/pubmed/24352234
http://dx.doi.org/10.1128/JVI.06155-11
http://dx.doi.org/10.1128/JVI.06155-11
http://www.ncbi.nlm.nih.gov/pubmed/22031948
http://dx.doi.org/10.1128/JVI.06126-11
http://www.ncbi.nlm.nih.gov/pubmed/22072758
http://dx.doi.org/10.1128/JVI.06315-11
http://www.ncbi.nlm.nih.gov/pubmed/22072782
http://dx.doi.org/10.1038/nature12966
http://dx.doi.org/10.1038/nature12966
http://www.ncbi.nlm.nih.gov/pubmed/24499818
http://dx.doi.org/10.1016/j.vaccine.2011.02.066
http://www.ncbi.nlm.nih.gov/pubmed/21382487
http://dx.doi.org/10.1186/1742-4690-9-56
http://www.ncbi.nlm.nih.gov/pubmed/22799593
http://dx.doi.org/10.1016/j.virol.2008.09.016
http://dx.doi.org/10.1016/j.virol.2008.09.016
http://www.ncbi.nlm.nih.gov/pubmed/18947849
http://dx.doi.org/10.1073/pnas.0707399104
http://dx.doi.org/10.1073/pnas.0707399104
http://www.ncbi.nlm.nih.gov/pubmed/17956985
http://www.ncbi.nlm.nih.gov/pubmed/1613662
http://dx.doi.org/10.1038/72318
http://www.ncbi.nlm.nih.gov/pubmed/10655111
http://dx.doi.org/10.1016/j.cell.2013.09.061
http://www.ncbi.nlm.nih.gov/pubmed/24243013
http://dx.doi.org/10.1038/nature12744
http://www.ncbi.nlm.nih.gov/pubmed/24172905


51. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, et al. Broadly neutralizing
human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low
serum neutralizing titers. PLoS Pathog. 2009; 5(5):e1000433. Epub 2009/05/14. doi: 10.1371/journal.
ppat.1000433 PMID: 19436712; PubMed Central PMCID: PMC2674935.

52. Ng CT, Jaworski JP, Jayaraman P, SuttonWF, Delio P, Kuller L, et al. Passive neutralizing antibody
controls SHIV viremia and enhances B cell responses in infant macaques. Nat Med. 2010; 16
(10):1117–9. Epub 2010/10/05. doi: 10.1038/nm.2233 PMID: 20890292; PubMed Central PMCID:
PMC2952052.

53. Shingai M, Nishimura Y, Klein F, Mouquet H, Donau OK, Plishka R, et al. Antibody-mediated immuno-
therapy of macaques chronically infected with SHIV suppresses viraemia. Nature. 2013; 503
(7475):277–80. Epub 2013/11/01. doi: 10.1038/nature12746 PMID: 24172896.

54. Tsibris AM, Pal U, Schure AL, Veazey RS, Kunstman KJ, Henrich TJ, et al. SHIV-162P3 infection of
rhesus macaques given maraviroc gel vaginally does not involve resistant viruses. PLoS One. 2011;
6(12):e28047. Epub 2011/12/14. doi: 10.1371/journal.pone.0028047 PMID: 22164225; PubMed Cen-
tral PMCID: PMC3229503.

55. Pal R, Galmin L, Pereira LE, Li B, Zhang J, Li D, et al. Virological and molecular characterization of a
simian human immunodeficiency virus (SHIV) encoding the envelope and reverse transcriptase
genes from HIV-1. Virology. 2012; 432(1):173–83. Epub 2012/07/10. PMID: 22769870.

56. Bixby JG, Laur O, JohnsonWE, Desrosiers RC. Diversity of envelope genes from an uncloned stock
of SIVmac251. AIDS Res HumRetroviruses. 2010; 26(10):1115–31. Epub 2010/09/15. doi: 10.1089/
aid.2010.0029 PMID: 20836705; PubMed Central PMCID: PMC2982722.

