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Abstract: In this paper, we investigate the influence of holidays and community mobility on the
transmission rate and death count of COVID-19 in Brazil. We identify national holidays and hallmark
holidays to assess their effect on disease reports of confirmed cases and deaths. First, we use a one-
variate model with the number of infected people as input data to forecast the number of deaths. This
simple model is compared with a more robust deep learning multi-variate model that uses mobility
and transmission rates (R0, Re) from a SEIRD model as input data. A principal components model
of community mobility, generated by the principal component analysis (PCA) method, is added
to improve the input features for the multi-variate model. The deep learning model architecture
is an LSTM stacked layer combined with a dense layer to regress daily deaths caused by COVID-
19. The multi-variate model incremented with engineered input features can enhance the forecast
performance by up to 18.99% compared to the standard one-variate data-driven model.

Keywords: COVID-19; epidemiological SEIRD model; PCA; LSTM; time-series forecast

1. Introduction

COVID-19 is a serious acute respiratory syndrome caused by the beta-coronavirus
SARS-CoV-2, which was first reported at the end of 2019 [1]. The rate of transmission has
ranked COVID-19 as the worst pandemic of the century in terms of scale and speed [2].
Transmission can occur through direct, indirect, or close contact with secretions of infected
individuals or through direct contact with infected surfaces. SARS-CoV-2 enters the host
cells via interaction with its entry receptor, angiotensin-converting enzyme 2 (ACE2), and
an activating receptor, a protease such as TMPRSS2 or cathepsin [3].

The first case of COVID-19 in South America was reported on 25 February 2020 in
the city of São Paulo, Brazil, which is an important travel hub for the region [4]. Since
then, important control measures, such as overall or partial closing of marine, land, and
air borders; travel restrictions, shutdown of schools and colleges; and imposed lockdown
were implemented in different ways in Brazil and other countries of the region. According
to official data, the country has reported the highest number of cases of COVID-19 in South
America [5,6].

Brazil has the highest Gross Domestic Product (GDP) in South America, and the
population density varies according to the regional division of the country. The mean
population density is 24.69 inhabitants per square kilometer [7]. According to Organisation
for Economic Co-operation and Development (OECD) [8], Brazil is composed of approx-
imately 1.3 million independent or liberal professionals. Informal employment ranges
from 20 to 49% of the workforce of the country. Formal and informal work positions were
directly affected by restrictions to contain the spread of the virus, most of them based on
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social distancing. Data collected from 239 slum communities [9], where approximately
6.5% of the Brazilian population lives, showcase part of the Brazilian reality for formal and
informal workers during COVID-19 pandemic. Approximately 72% of residents report
that they do not have any savings to fall back on, while 15% had only the equivalent of one
minimum wage in savings to survive the next month. Approximately 50% of the residents
of these communities are liberal professionals or rely on informal work positions as their
main source of income.

National and hallmark holidays usually involve a massive mobility of people seeking
stores and malls, parks, and beaches. During the COVID-19 pandemic, the 2020 Brazilian
calendar maintained nine days of national holidays; seven of them included extended
weekends, from Friday to Sunday and/or Monday, which increases the circulation of
individuals. At the beginning of February, crowds were reported across the country [10].
The government of the city of São Paulo estimates that the local carnival took about
15 million people to the streets in February of 2020 [11].

To date, the Brazilian scenario has demonstrated that the pandemic just deepened
the already-existing political, social, and economic issues in the country [7]. Although
the universal Brazilian public health system has been an example to the world struggling
to manage other major outbreaks such as dengue fever, measles, Zika, and chikungunya
viruses [12,13], the country has been coping with the several issues that affect COVID-19
prevention. The main ones are the lack of water supply, limited access to hand sanitizers
and masks, and the lack of community engagement [7]. Social distance, among some 6068
non-pharmaceutical interventions, is the most effective method adopted by leaders around
the world, presenting a major impact on decreasing transmission rate Re [14]. As it turns
out, the dilemma to adopt social distance in socioeconomically disadvantaged areas such
as slums is difficult to assess [15,16].

In this context, this study has three main contributions: (1) investigating the impact
of Brazilian national holidays in social distancing and the evolution of COVID-19 in the
country; (2) assessing the reproduction number using SEIRD model as well as applying
Principal Component Analysis (PCA) to reduce the dimensions of a dataset containing
community mobility reports, using the outcomes produced by these methods as input data
for regression; and (3) demonstrating that estimates from data-driven pipelines based on
holidays and using multi-variate LSTM neural networks are appropriate to predict 14-day
COVID-19 daily deaths in Brazil. Our study provides evidence for the impact of holidays,
community mobility, and the association of these factors with crowding. Our results
indicate that an acceleration of the spread of the virus happens after the holiday breaks,
which may eventually influence the access to adequate medical attention or ICU beds.

2. Materials and Methods

The open-access dataset of COVID-19 consists of official reports provided by the
sanitary authority of Brazilian states [17]. The dataset contains country-level, daily-updated
data retrieved from the Brazilian Ministry of Health and Brazilian Institute of Geography
and Statistics (IBGE). The dataset contains reported cases, daily fatalities, number of cases
per epidemiological week, number of deaths per day, total number of deaths, and reports of
COVID-19 recovered and vaccinated individuals among others (Table 1). Data are presented
in absolute numbers or in percentage per 100,000 inhabitants. Our analysis contains a time
series that started in 25 February 2020, comprising features for all 26 Brazilian states.
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Table 1. List of all column names contained in the open-access dataset of COVID-19 [17].

