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Alterations to transcriptional regulation are an important factor in breast cancer. Noncoding RNA, such as microRNA (miR), have
very influential roles in the transcriptional regulation of genes. Transcriptional regulation can be successfully modeled and analyzed
using complex network theory. Particularly, interactions between two distinct classes of biological elements, such as miR and genes,
can be approached through the bipartite network formalism. Based on bipartite network properties, it is possible to identify highly
influential miRs in the network, such as those that have a large number of connections indicating regulation of a large set of genes.
Some miRs in a network are nonredundant, which indicates that they are solely responsible of the regulation of a particular set of
genes, which in turn may be associated to a particular biological process. We hypothesize that highly influential, nonredundant
miRs, which we call Commodore miRs (Cdre-miRs), have an important role on the control of biological functions through
transcriptional networks. In this work, we analyze the regulation of gene expression by miRs in healthy and cancerous breast
tissue using bipartite miR-gene networks inferred from the Cancer Genome Atlas (TCGA) expression data. We observe
differences in the degree, clustering coefficient and redundancy distributions for miRs and genes in the network, indicating
differences in the way that these elements interact with each other. Furthermore, we identify a small set of five Cdre-miRs in the
breast cancer network: miR-190b, miR-let7i, miR-292-b, miR-511, and miR-141. The neighborhood of genes controlled by each
of these miRs is involved in particular biological functions such as dynein structure-associated processes, immune response,
angiogenesis, cytokine activity, and cell motility. We propose that these Cdre-miRs are important control elements of biological
functions deregulated in breast cancer.

1. Introduction

Breast cancer is a highly frequent cancer and one leading
cause of death for women worldwide [1]. Aside from these
important epidemiological aspects (and likely behind them)
is the fact that breast cancer is a highly heterogeneous disease,
both in its molecular origins and in its clinical manifesta-
tions; a fact that calls loudly for an improved understanding
of the molecular mechanisms behind breast cancer develop-
ment. Gene expression studies have provided with unprece-
dented information to characterize biomolecular activities
leading to (or at least associated with) tumorigenesis.

Recently, next generation sequencing has allowed us to accu-
rately measure not only mRNA transcripts, but also regula-
tory noncoding RNA molecules such as microRNAs (miRs)
and long noncoding RNAs (lncRNAs). miRs in particular
have received a growing deal of attention due to their regula-
tory effects that seem to be fundamental for breast tumor
establishment and progression [2].

In particular, the regulatory role of miRs seems to be cen-
tral to processes involving cellular homoeostasis through
processes such as apoptosis, proliferation, and migration that
when deregulated give rise to well-known hallmarks of can-
cer [3–5]. Specific families of miRs playing either the role of
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“oncogenes” or “tumor suppressors” are commonly referred
to as “oncomiRs” [6]. Specific miRNA regulation and coregu-
lation patterns have been linked to oncogenic processes [7],
specifically regarding breast cancer onset and evolution [2].

miR regulation at the transcriptional and posttranscrip-
tional levels often occurs by inducing processes leading to
mRNA destabilization [8]; transcriptome profiling is thus
increasingly useful for the analysis of miR regulation in
genome-wide settings. On the other hand, miRs have also
been associated with other mechanisms of regulatory activity
[9], in particular by widening target upregulation or down-
regulation [10]. These regulatory interactions are involved
in mechanisms that may ensure biological robustness
[11]. Regulatory relationships between miRs and genes
(including transcription factors and other regulatory ele-
ments in the genome) are able to coexpress profiles that
may be phenotype-inducing [12].

In order to improve our current knowledge on these mat-
ters, in particular regarding the transcriptional relation
between miRNAs and their target genes (mRNAs), we pro-
pose the use of regulatory networks, using expression data
from primary breast cancer tissue and matched control tis-
sue. In our previous effort [13], we identified differences in
the regulatory interactions of genes by other genes and by
miRs; therefore, we decided to further explore these relation-
ships using the bipartite graph formalism.