57. Burton SL, Kilgore KM, Smith SA, Reddy S, Hunter E, Robinson HL, et al. Breakthrough of SIV strain
smE660 challenge in SIV strain mac239-vaccinated rhesus macaques despite potent autologous
neutralizing antibody responses. Proc Natl Acad Sci U S A. 2015; 112(34):10780–5. doi: 10.1073/
pnas.1509731112 PMID: 26261312; PubMed Central PMCID: PMC4553804.

58. Song K, Bolton DL, Wei CJ, Wilson RL, Camp JV, Bao S, et al. Genetic immunization in the lung
induces potent local and systemic immune responses. Proc Natl Acad Sci U S A. 2010; 107
(51):22213–8. Epub 2010/12/08. doi: 10.1073/pnas.1015536108 PMID: 21135247; PubMed Central
PMCID: PMC3009829.

59. Fazi B, Cope MJ, Douangamath A, Ferracuti S, Schirwitz K, Zucconi A, et al. Unusual binding proper-
ties of the SH3 domain of the yeast actin-binding protein Abp1: structural and functional analysis. J
Biol Chem. 2002; 277(7):5290–8. doi: 10.1074/jbc.M109848200 PMID: 11668184.

60. McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, et al. Structure of HIV-1 gp120
V1/V2 domain with broadly neutralizing antibody PG9. Nature. 2011; 480(7377):336–43. doi: 10.
1038/nature10696 PMID: 22113616; PubMed Central PMCID: PMC3406929.

61. Yang X, Lee J, Mahony EM, Kwong PD, Wyatt R, Sodroski J. Highly stable trimers formed by human
immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacterio-
phage fibritin. J Virol. 2002; 76(9):4634–42. PMID: 11932429; PubMed Central PMCID:
PMCPMC155086.

62. Barouch DH, Yang ZY, KongWP, Korioth-Schmitz B, Sumida SM, Truitt DM, et al. A human T-cell leu-
kemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency
virus type 1 DNA vaccines in mice and nonhuman primates. J Virol. 2005; 79(14):8828–34. doi: 10.
1128/JVI.79.14.8828-8834.2005 PMID: 15994776; PubMed Central PMCID: PMCPMC1168733.

63. Kwon YD, Finzi A, Wu X, Dogo-Isonagie C, Lee LK, Moore LR, et al. Unliganded HIV-1 gp120 core
structures assume the CD4-bound conformation with regulation by quaternary interactions and vari-
able loops. Proc Natl Acad Sci U S A. 2012; 109(15):5663–8. doi: 10.1073/pnas.1112391109 PMID:
22451932; PubMed Central PMCID: PMC3326499.

64. Mori T, Gustafson KR, Pannell LK, Shoemaker RH, Wu L, McMahon JB, et al. Recombinant produc-
tion of cyanovirin-N, a potent human immunodeficiency virus-inactivating protein derived from a cul-
tured cyanobacterium. Protein expression and purification. 1998; 12(2):151–8. doi: 10.1006/prep.
1997.0838 PMID: 9518455.

65. Si Z, Madani N, Cox JM, Chruma JJ, Klein JC, Schon A, et al. Small-molecule inhibitors of HIV-1 entry
block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad
Sci U S A. 2004; 101(14):5036–41. Epub 2004/03/31. doi: 10.1073/pnas.0307953101 PMID:
15051887; PubMed Central PMCID: PMC387369.

66. Haim H, Si Z, Madani N, Wang L, Courter JR, Princiotto A, et al. Soluble CD4 and CD4-mimetic com-
pounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog. 2009; 5(4):
e1000360. doi: 10.1371/journal.ppat.1000360 PMID: 19343205; PubMed Central PMCID:
PMC2655723.