Column Name Column Name

epi week total cases per 100 k inhabitants
date deaths by totalCases
country recovered
state suspects
city tests
newDeaths tests per 100 k inhabitants
deaths vaccinated
newCases vaccinated per 100 k inhabitants
totalCases vaccinated second
deathsMS vaccinated second per 100 k inhabitants
totalCasesMS vaccinated single
deaths per 100 k inhabitants vaccinated single per 100 k inhabitants
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Figure 1. Moving average for COVID-19 in Brazil, presented according to epidemiological week.
(a) Cumulative and daily case reports. (b) Cumulative and daily deaths.

SARS-CoV-2 dispersed throughout the country rapidly after the first official report.
On 13 April 2021, the 16th week of the year, 82,186 cases of COVID-19 and 3808 daily deaths
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were reported in Brazil. Considering a 7-day moving average, these numbers represent
approximately 71,344 cases and 3068 deaths (Figure 1a,b). These values are the result
of the sum of reports in all Brazilian states. Nevertheless, a certain stability is observed
in the death curve in the period ranging from weeks 22 to 34 (Figure 1b). This could
be attributed to several factors, including non-pharmaceutical interventions adopted to
reduce the contact among people, which ultimately influence the amount of viral load
that an individual is exposed to. Additionally, the relative availability of hospitals that
were not operating at their full capacity provided proper access to ICU beds and adequate
management of infected patients.

Geographic distributions for deaths by COVID-19 in all Brazilian states are shown in
Figure 2. The majority of casualties are concentrated in the Southeast region of the country,
which includes the states of Espírito Santo (ES), São Paulo (SP), Rio de Janeiro (RJ), and
Minas Gerais (MG).

70 60 50 40 30
35

30

25

20

15

10

5

0

5

AC AL

AM

AP

BA

CE

DF

ES

GO

MA

MG

MS

MT

PA

PB
PE

PI

PR

RJ

RN

RO

RR

RS

SC

SE

SP

TO

N

500 km

20000

40000

60000

80000

100000

De
at

h 
Nu

m
be

r

Figure 2. Heat map of cumulative deaths by COVID-19 in each Brazilian state. E.g., São Paulo,
which is the most populated Brazilian state, had 109,241 deaths until the date that this research has
been finished.

Instead of using data from individual Brazilian states in the analysis, the main con-
tribution of this work is to understand the social component across the country, despite
the effect of local singularities in each Brazilian city and state. Therefore, we selected three
populated states with the highest mortality rates for COVID-19 in Brazil to briefly highlight
such singularities: São Paulo, Rio de Janeiro, and Minas Gerais. These states have 40% of
the estimated Brazilian population.

Population densities are a result of the size of each state. São Paulo, for example, has an
estimated population of 46,649,132 inhabitants and a density of 166.25 inhab/km2. People
are relatively dispersed in the state. However, more than 22 million people are concentrated
on the metropolitan area of the city of São Paulo. The same happens to Minas Gerais, with
a population of approximately 21.5 million people, density of 33.41 inhab/km2, and more
than six million people residing on the metropolitan area of the state capital, Belo Horizonte.
The population density of the third smallest state in the country is 365.23 inhab/km2, and
like the other two states, approximately 76% of the 17,463,349 inhabitants live in the
metropolitan area of the state capital, the city of Rio de Janeiro [18]. Altogether, the three
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states have a major influence on Brazilian reports of COVID-19, but São Paulo seems to
help shape the curve of Brazilian daily cases (Figure 3).
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Figure 3. Biweekly cases of COVID-19 reported from epidemiological week five of 2020 to epidemio-
logical week 22 of 2021. (a) States of São Paulo (yellow), Rio de Janeiro (Green), and Minas Gerais
(Blue); (b) Brazil.

The Brazilian official calendar includes several federal holidays and religious festivities
that can lead to crowding. State holidays and regional festivities were not included in the
analysis. There were 12 official national holidays for 2020 (Table 2). Due to the severity of
COVID-19 worldwide, the Brazilian Ministry of Defense followed recommendations of
health authorities and canceled military parades and other festivities of September 7th to
avoid public events that could increase the spread of new variants of SARS-CoV-2 [9,19].
The two rounds of Brazilian elections, in November 15th and in November 29th, were also
included as potential sources of crowding.

Table 2. Brazilian Holidays. * According to Regulamentation N◦ 2.621/GM-MD, published on
5 August [19], the Brazilian Ministry of Defense prohibited the Army Forces from participating in
commemorative events that could result in crowding, such as parades and military demonstrations.

Date 1 Jan 24 Feb 25 Feb
Weekday Wed Mon Tue
Holiday New Year’s Day Carnival Carnival
Date 10 Apr 21 Apr 1 May
Weekday Fri Tue Fri
Holiday Good Friday Minas Conspirancy International Workers’
Date 11 Jun 7 Sep 12 Oct
Weekday Thu Mon Mon
Holiday Corpus Christi Independence day * Our Lady of Aparecida
Date 2 Nov 15 Nov 25 Dec
Weekday Mon Sun Fri
Holiday All Souls’ Proclamation of the Republic Christmas
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Holidays usually involve increased mobility of people. Thus, we assessed mobility
of Brazilian community using data retrieved from Google LLC (Alphabet Inc., Moun-
tain View, CA, USA) during the epidemiological weeks evaluated herein. The company
started publishing mobility reports [20] in early April 2020. These reports showcase how
COVID-19 and countermeasures influenced the dynamics of mobility over time. Mobility
database presents median of data collected daily after removal of noises rather than raw
quantities [21].

Changes and trends observed in mobility data in several contexts, such as retail and
recreation, supermarket and pharmacy, parks, transit stations, businesses, and residential
areas, and the variation of average daily cases of COVID-19 per week can be seen in
Figure 4. There is a contrast in mobility patterns, daily reports, and deaths from weeks
14 to 20 of 2021 (Figures 1b and 4b). The increase in the number of cases was followed
by a growth of death reports during the worst chapter of COVID-19 pandemic in Brazil.
As a result, celebrations were canceled and stricter measures to contain mobility were
implemented. Thus, the assessment of holidays and mobility patterns can reveal trends to
be used as input data in regression systems to study COVID-19.
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Figure 4. Brazilian Community Mobility Reports for retail and recreation, transit stations, parks, workplace, residential
and grocery, and pharmacy during ordinary days and national holidays during the COVID-19 pandemic. (a) Community
mobility reports and holidays; (b) biweekly reports of COVID-19 and holidays. Red represents the holiday plus 14 days;
purple represents Brazilian elections. Mobility data provided by Google LLC.

All of the figures, codes, and tests used on the graphics above were written in Python
3.7. Software libraries Pandas 1.3, TensorFlow v2.6.0, NumPy 1.21, Matplotlib stable release
3.4.3, and the free and open-source Python library SciPy 1.21.2 were used.
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2.1. Principal Component Analysis

The mobility report dataset provided by Google contains a complex arrangement of
information and patterns that are influenced by different community sectors, habits, and
external events. Nevertheless, with the transformation of such information into data, it is
possible to produce an independent variable that may be able to generalize a temporal event
or situation. Principal Component Analysis (PCA) allowed us to perform the analysis of
different projections of the dataset without losing significant information and to generalize
dimensions with a smaller number of data.

The PCA method reduces the number of dimensions in a scenario with multiple
variables by using a linear transformation to turn a large number of correlated original
variables into a smaller number of uncorrelated variables [22]. The newly discovered
dimensions are smaller or equal in size to the original variables used in the algorithm [23].

PCA is a statistical multi-variate analysis method that aims to identify the main factors
that cause the most variation in a set of data. As a result, we consider as the primary
goal the information contained in several original variables in a smaller set with as little
information loss as possible.

To set up the sorting of the principal components (PC) of mobility reports data using
PCA, the first step was to measure the average value of all dimensions of the database. To
avoid unequal supplying of contribution for a given dimension into the process, we applied
a method to standardize the data to generate input in a common scale. This mapping is
given by:

z =
x− µ

σ
(1)

where z is the scaled value, x is the original value, and µ and σ are the mean and standard
deviation, respectively.

Next, we computed the covariance of variables and established the covariance matrix
A, which is given by:

cov(x, y) =
1

n− 1

n

∑
i=1

(xi − x̄)(yi − ȳ) (2)

When a linear transformation is applied to a nonzero vector, the eigenvector, or char-
acteristic vector of that linear transformation, changes by a scalar factor. The factor by
which the eigenvector is scaled corresponds to the eigenvalue. Due to this transformation, it
is necessary to compute eigenvectors and corresponding eigenvalues of the matrix A:

A~v = λ~v

A~v− λ~v = 0

~v(A− Iλ) = 0 (3)

where I is the identity matrix, and λ is the eigenvalue, which is a scalar value. This means
that λ defines the linear transformation. Finally, the eigenvectors are sorted by decreasing
eigenvalues, and the k eigenvectors with the largest eigenvalues are chosen as the PC.

2.2. Epidemiological SEIRD Model

The Susceptible–Exposed–Infected–Recovered–Dead model, also known as SEIRD [24,25],
is an epidemiological analysis based on the Susceptible–Infected–Removed model, known as
SIR [26,27]. SEIRD is intended to enhance the SIR model in order to explain the evolution
of a population in terms of transmissibility, contact rates, and the expected duration of
infection in the course of an outbreak. Some assumptions must be made in SEIRD modeling:

• Population size (N) is constant;
• Demographic features are not implemented or adopted;
• Heterogeneity: an infected individual has an equal chance of contacting a susceptible

person.
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SEIRD categorizes the population in groups to analyze data and design forecasts
based on reported cases:

• Susceptible (S): Individual who is prone to be infected on day t, and has never been
infected and is not immune to infection;

• Exposed (E): Individual who has been exposed to the disease but was not able to infect
another person nor show symptoms;

• Infected (I): Individual who is infected and producing virus that can potentially infect
other individuals;

• Recovered (R): Individual who was ill and recovered on day t with alleged acquired
immunity;

• Dead (D): Individual who died because of the infection.

The movement of individuals from one group to the other during the course of the
outbreak is resolved by using Ordinary Differential Equations (ODE), which constitutes
the dynamic of the SEIRD model. ODE are defined as follows:

dS
dt

= − S
N
(βI + εE) (4)

dE
dt

=
S
N
(βI + εE)− αE (5)

dI
dt

= αE− I(γ + µ) (6)

dR
dt

= γI (7)

dD
dt

= µI (8)

where the infectious rate beta (β) represents infections per exposure, i.e., a susceptible indi-
vidual has contact with an infected individual and presents a latent infection after exposure;
the infectious rate epsilon (ε) represents the potential rate of infection per exposure, i.e., a
susceptible individual that has mutual contact with an exposed/infected individual and
may infect another susceptible individual; the transitional rate alpha (α) of an exposed
individual to infect others is the average latent period 1

α . Gamma (γ) and mu (µ) represent,
respectively, the recovery rate and rate at which infected people become deceased; 1

γ is the
mean infectious period. Figure 5 synthesizes the model.

Figure 5. The evolution of individuals in a population during the course of an outbreak according to
the SEIRD model. Each group of individuals is defined by an ODE and categorized as Susceptible,
Exposed, Infected, Recovered, and Dead.

SIR was the first epidemiological model to use compartments. In this model, the
whole population can be assigned to only three basic compartments, namely susceptible,
infected, and removed. The last compartment includes people who recovered from the
infection and the ones who died because of the infection. This is one of the limitations of
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the model. Disregarding exposure and the incubation period is another pitfall of using
SIR analysis. An alternative approach to analyze the population in compartments during
an outbreak is to employ the Susceptible–Exposed–Infected–Removed–Susceptible (SEIRS)
model [28]. Unlike with SIR, individuals from the removed compartment can return to
the susceptible compartment. However, our database provided death figures but lacked
reinfection information. Thus, the SEIRD model proved to be more appropriate for our
data set.