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 30 / 33

http://dx.doi.org/10.1371/journal.ppat.1000433
http://dx.doi.org/10.1371/journal.ppat.1000433
http://www.ncbi.nlm.nih.gov/pubmed/19436712
http://dx.doi.org/10.1038/nm.2233
http://www.ncbi.nlm.nih.gov/pubmed/20890292
http://dx.doi.org/10.1038/nature12746
http://www.ncbi.nlm.nih.gov/pubmed/24172896
http://dx.doi.org/10.1371/journal.pone.0028047
http://www.ncbi.nlm.nih.gov/pubmed/22164225
http://www.ncbi.nlm.nih.gov/pubmed/22769870
http://dx.doi.org/10.1089/aid.2010.0029
http://dx.doi.org/10.1089/aid.2010.0029
http://www.ncbi.nlm.nih.gov/pubmed/20836705
http://dx.doi.org/10.1073/pnas.1509731112
http://dx.doi.org/10.1073/pnas.1509731112
http://www.ncbi.nlm.nih.gov/pubmed/26261312
http://dx.doi.org/10.1073/pnas.1015536108
http://www.ncbi.nlm.nih.gov/pubmed/21135247
http://dx.doi.org/10.1074/jbc.M109848200
http://www.ncbi.nlm.nih.gov/pubmed/11668184
http://dx.doi.org/10.1038/nature10696
http://dx.doi.org/10.1038/nature10696
http://www.ncbi.nlm.nih.gov/pubmed/22113616
http://www.ncbi.nlm.nih.gov/pubmed/11932429
http://dx.doi.org/10.1128/JVI.79.14.8828-8834.2005
http://dx.doi.org/10.1128/JVI.79.14.8828-8834.2005
http://www.ncbi.nlm.nih.gov/pubmed/15994776
http://dx.doi.org/10.1073/pnas.1112391109
http://www.ncbi.nlm.nih.gov/pubmed/22451932
http://dx.doi.org/10.1006/prep.1997.0838
http://dx.doi.org/10.1006/prep.1997.0838
http://www.ncbi.nlm.nih.gov/pubmed/9518455
http://dx.doi.org/10.1073/pnas.0307953101
http://www.ncbi.nlm.nih.gov/pubmed/15051887
http://dx.doi.org/10.1371/journal.ppat.1000360
http://www.ncbi.nlm.nih.gov/pubmed/19343205


67. Bewley CA, Otero-Quintero S. The potent anti-HIV protein cyanovirin-N contains two novel carbohy-
drate binding sites that selectively bind to Man(8) D1D3 and Man(9) with nanomolar affinity: implica-
tions for binding to the HIV envelope protein gp120. Journal of the American Chemical Society. 2001;
123(17):3892–902. Epub 2001/07/18. PMID: 11457139.

68. Donaldson MM, Kao SF, Eslamizar L, Gee C, KoopmanG, Lifton M, et al. Optimization and qualifica-
tion of an 8-color intracellular cytokine staining assay for quantifying T cell responses in rhesus
macaques for pre-clinical vaccine studies. Journal of immunological methods. 2012; 386(1–2):10–21.
Epub 2012/09/08. doi: 10.1016/j.jim.2012.08.011 PMID: 22955212; PubMed Central PMCID:
PMC3646372.

69. Perfetto SP, Chattopadhyay PK, Lamoreaux L, Nguyen R, Ambrozak D, Koup RA, et al. Amine-reac-
tive dyes for dead cell discrimination in fixed samples. Current protocols in cytometry / editorial board,
J Paul Robinson, managing editor [et al]. 2010; Chapter 9:Unit 9 34. Epub 2010/06/26. doi: 10.1002/
0471142956.cy0934s53 PMID: 20578108; PubMed Central PMCID: PMC2915540.

70. Francica JR, Sheng Z, Zhang Z, Nishimura Y, Shingai M, Ramesh A, et al. Analysis of immunoglobulin
transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization.
Nature communications. 2015; 6:6565. doi: 10.1038/ncomms7565 PMID: 25858157.

71. Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system
for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008; 36(Web
Server issue):W503–8. doi: 10.1093/nar/gkn316 PMID: 18503082; PubMed Central PMCID:
PMC2447746.

72. Giudicelli V, Brochet X, Lefranc MP. IMGT/V-QUEST: IMGT standardized analysis of the immuno-
globulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb Protoc. 2011; 2011
(6):695–715. doi: 10.1101/pdb.prot5633 PMID: 21632778.

73. Garlick RL, Kirschner RJ, Eckenrode FM, TarpleyWG, Tomich CS. Escherichia coli expression, purifi-
cation, and biological activity of a truncated soluble CD4. AIDS Res Hum Retroviruses. 1990; 6
(4):465–79. PMID: 2187501.

74. Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, et al. Human immunodeficiency
virus type 1 env clones from acute and early subtype B infections for standardized assessments of
vaccine-elicited neutralizing antibodies. J Virol. 2005; 79(16):10108–25. Epub 2005/07/30. doi: 10.
1128/JVI.79.16.10108-10125.2005 PMID: 16051804; PubMed Central PMCID: PMC1182643.

75. Schell JB, Rose NF, Bahl K, Diller K, Buonocore L, Hunter M, et al. Significant protection against high-
dose simian immunodeficiency virus challenge conferred by a new prime-boost vaccine regimen. J
Virol. 2011; 85(12):5764–72. doi: 10.1128/JVI.00342-11 PMID: 21490100; PubMed Central PMCID:
PMC3126289.

76. Fairman J, Moore J, Lemieux M, Van Rompay K, Geng Y, Warner J, et al. Enhanced in vivo immuno-
genicity of SIV vaccine candidates with cationic liposome-DNA complexes in a rhesus macaque pilot
study. Hum Vaccin. 2009; 5(3):141–50. PMID: 18690014; PubMed Central PMCID: PMC2728146.

77. YehWW, Jaru-Ampornpan P, Nevidomskyte D, Asmal M, Rao SS, Buzby AP, et al. Partial protection
of Simian immunodeficiency virus (SIV)-infected rhesus monkeys against superinfection with a heter-
ologous SIV isolate. J Virol. 2009; 83(6):2686–96. doi: 10.1128/JVI.02237-08 PMID: 19129440;
PubMed Central PMCID: PMC2648285.

78. Kilgore KM, Murphy MK, Burton SL, Wetzel KS, Smith SA, Xiao P, et al. Characterization and Imple-
mentation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of
Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the
SIVmac239 Envelope. J Virol. 2015; 89(16):8130–51. doi: 10.1128/JVI.01221-14 PMID: 26018167;
PubMed Central PMCID: PMC4524250.

79. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, bio-
logical phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1
infection. J Exp Med. 2009; 206(6):1273–89. doi: 10.1084/jem.20090378 PMID: 19487424; PubMed
Central PMCID: PMCPMC2715054.

80. Fischer W, Apetrei C, Santiago ML, Li Y, Gautam R, Pandrea I, et al. Distinct evolutionary pressures
underlie diversity in simian immunodeficiency virus and human immunodeficiency virus lineages. J
Virol. 2012; 86(24):13217–31. doi: 10.1128/JVI.01862-12 PMID: 23055550; PubMed Central PMCID:
PMCPMC3503124.

81. Seaman MS, Janes H, Hawkins N, Grandpre LE, Devoy C, Giri A, et al. Tiered categorization of a
diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J Virol. 2010; 84
(3):1439–52. doi: 10.1128/JVI.02108-09 PMID: 19939925; PubMed Central PMCID: PMC2812321.

82. Lopker M, Easlick J, Sterrett S, Decker JM, Barbian H, Learn G, et al. Heterogeneity in neutralization
sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine
challenge stock. J Virol. 2013; 87(10):5477–92. doi: 10.1128/JVI.03419-12 PMID: 23468494;
PubMed Central PMCID: PMC3648171.