Basic Reproduction Number

The estimated number of secondary cases created by a single (typical) infection in a
fully susceptible population is known as the basic reproduction number R0, a dimensionless
number, and is referred to in many cases as the simple reproductive rate.

A possible way to find R0 is by adopting the next-generating matrix to calculate
the reproduction number. Furthermore, the method calculates the current reproduction
number Re, which is the secondary infection rate. The model is divided into two groups:
X1, containing E and I individuals as the infective and infectious group, and X2, which
contains S, R, and D individuals as the susceptible, recovered, and dead group . Assuming
S ≈ N and f (X1, X2) and v(X1, X2) are the vectors of new infection parameters and other
parameters, respectively, then

f (X, Y) =
{

βI + εE
0

}
, and v(X, Y) =

{
αE

−αE + I(γ + µ)

}

F = d f
dX =

[
ε β
0 0

]
, and V = dv

dX =

[
α 0
−α γ + µ

]

FV−1 =

 ε
α + β

γ+µ
β

γ+µ

0 0

 (9)

The eigenvalue of FV−1 with the highest value is R0 = ε
α + β

γ+µ and Re = β
γ+µ . An

outbreak is not likely to happen, or it is controlled, when R0 ≤ 1. When R0 > 1, however,
the disease spreads exponentially, resulting in an epidemic.

2.3. Multi-Variate LSTM Model

Neural networks are useful tools for pattern recognition. Methods such as ARIMA [29,30]
have been demonstrated to be insufficient in the long run to generalize or maintain accuracy
of patterns in regressions of long periods. Some approaches are appropriate for problems
that cannot be solved linearly. In such cases, the neural network allows us to identify the
degree of relationships among variables, such as the ones in our study, since non-linear
variables cannot have causality or correlation explained by commonly used methods. Thus,
neural networks produce promising results for one-variate, bi-variate, and multi-variate
regression problems.

In Long Short-Term Memory (LSTM) [31], similar to Recurrent Neural Network
(RNN), a context of memory persists within the pipeline, allowing them to solve sequential
and temporal subjects without being hampered by the vanishing gradient. These neural
networks are built on the usage of gates that direct how information is forwarded and
ignored inside its internal structures to achieve such complex learning retrieval from
sequential sources.

LSTM differs from the traditional approach in that it contains an element called
cell state, which determines whether the information is stored or not. The cell state can
transport pertinent information throughout the sequence’s processing, cross the entire
thread of interactions, add or delete data from this state cell, and set it according to
structured switches.
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Given this benefit, the goal is to use stacked LSTM units as a layer, composed of
200 blocks attached to a dense layer to predict a bi-weekly series of COVID-19 daily deaths
taking into account one- and multi-variate input data, as shown in Figure 6.

Input
( 14 x (2 or 3))

LSTM
layer

(200 LSTM)

LSTM1

...

LSTM2

LSTM3

LSTM200

...

Dense
layer

(100 neurons)

Output
( 14 x 1)

Figure 6. Neural Network Architecture proposed.

For the one-variate model, we use COVID-19 daily cases as input data to predict the
next 14 days of COVID-19 deaths. The learning algorithm is asked to output a function
f : Rn → R in order to complete this task. For the multi-variate model, we set a mix of the
data, finding the best approach, such as factor R0 and/or principal components from PCA,
to a multi-variate model to predict the next 14 days of COVID-19 deaths. The proposed
model has the same architecture for any case, changing only its input data.

2.4. RMSE and Model Grid-Search

To evaluate the model, we apply the use of RMSE (root mean squared error), a metric
that calculates the deviation of errors between observed (ground-truth) and predicted
values (hypotheses):

RMSE =

√
1
n

n

∑
i=1

(
yi − ŷi

)2
(10)

where yi is the true value, the ground truth, and ŷi is the predicted value from the model.
The sum will be given different weights and the RMSE index will rise dramatically as the
instances’ error values rise. That is, if there is an outlier in the dataset, its weight in the
RMSE calculation will be higher, harming the performance by increasing the RMSE.

Furthermore, a grid search to find the best set of input data for the model in forecasting
the COVID-19 deaths with the lowest RMSE was applied. We apply the same experiment
for each input dataset over 50 times, which allows us to extract the expected value and
the standard deviation of each configuration in predicting our goal. For this, we split the
data into training and testing data. The test set is related to the last 28 days (4 weeks) of
the temporal series. Therefore, the RMSE extracted and reported in this work is related to
comparisons against the test data.

The aforementioned workflow is described in Figure 7. The model receives each set
of input data, and the model’s expected outcome applied to the test data is subjected to
RMSE calculations. After the process has been repeated 50 times, we distill a boxplot
graph to observe which configuration performs better on average, observing the standard
deviation and mean RMSE calculated. To create a temporal plot, comparing the ground
truth (real values) and the model’s predictions, we choose the model with the lowest RMSE
in forecasting COVID-19 deaths for each set of input configuration. For example, for all
50 repetitions using cases as input data, we plot the curve with the lowest RMSE.
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is execution
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Increment
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Plot ground-truth
temporal model deaths

and predictions with
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Figure 7. Workflow applied to grid search of input data sets.

3. Experiments and Results

We performed a series of experiments in order to better understand whether commu-
nity mobility on a public holiday could be a relevant element for predicting COVID-19
daily cases and deaths in Brazil. Initially, the basic reproduction numbers R0 and Re were
extracted from the SEIRD model, providing the association of national holidays and daily
infections and deaths by COVID-19. Subsequently, PCA was applied for dimensionality
reduction on the Community Mobility Report dataset. The dimensionless factors R0, Re,
and the PCs generated by PCA were applied to the deep learning model as input data for
the training step.

3.1. SEIRD Model to Extract Basic and Current Reproduction Rate (R0 and Re)

Based on the assumption that infection begins with a single person, the initial values
of infected, Iinitial , and exposed, Einitial , are set to 1. The initial values of the recovered,
Rinitial (which we added the vaccinated individuals), and deceased, Dinitial , groups are set
to 0. To determine the initial value of susceptible Sinitial , we use the following equation:

Sinitial = N − Einitial − Iinitial − Rinitial − Dinitial (11)

where N is the population size or the total number of individuals. The incubation period
for SARS-CoV-2 ranges from three to six days. During this period, infected individuals do
not present symptoms [32,33]. Furthermore, COVID-19 symptoms, when present, usually
appear up to 14 days after infection [32]. The SEIRD model uses parameters β, ε, α, γ, and
µ to tune the forecast. Such parameters have been estimated by minimizing a function
based on the least square error to obtain optimized values and an optimal solution.

We defined the initial values, lower bound, and upper bound as inputs for each parameter
to recover their optimal value. Initial values and respective bounds are described as follows:
β with the initial value 0.5 and bounds [0.001, 1]; ε with the initial value 0.001 and bounds
[0.001, 1]; α with the initial value 1/4 and bounds [1/6, 1/2]; γ with the initial value 1/14 and
bounds [1/18, 1/10]; and µ with the initial value 0.001 and bounds [0.001, 1].

To generate the periodic data containing R0 and Re, the pipeline was submitted to
a loop process that consider a step of a day and take into account a period of 14 days
(bi-weekly period). The extracted values are shown in Figure 8. The holidays and Brazilian
elections over the COVID-19 daily cases curve are also shown in Figure 8.
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Figure 8. Basic Reproduction Number R0 and COVID-19 Daily Cases in Brazil.

We noticed a series of events that triggered crowding and, somehow, had an impact
on Brazilian COVID-19 reports. Although the 7th of September holiday was canceled in
2020, there was an increase in COVID-19 reports. The same happened on All Souls’ Day,
on 2 November. The trend in the curve of cases and the basic and current reproduction
rates, R0 and Re, was probably influenced by proximity of people and infection caused
by crowding with poor social distancing. Illegal crowds, which were not allowed at the
time, may have also contributed to the increase of infections. The increase in reports was
observed in each state and in the whole country (Figure 3).

From a period of 448 days of COVID-19 reports, 80 fell into a 14-day window after the
holiday, as seen in Table 3. These windows, which we called holiday periods, represented
17.86% of the days in our analysis. Throughout holiday periods, R0 values were usually
above 1. Regular days, or the ones outside holiday periods, accounted for approximately
82% of the period of our study. R0 was above one in only 23.21% of the regular days. As
COVID-19 was officially reported in March of 2020 in Brazil, R0 values were high at that
point of the pandemic. We decided to exclude this month from the analysis. In this scenario,
15.94% of the days were holiday periods presenting R0 > 1. Only 20% of the regular days
had R0 above one.

Table 3. Distribution of R0 value for holidays and non holidays over the period of 448 days.

R0 > 1 R0 ≤ 1

holiday period 80 days 60 days
not a holiday period 104 days 204 days

When R0 component is greater than 1, deviation is higher than when its value is
less than 1 (Figure 9). When holiday periods are considered, distribution shows apparent
outliers. When R0 is less than 1, distributions are similar, ranging between 0.75 and 1.
Here we notice that asymptomatic individuals and/or unreported cases have played
an important role in SARS-CoV-2 transmission, causing some of the unexpected trends
(Figure 8). For example, increases in COVID-19 cases occur when the reproducing factor
(R0) is less than 1.0. This trend occurs because the reproducing factor is a result of data
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retrieved from official reports and may not represent their real values. According to
estimates [34], there is a substantial underreport in cases of COVID-19. Actually, the
difference is sometimes one order of magnitude in number of cases, which brings a much
higher R0 (near to 3).

Holiday - R>1 Not holiday - R>1 All R>1 Holiday - R<1 Not holiday - R<1 All R<1

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Tr

an
sm

iss
io

n 
Ra

te

Figure 9. Boxplot distribution of R0 value for holidays and non-holidays.

When the distributions of days of the holiday period and non-holiday are shown
(Figure 10), it is seen that the values on holiday days are more concentrated at values
R0 > 1. On non-holiday days, R0 values are close to 1 but relatively in a range equal to or
less than 1.
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Figure 10. Histogram and distribution of R0 in holiday and non-holiday periods. (a) R0 distribution—
holiday period. (b) R0 distribution—non-holiday period.

Despite the distributions shown in Figures 9 and 10, applying the Shapiro–Wilk
test [35] to assess whether the distributions are similar to normal distributions, the data
that concern holiday periods and R0 < 1 have Gaussian behavior by the obtained p-value
0.195 (Figure 11c); for all others cases, the p-values are 0.000 (Figure 11a,b,d). Because of
this, we consider two null hypotheses: (1) H01

p: R0 > 1 have the same pattern in holiday
periods and in non-holiday periods; (2) H02

p: R0 < 1 have same pattern in holiday and
non-holiday periods.
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Figure 11. Shapiro–Wilk outcomes. (a) Holiday period with R0 > 1. (b) Not holiday period with
R0 > 1. (c) Holiday period with R0 < 1. (d) Not holiday period with R0 < 1.

Applying the Mann–Whitney test [36], the p-values obtained for the null hypothesis
were 1) H01

p : 0.3856 and 2) H02
p : 0.0022, whereas the significance is compared to the value

being less than 0.05. The results support the idea that R0 > 1 on days that are in holiday
periods, differing from days that are not in holiday periods. It also shows us that the R0 < 1
does not differ if the day is a holiday period or not.