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 31 / 33

http://www.ncbi.nlm.nih.gov/pubmed/11457139
http://dx.doi.org/10.1016/j.jim.2012.08.011
http://www.ncbi.nlm.nih.gov/pubmed/22955212
http://dx.doi.org/10.1002/0471142956.cy0934s53
http://dx.doi.org/10.1002/0471142956.cy0934s53
http://www.ncbi.nlm.nih.gov/pubmed/20578108
http://dx.doi.org/10.1038/ncomms7565
http://www.ncbi.nlm.nih.gov/pubmed/25858157
http://dx.doi.org/10.1093/nar/gkn316
http://www.ncbi.nlm.nih.gov/pubmed/18503082
http://dx.doi.org/10.1101/pdb.prot5633
http://www.ncbi.nlm.nih.gov/pubmed/21632778
http://www.ncbi.nlm.nih.gov/pubmed/2187501
http://dx.doi.org/10.1128/JVI.79.16.10108-10125.2005
http://dx.doi.org/10.1128/JVI.79.16.10108-10125.2005
http://www.ncbi.nlm.nih.gov/pubmed/16051804
http://dx.doi.org/10.1128/JVI.00342-11
http://www.ncbi.nlm.nih.gov/pubmed/21490100
http://www.ncbi.nlm.nih.gov/pubmed/18690014
http://dx.doi.org/10.1128/JVI.02237-08
http://www.ncbi.nlm.nih.gov/pubmed/19129440
http://dx.doi.org/10.1128/JVI.01221-14
http://www.ncbi.nlm.nih.gov/pubmed/26018167
http://dx.doi.org/10.1084/jem.20090378
http://www.ncbi.nlm.nih.gov/pubmed/19487424
http://dx.doi.org/10.1128/JVI.01862-12
http://www.ncbi.nlm.nih.gov/pubmed/23055550
http://dx.doi.org/10.1128/JVI.02108-09
http://www.ncbi.nlm.nih.gov/pubmed/19939925
http://dx.doi.org/10.1128/JVI.03419-12
http://www.ncbi.nlm.nih.gov/pubmed/23468494


83. BoydMR, Gustafson KR, McMahon JB, Shoemaker RH, O'Keefe BR, Mori T, et al. Discovery of cyano-
virin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope gly-
coprotein gp120: potential applications to microbicide development. Antimicrobial agents and
chemotherapy. 1997; 41(7):1521–30. Epub 1997/07/01. PMID: 9210678; PubMedCentral PMCID:
PMC163952.

84. Esser MT, Mori T, Mondor I, Sattentau QJ, Dey B, Berger EA, et al. Cyanovirin-N binds to gp120 to
interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infec-
tivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational
changes in gp120. J Virol. 1999; 73(5):4360–71. Epub 1999/04/10. PMID: 10196334; PubMed Cen-
tral PMCID: PMC104217.

85. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-corre-
lates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012; 366(14):1275–86. Epub 2012/
04/06. doi: 10.1056/NEJMoa1113425 PMID: 22475592; PubMed Central PMCID: PMC3371689.

86. Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, et al. Somatic mutations of the
immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell.
2013; 153(1):126–38. doi: 10.1016/j.cell.2013.03.018 PMID: 23540694; PubMed Central PMCID:
PMC3792590.

87. Yu L, Guan Y. Immunologic Basis for Long HCDR3s in Broadly Neutralizing Antibodies Against HIV-
1. Front Immunol. 2014; 5:250. doi: 10.3389/fimmu.2014.00250 PMID: 24917864; PubMed Central
PMCID: PMC4040451.

88. Kwong PD, Mascola JR. Human antibodies that neutralize HIV-1: identification, structures, and B cell
ontogenies. Immunity. 2012; 37(3):412–25. Epub 2012/09/25. doi: 10.1016/j.immuni.2012.08.012
PMID: 22999947.

89. Scheid JF, Mouquet H, Feldhahn N, SeamanMS, Velinzon K, Pietzsch J, et al. Broad diversity of neu-
tralizing antibodies isolated frommemory B cells in HIV-infected individuals. Nature. 2009; 458
(7238):636–40. Epub 2009/03/17. doi: 10.1038/nature07930 PMID: 19287373.

90. Breden F, Lepik C, Longo NS, Montero M, Lipsky PE, Scott JK. Comparison of antibody repertoires
produced by HIV-1 infection, other chronic and acute infections, and systemic autoimmune disease.
PLoS One. 2011; 6(3):e16857. doi: 10.1371/journal.pone.0016857 PMID: 21479208; PubMed Cen-
tral PMCID: PMCPMC3068138.

91. Francica JR, Sheng Z, Zhang Z, Nishimura Y, Shingai M, Ramesh A, et al. Analysis of immunoglobulin
transcripts and hypermutation following SHIV(AD8) infection and protein-plus-adjuvant immunization.
Nat Commun. 2015; 6:6565. doi: 10.1038/ncomms7565 PMID: 25858157; PubMed Central PMCID:
PMC4403371.