As a result, these data, in addition to the number of cases, are expected to be important
when dealing with disease contamination dynamics. Once we establish a causal relationship
between infection rates and the number of confirmed cases, we expect the addition of holiday
dates to play an important role in improving the accuracy of predicting COVID-19 deaths.

3.2. Principal Components for Mobility Data

We used PCA to transform a set of mobility data variables to an orthogonal mapping,
whereas linear regression accounts for the best straight line to fit these data. Figure 12
indicates that a single PC can approximate mobility data variability by 79.19%, whereas
two PCs can approximate mobility data variability by 90.25%.
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Figure 12. Percentage variability of the mobility reports data, which may be represented by PCA.

By adopting two PCs, as shown in Table 4, we observed that places such as retail and
recreation, as well as transportation terminals, harm PC1, whereas residential had a positive
influence on PC. Parks had a positive impact on PC2, whereas workplaces had a reverse
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effect. Therefore, with these two PCs, we explained and simplified mobility data variability
by 90.25%.

Table 4. Influence of mobility reporting data on PC projection variability.

PC-1 PC-2

retail and recreation −0.441861 0.149809
grocery and pharmacy −0.378593 −0.052756

parks −0.341852 0.790273
transit stations −0.450280 −0.063395

workplaces −0.394821 −0.570140
residential 0.431192 0.145478

Therefore, the use of PCA helped to convert correlations of six dimensions into
community mobility reports into a smaller projection, with 2 dimensions. Figure 13 shows
the curves derived using the PCA method, together with the R0 value provided by the
SEIRD Model.
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Figure 13. PC1 and PC2 shown with Basic Reproduction Number R0 during the COVID-19 timeline in Brazil.

Figure 14 shows the trend of scattering data, which reveals that PC1 values are
more determinant for R0 > 1 during holiday periods when PC1 values are more widely
distributed.
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0
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Figure 14. PC scattering based on mobility reports considering R0 > 1 and the holiday period. A
point with a value of 0 indicates that it is not a holiday, whereas a value of 1 indicates that it is a
holiday period.

Further, we notice that PCA has different behaviors for mobility data for 2020 and
2021. For 2020, it results in more sparse values, which are mainly distributed between −4
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and 6, as seen in the PC1 (X axis) of Figure 15a (orange dots). For 2021, it is composed,
in general, of values between −2 and 1, besides an outlier observed with a value of 4
(Figure 15b).
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Figure 15. Cluster based on scattering of PC values using mobility data during the COVID-19
epidemic in Brazil. A point with a value of 0 indicates that it is not a holiday, whereas a value of
1 indicates that it is a holiday period. (a) PC scattering based on mobility reports considering R0 > 1
and holiday period in 2020. (b) PC scattering based on mobility reports considering R0 > 1 and
holiday period in 2021.

The proposed hypothesis here is that such PC time-series values can serve as input data
for a forecast model for improving prediction. We consider that these patterns presented
in the PCs may assist as a behavioral tool for the interpretation and prediction of the
COVID-19 daily deaths curve under the influence of these new dimensions generated.

3.3. Forecasting COVID-19 Deaths

We suggest considering the extraction of R0 and its presented patterns, and the PCs
generated, all of them as data input to the LSTM model to predict the number of deaths by
COVID-19. The generated PCs represent the community mobility in a smaller number of
dimensions, but explain the variability in 90.25% of the community mobility. The set of
input configurations that can be used in the proposed network are presented in Table 5.

Table 5. All settings considered for the grid-searching, evaluating R0 and Re, extracted from SEIRD
Model, and Holiday flags, which is a flag value representing the holiday + 14 days subsequent, and
PCs generated by the PCA method. For all configurations it proposed is to forecast the COVID-19
daily deaths for the last bi-weekly period, reserved for testing.

Configuration Number Input Data

1 Cases
2 Cases + Holiday flag
3 Cases + R0
4 R0
5 Re
6 R0 + Re
7 R0 + Holiday flag
8 Re + Holiday flag
9 R0 + Re + Holiday flag

10 PC1 + PC2
11 PC1 + PC2 + R0
12 PC1 + PC2 + R0 + Holiday flag
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In order to test and choose for the best configuration, each of them is submitted to a
grid-search process of training. In this process, they are executed 50 times and the forecast
variations of each model are then analyzed using the test input data. By using the number
of cases as the basis for predicting the number of deaths (baseline case), the median value
of the results obtained from this method demonstrated that the median of the RMSE error
is approximately 214.58 deaths over a 14-day forecast period, as shown in Figure 16a.
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Figure 16. RMSE median and average error in the boxplot on grid search using the following as
input data: Cases, Cases + R0, R0 + Re + Holiday flag, and PC1 + PC2. For each configuration, the
graphs show the median and average of the accumulated error in predicting deaths over 50 repeated
experiments. (a) Cases. (b) Cases + R0. (c) R0 + Re + Holiday flag. (d) PC1 + PC2.

Table 6 lists the values for the other model configurations that were submitted to
the process in the test-input-data step. As observed in Table 6, forecast was improved
by adding the holiday flag to the one-variate model (configuration 2) that initially used
only number of cases as input data. Another observation was related to the use of principal
components as a substitute for the use of number of cases as input data. In these cases, we
expected a reasonable forecast as an alternative to using only number of cases or some other
data together with infected cases. Adopting only a dimensionless value of R0 or Re, on the
other hand, was not a reasonable approach, especially if one of them was associated with
some holiday flags. However, using them as input data in groups and adding holiday flags
helped the forecasting problem.
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Table 6. RMSE over test input data median and average prediction error of 50 models for each
configuration described in Table 5.