92. Palker TJ, Muir AJ, Spragion DE, Staats HF, Langlois A, Montefiori DC. The V3 domain of SIVmac251
gp120 contains a linear neutralizing epitope. Virology. 1996; 224(2):415–26. doi: 10.1006/viro.1996.
0548 PMID: 8874502.

93. Means RE, Matthews T, Hoxie JA, Malim MH, Kodama T, Desrosiers RC. Ability of the V3 loop of sim-
ian immunodeficiency virus to serve as a target for antibody-mediated neutralization: correlation of
neutralization sensitivity, growth in macrophages, and decreased dependence on CD4. J Virol. 2001;
75(8):3903–15. doi: 10.1128/JVI.75.8.3903-3915.2001 PMID: 11264379; PubMed Central PMCID:
PMCPMC114881.

94. Kent KA, Gritz L, Stallard G, CranageMP, Collignon C, Thiriart C, et al. Production and of monoclonal
antibodies to simian immunodeficiency virus envelope glycoproteins. AIDS. 1991; 5(7):829–36.
PMID: 1716442.

95. Edinger AL, Ahuja M, Sung T, Baxter KC, Haggarty B, Doms RW, et al. Characterization and epitope
mapping of neutralizing monoclonal antibodies produced by immunization with oligomeric simian
immunodeficiency virus envelope protein. J Virol. 2000; 74(17):7922–35. PMID: 10933700; PubMed
Central PMCID: PMCPMC112323.

96. Kent KA, Rud E, Corcoran T, Powell C, Thiriart C, Collignon C, et al. Identification of two neutralizing
and 8 non-neutralizing epitopes on simian immunodeficiency virus envelope using monoclonal anti-
bodies. AIDS Res Hum Retroviruses. 1992; 8(6):1147–51. PMID: 1380261.

97. Choi WS, Collignon C, Thiriart C, Burns DP, Stott EJ, Kent KA, et al. Effects of natural sequence varia-
tion on recognition by monoclonal antibodies neutralize simian immunodeficiency virus infectivity. J
Virol. 1994; 68(9):5395–402. PMID: 7520089; PubMed Central PMCID: PMCPMC236939.

98. Babas T, Le Grand R, Dormont D, Bahraoui E. Production and characterization of monoclonal anti-
bodies to simian immunodeficiency virus envelope glycoproteins. AIDS Res Hum Retroviruses. 1997;
13(13):1109–19. PMID: 9282816.

99. Robinson JE, Cole KS, Elliott DH, Lam H, Amedee AM, Means R, et al. Production and characteriza-
tion of SIV envelope-specific rhesus monoclonal antibodies from a macaque asymptomatically

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 32 / 33

http://www.ncbi.nlm.nih.gov/pubmed/9210678
http://www.ncbi.nlm.nih.gov/pubmed/10196334
http://dx.doi.org/10.1056/NEJMoa1113425
http://www.ncbi.nlm.nih.gov/pubmed/22475592
http://dx.doi.org/10.1016/j.cell.2013.03.018
http://www.ncbi.nlm.nih.gov/pubmed/23540694
http://dx.doi.org/10.3389/fimmu.2014.00250
http://www.ncbi.nlm.nih.gov/pubmed/24917864
http://dx.doi.org/10.1016/j.immuni.2012.08.012
http://www.ncbi.nlm.nih.gov/pubmed/22999947
http://dx.doi.org/10.1038/nature07930
http://www.ncbi.nlm.nih.gov/pubmed/19287373
http://dx.doi.org/10.1371/journal.pone.0016857
http://www.ncbi.nlm.nih.gov/pubmed/21479208
http://dx.doi.org/10.1038/ncomms7565
http://www.ncbi.nlm.nih.gov/pubmed/25858157
http://dx.doi.org/10.1006/viro.1996.0548
http://dx.doi.org/10.1006/viro.1996.0548
http://www.ncbi.nlm.nih.gov/pubmed/8874502
http://dx.doi.org/10.1128/JVI.75.8.3903-3915.2001
http://www.ncbi.nlm.nih.gov/pubmed/11264379
http://www.ncbi.nlm.nih.gov/pubmed/1716442
http://www.ncbi.nlm.nih.gov/pubmed/10933700
http://www.ncbi.nlm.nih.gov/pubmed/1380261
http://www.ncbi.nlm.nih.gov/pubmed/7520089
http://www.ncbi.nlm.nih.gov/pubmed/9282816


infected with a live SIV vaccine. AIDS Res HumRetroviruses. 1998; 14(14):1253–62. PMID:
9764909.