Configuration 1 2 3 4 5 6
Median error 214.58 183.11 173.84 219.05 221.37 191.65

Configuration 7 8 9 10 11 12
Median error 216.11 223.04 177.08 189.05 199.49 209.01

Other configurations, such as using the basic reproduction number (number of cases +
R0) as input data, yielded more accurate results, with an average recorded RMSE of 173.84
(Figure 16b), which was an improvement of 18.99% over the baseline using only number of
cases as input data. The use of R0 and Re with the holiday flag (Figure 16c) produced an
RMSE median error of 177.08. This was another configuration that should be highlighted
with a higher accuracy of 17.48% over the baseline using only cases as input data.

When comparing the generated curves by the model and the COVID-19 daily deaths
ground truth (Figure 17), we observed that the R0 provided stability in forecasting and
reducing the noise in the predicted curve (Figure 17b). However, we noticed that there is a
time shift of approximately a week in the predictive curve in certain periods. Considering
Figure 17c, generated from the adoption of R0, Re, and the holiday flag, we observed this
time shift problem was solved, despite an increase in RMSE error compared to the previous
curve (Figure 17b). Nevertheless, a better and more accurate prediction of deaths caused
by COVID-19 was achieved.
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(a) COVID-19 daily deaths forecasts using Cases as input data.
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(b) COVID-19 daily deaths forecasts using Cases + R0 as input data.
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(c) COVID-19 daily deaths forecasts using R0 + Re + Holiday flag as input data.
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(d) COVID-19 daily deaths forecasts using PC1 + PC2 as input data.

Figure 17. Curves of selected settings: Conf.1: Cases, that is our baseline case; considering which
parameters can improve the baseline case, we select Conf.3: Cases + R0; without using Cases as a
input-feature, we select Conf.9: R0 + Re + Holiday flag, and; Conf.10: PC1 + PC2 as input data.
For these configurations, we draw the best curves (with the lowest RMSE) of each configuration
over the test data.
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(a) COVID-19 daily deaths forecasts using Cases as input data.
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(b) COVID-19 daily deaths forecasts using Cases + R0 as input data.
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(c) COVID-19 daily deaths forecasts using R0 + Re + Holiday flag as input data.
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(d) COVID-19 daily deaths forecasts using PC1 + PC2 as input data.

Figure 17. Curves of selected settings: Conf.1: Cases, that is our baseline case; considering which
parameters can improve the baseline case, we select Conf.3: Cases + R0; without using Cases as a
input-feature, we select Conf.9: R0 + Re + Holiday flag, and; Conf.10: PC1 + PC2 as input data.
For these configurations, we draw the best curves (with the lowest RMSE) of each configuration
over the test data.
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(b) COVID-19 daily deaths forecasts using Cases + R0 as input data.
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(c) COVID-19 daily deaths forecasts using R0 + Re + Holiday flag as input data.
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(d) COVID-19 daily deaths forecasts using PC1 + PC2 as input data.

Figure 17. Curves of selected settings: Conf.1: Cases, that is our baseline case; considering which
parameters can improve the baseline case, we select Conf.3: Cases + R0; without using Cases as a
input-feature, we select Conf.9: R0 + Re + Holiday flag, and; Conf.10: PC1 + PC2 as input data.
For these configurations, we draw the best curves (with the lowest RMSE) of each configuration
over the test data.
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Figure 17. Curves of selected settings: Conf.1: Cases, that is our baseline case; considering which
parameters can improve the baseline case, we select Conf.3: Cases + R0; without using Cases as a
input-feature, we select Conf.9: R0 + Re + Holiday flag, and; Conf.10: PC1 + PC2 as input data.
For these configurations, we draw the best curves (with the lowest RMSE) of each configuration
over the test data.
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Figure 17. Curves of selected settings: Conf.1: Cases, that is, our baseline case; considering which parameters can improve
the baseline case, we select Conf.3: Cases + R0; without using Cases as an input feature, we select Conf.9: R0 + Re + Holiday
flag, and; Conf.10: PC1 + PC2 as input data. For these configurations, we draw the best curves (with the lowest RMSE) of
each configuration over the test data. (a) COVID-19 daily deaths forecast using cases as input data. (b) COVID-19 daily
deaths forecasts using Cases + R0 as input data. (c) COVID-19 daily deaths forecasts using R0 + Re + Holiday flag as input
data. (d) COVID-19 daily deaths forecasts using PC1 + PC2 as input data.

4. Discussion

Our data suggest that holidays and holiday periods influenced R0 values for COVID-
19, as well as mobility of people. Non-pharmaceutical interventions, such as social distanc-
ing, use of masks, and hand sanitizers were the initial measures to contain the spread of
SARS-CoV-2. However, the Brazilian political, economical, and social contexts influenced
the establishment of effective public health policies. The lack of extensive social distancing
had a major impact on the number of cases and deaths of COVID-19 after holiday periods.
The same trend also occurred with activities in which crowding was involved. The earlier
social distancing measures are deployed, the sooner that such policies will be relaxed,
mainly due to a decrease in cases and deaths by COVID-19 [37].