100. JohnsonWE, Sanford H, Schwall L, Burton DR, Parren PW, Robinson JE, et al. Assorted mutations in
the envelope gene of simian immunodeficiency virus lead to loss of neutralization resistance against
antibodies representing a broad spectrum of specificities. J Virol. 2003; 77(18):9993–10003. PMID:
12941910; PubMed Central PMCID: PMCPMC224602.

101. Cole KS, Alvarez M, Elliott DH, Lam H, Martin E, Chau T, et al. Characterization of neutralization epi-
topes of simian immunodeficiency virus (SIV) recognized by rhesus monoclonal antibodies derived
frommonkeys infected with an attenuated SIV strain. Virology. 2001; 290(1):59–73. PMID: 11883006.

102. Kuwata T, Katsumata Y, Takaki K, Miura T, Igarashi T. Isolation of potent neutralizing monoclonal
antibodies from an SIV-Infected rhesus macaque by phage display. AIDS Res Hum Retroviruses.
2011; 27(5):487–500. doi: 10.1089/aid.2010.0191 PMID: 20854170.

103. Kent KA. Neutralising epitopes of simian immunodeficiency virus envelope glycoprotein. Journal of
medical primatology. 1995; 24(3):145–9. Epub 1995/05/01. PMID: 8751054.

104. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, et al. Broad neutralization cover-
age of HIV by multiple highly potent antibodies. Nature. 2011; 477(7365):466–70. doi: 10.1038/
nature10373 PMID: 21849977; PubMed Central PMCID: PMC3393110.

105. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, et al. Analysis of a clonal lineage of
HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their
inferred unmutated common ancestors. J Virol. 2011; 85(19):9998–10009. doi: 10.1128/JVI.05045-11
PMID: 21795340; PubMed Central PMCID: PMC3196428.

106. Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E, de la Pena AT, et al. Structural delineation of
a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.
Immunity. 2014; 40(5):669–80. doi: 10.1016/j.immuni.2014.04.008 PMID: 24768348; PubMed Central
PMCID: PMC4057017.

107. Bohl C, Bowder D, Thompson J, Abrahamyan L, Gonzalez-Ramirez S, Mao Y, et al. A twin-cysteine
motif in the V2 region of gp120 is associated with SIV envelope trimer stabilization. PLoS One. 2013;
8(7):e69406. doi: 10.1371/journal.pone.0069406 PMID: 23936006; PubMed Central PMCID:
PMCPMC3720275.

108. YehWW, Brassard LM, Miller CA, Basavapathruni A, Zhang J, Rao SS, et al. Envelope variable
region 4 is the first target of neutralizing antibodies in early simian immunodeficiency virus mac251
infection of rhesus monkeys. J Virol. 2012; 86(13):7052–9. doi: 10.1128/JVI.00107-12 PMID:
22532675; PubMed Central PMCID: PMCPMC3416332.

109. YehWW, Rahman I, Hraber P, Coffey RT, Nevidomskyte D, Giri A, et al. Autologous neutralizing anti-
bodies to the transmitted/founder viruses emerge late after simian immunodeficiency virus SIV-
mac251 infection of rhesus monkeys. J Virol. 2010; 84(12):6018–32. doi: 10.1128/JVI.02741-09
PMID: 20357097; PubMed Central PMCID: PMCPMC2876635.

110. Pancera M, Wyatt R. Selective recognition of oligomeric HIV-1 primary isolate envelope glycoproteins
by potently neutralizing ligands requires efficient precursor cleavage. Virology. 2005; 332(1):145–56.
doi: 10.1016/j.virol.2004.10.042 PMID: 15661147.