Several factors help reducing compliance to public health policies, such as socioeco-
nomic inequality, conspiracy-theory-driven noncooperation, and behavioral aspects, such
as cognitive bias [38] and free riding [39]. The association of these factors have also influ-
enced disease patterns. Cognitive biases, for example, play an important role in decision
making, as they affect individual reasoning, cloud judgment [38], and create anecdotal
evidence [40]. A few types of biases affect perception of reality and influence behavior.
For example, confirmation bias, i.e., which is the tendency to favor, search for, interpret,
and remember information that confirms one’s beliefs [41], has negatively influenced pre-
vention strategies, control measures, and research for COVID-19 [40,42,43]. Additionally,
free-riders usually avoid cooperation, exploiting others’ compliance with policies [39]. The
lack of compliance usually has a major impact on control measures, as it compromises
collective efforts to contain the spread of SARS-CoV-2. Holidays have probably intensified
such behavioral factors, causing an increase in the number of cases.
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We emphasize that crowding may very well be the main factor for the maintenance of
COVID-19 cases and deaths from now on. The circulation of new variants poses a threat
to prophylactic measures that are now available against SARS-CoV-2. Although there is
evidence that current vaccine strategies are able to elicit an effective immune response
against the variants of interest and variants of concern of SARS-CoV-2 described until now,
non-pharmaceutical control measures must remain as continuous public policies to avoid
the spread of variants that can potentially cause new waves of COVID-19 [44]. Crowding,
particularly the crowding that occurred within the first year of COVID-19 in Brazil, rapidly
changed COVID-19 reports. The same pattern can be observed on 1 January 2021, when
disease reports started increasing after a holiday that traditionally leads to family reunions
and festivities.

Nonetheless, part of the lack of compliance with non-pharmaceutical measures may
have been validated by the executive branch of the federal government, which has encour-
aged the population to keep crowding and to avoid the use of masks, at the same time
disregarding the severity of SARS-CoV-2 infection and criticizing effective countermeasures
deployed by state and municipal authorities all over the country [7]. Unfortunately, control
measures were not taken even by federal, state, and municipal authorities. The direct result
of the non-compliance with countermeasures is a mean mortality rate of 2.345, which is
approximately 77% higher than the rest of the world [45]. Additionally, COVID-19 denial
has also been widely reported on traditional networks that support the Federal Executive
Branch policies, on unchecked digital media, and on social networks, adding mistrust in
science into this scenario. As a result, part of the population internalized political and
economical biases that were part of the federal government’s agenda instead of complying
with collective control measures, which resulted in one of the most severe examples of
COVID-19 problems in the world [7].

Non-compliance with COVID-19 collective control measures is also related to socioe-
conomic status in the population in several countries. Unfortunately, informal employment
is a worldwide tendency, and Brazilian reality is not different from the rest of the world. In
fact, issues that have historically present in the Brazilian territory were magnified with the
sanitary scenario imposed by COVID-19. Increases in several types of violence, poverty,
and differential access to health and education are among the hurdles Brazilians have to
deal on a daily basis. Festivities and hallmark holidays are usually a chance for informal
workers to increase individual or family income as they increase the demand for consumer
goods such as food, clothes, and beverages. Public policies to control the spread of SARS-
CoV-2, such as lockdowns and social distancing, caused a major impact in families whose
income relies on informal jobs and social interactions. Informal employment causes signifi-
cant tax loss and reduced public revenues, leading to less available resources for important
public services, such as social protection and health care in Brazil, but also contributes to
poorer working conditions and unfair competition for legitimate businesses and collective
bargaining [46]. Data from Bahia, a state from the northeast region of Brazil, indicates
that withdrawal of informal workers decreases the productive capacity of the country
and leads to pronounced negative impacts on the economy, mainly in the service sectors.
However, federal, state, and regional programs for income transfer helps to mitigate the
negative impacts of COVID-19 by 50% [47]. Implementation of control measures associated
with income transfer policies would not only influence mobility of people but also have a
positive impact in COVID-19 reports.

5. Conclusions

As a result of the experiments, we unveil some intriguing concerns. First, we have
discovered that the effects of holidays, or holiday periods, cause immediate increases in R0
and Re trends. These factors, extracted from the SEIRD model, have a significant impact on
the COVID-19 death curves and reports.

Furthermore, principal components generated with community mobility report data
using the PCA approach indicate that holidays may cause distinct report patterns over time,
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which can be analyzed to improve COVID-19 regression of death curves. Furthermore, the
PCA approach has proven to be important because it reduces the dimensionality of the
feature space, and with fewer input dimensions, the model is easier to find.

Cases combined with holiday periods, cases in association with R0, or holiday periods
with R0 produced an effective strategy of analysis compared to using the current number
of cases to predict future deaths. Furthermore, when access to epidemiological data is
limited, the use of community mobility is a promising alternative as it produced better
results than cases as input data.

Based on the trained model, it is possible to generate synthetic data, for example,
simulating an increase in mobility, and see how this affects the model’s forecast. If the
trained model has a high forecast accuracy, we can confidently estimate the impact of each
feature on the dynamic of the death curve. This finding may be used to help authorities
managing resources in the event of future epidemics.

Besides having produced important results showing that we are in the right research
direction, our current data are not final, and further work should be done in order to draw
a thorough and final conclusion on the enhancement of the models for prediction. For that
purpose, it will be necessary in future work to rank-order factors (in order of relevance),
taking into account the literature consensus on factors in COVID-19 infection rate. Some
papers list more than 50 potential features for predicting the number of cases, including
mobility and climate variables such as temperature, humidity, and air pollution [48]. To
predict deaths, the number of vaccinations, population age, and the number of available
ICUs should all be considered.

Finally, using a large number of variables as input data will not necessarily improve
the prediction of COVID-19 fatalities in an LSTM model. However, once a large number of
data have been collected, it is possible to use exploratory methods to conduct trials that
contribute to and improve the accuracy of the model. We also intend to adopt other forms
of data visualization and approaches that can improve understanding of the virus’s spread
dynamics and help make predictions. A possible approach is the use of complex networks,
which help to understand how variables interact, as shown in [49].

In the near future, we intend to study and add new variables to our prediction model,
such as the association and influence of countermeasures defined by the federal, state,
and municipal governments and particularities of people from different regions of the
country, among others. With this approach, a comparison between the effectiveness of
control measures by different states or municipalities can be evaluated to help avoid similar
scenarios in the future.
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