111. Tran K, Poulsen C, Guenaga J, de Val N, Wilson R, Sundling C, et al. Vaccine-elicited primate anti-
bodies use a distinct approach to the HIV-1 primary receptor binding site informing vaccine redesign.
Proc Natl Acad Sci U S A. 2014; 111(7):E738–47. doi: 10.1073/pnas.1319512111 PMID: 24550318;
PubMed Central PMCID: PMCPMC3932900.

112. Doores KJ, Burton DR. Variable loop glycan dependency of the broad and potent HIV-1-neutralizing
antibodies PG9 and PG16. J Virol. 2010; 84(20):10510–21. doi: 10.1128/JVI.00552-10 PMID:
20686044; PubMed Central PMCID: PMC2950566.

113. Chakrabarti BK, Walker LM, Guenaga JF, Ghobbeh A, Poignard P, Burton DR, et al. Direct antibody
access to the HIV-1 membrane-proximal external region positively correlates with neutralization sen-
sitivity. J Virol. 2011; 85(16):8217–26. doi: 10.1128/JVI.00756-11 PMID: 21653673; PubMed Central
PMCID: PMCPMC3147955.

114. Li Y, O'Dell S, Walker LM, Wu X, Guenaga J, Feng Y, et al. Mechanism of neutralization by the broadly
neutralizing HIV-1 monoclonal antibody VRC01. J Virol. 2011; 85(17):8954–67. doi: 10.1128/JVI.
00754-11 PMID: 21715490; PubMed Central PMCID: PMCPMC3165784.

115. Wu X, Zhou T, O'Dell S, Wyatt RT, Kwong PD, Mascola JR. Mechanism of human immunodeficiency
virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment.
J Virol. 2009; 83(21):10892–907. doi: 10.1128/JVI.01142-09 PMID: 19692465; PubMed Central
PMCID: PMCPMC2772753.

Antibodies Targeting SIV Env Glycoprotein

PLOS Pathogens | DOI:10.1371/journal.ppat.1005537 April 11, 2016 33 / 33

http://www.ncbi.nlm.nih.gov/pubmed/9764909
http://www.ncbi.nlm.nih.gov/pubmed/12941910
http://www.ncbi.nlm.nih.gov/pubmed/11883006
http://dx.doi.org/10.1089/aid.2010.0191
http://www.ncbi.nlm.nih.gov/pubmed/20854170
http://www.ncbi.nlm.nih.gov/pubmed/8751054
http://dx.doi.org/10.1038/nature10373
http://dx.doi.org/10.1038/nature10373
http://www.ncbi.nlm.nih.gov/pubmed/21849977
http://dx.doi.org/10.1128/JVI.05045-11
http://www.ncbi.nlm.nih.gov/pubmed/21795340
http://dx.doi.org/10.1016/j.immuni.2014.04.008
http://www.ncbi.nlm.nih.gov/pubmed/24768348
http://dx.doi.org/10.1371/journal.pone.0069406
http://www.ncbi.nlm.nih.gov/pubmed/23936006
http://dx.doi.org/10.1128/JVI.00107-12
http://www.ncbi.nlm.nih.gov/pubmed/22532675
http://dx.doi.org/10.1128/JVI.02741-09
http://www.ncbi.nlm.nih.gov/pubmed/20357097
http://dx.doi.org/10.1016/j.virol.2004.10.042
http://www.ncbi.nlm.nih.gov/pubmed/15661147
http://dx.doi.org/10.1073/pnas.1319512111
http://www.ncbi.nlm.nih.gov/pubmed/24550318
http://dx.doi.org/10.1128/JVI.00552-10
http://www.ncbi.nlm.nih.gov/pubmed/20686044
http://dx.doi.org/10.1128/JVI.00756-11
http://www.ncbi.nlm.nih.gov/pubmed/21653673
http://dx.doi.org/10.1128/JVI.00754-11
http://dx.doi.org/10.1128/JVI.00754-11
http://www.ncbi.nlm.nih.gov/pubmed/21715490
http://dx.doi.org/10.1128/JVI.01142-09
http://www.ncbi.nlm.nih.gov/pubmed/19692465