Bipartite networks are graphs composed by two disjoint
sets of nodes and a set of edges such that each edge is sur-
rounded by a node of each class. The two disjoint sets of
nodes can be thought of as a top and bottom layers of nodes.
The nature of bipartite graphs allows for the identification of
topological parameters that describe both sets of nodes that
are uniquely defined in this context. [14]. In this work, we
will focus on three parameters: degree distributions, cluster-
ing coefficient, and redundancy coefficient.

1.1. Degree. The degree of a node is the number of edges that
connect a node to its neighbors; it is thus the simplest mea-
sure of node connectivity. The degree distribution of a net-
work is the most basic descriptor of a network [15]. In a
bipartite network, the degree distribution is more informa-
tive if calculated for each set of nodes separately, as the con-
nectivity of nodes in each set may be different. Thus, the
degree distribution for a given set can be defined as follows:

P KNodeSet = nk
n

1

1.2. Clustering Coefficient. The clustering coefficient of a node
is a measure of the local density of connections in which a
given node participates. The clustering coefficient of a net-
work is thus a measure of the cohesiveness of the network
[16]. The clustering coefficient in a bipartite node is defined
as follows:

CC u =
〠υ∈N N υ N u ∩N υ / N u ∪N υ

N N u
2

1.3. Redundancy Coefficient. Nodes of the same type can only
be connected by being connected through nodes of another

type. The redundancy coefficient of a node is the fraction of
pairs of neighbors of the said node that are both linked to
other nodes [16]; it is a measure of the importance of a given
node in a layer for the connection of the nodes in the other
layer. Redundant nodes can be removed from their layer
without causing a disconnection of the nodes in the other
layer, as seen in Figure 1. The formal definition for the redun-
dancy coefficient is as follows [17]:

RC u =
u,w ⊆N υ , ∃υ′ ≠ υ, υ′, u ∈ E, υ′,w ∈ E

N υ N υ − 1 /2
3

Noncoding RNAs, such as miRs, have a regulatory bio-
logical role. Meanwhile, genes may be involved in several
biological activities, as they are translated into proteins
which can have various functional roles. Usually, biological
functions involve the interaction of several biomolecules to
produce physiologically observable phenomena [18]. By
regulating a set of genes, a given miR can in fact control a
number of biological functions in a particular phenotype.
We should take into account the following two consider-
ations based on topological properties of a bipartite network:

(i) miRs with small neighborhoods (i.e., with low degree)
are influencing few genes, being less likely to have
effect on a biological function.

(ii) miRs with high redundancy are less likely to be nec-
essary for a given group of genes to be coregulated,
as there are other miRs that will keep the group
connected.

Therefore, we consider that highly connected, nonredun-
dant miRs may have a major role in the control of biological
functions through transcriptional networks: removal of these
miRs would lead to the disconnection of a group of genes,
which would involve a loss of the concerted regulation of this
gene set, and in turn, of biological functionality. We have
termed these miRs, Commodore miRs (Cdre-miRs).

2. Materials and Methods

2.1. miR-mRNA Bipartite Network Model. We constructed
a bipartite network representing transcriptional regulation
of genes by miRs in breast tissue, in the physiological
and cancer states, hereafter referred to as the healthy and
cancer groups.

We used gene and miR transcription profiles from sam-
ples from the Cancer Genome Atlas [19] breast cancer data-
set [20]. Data processing and handling was performed
following the pipeline previously implemented by our group
[13] (Supplementary Material 1). The data processing pipe-
line included a differential expression analysis using DESeq2
[21] in order to identify the log fold change (LFC) of gene
expression between the cancer and healthy groups.

Regulatory interactions between miRs and genes were
inferred in terms of information theory. Mutual information
(MI) [22] was calculated for each miR-gene pair, using the
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transcription profiles for either the healthy or cancer groups.
Then, these interactions were filtered to conserve the
99.741%. MI calculation was performed using the engine of
our in-house parallelized implementation of ARACNE [23].

Acknowledging that the canonical mode of action is that
miRs regulate gene expression, we take this into account to
interpret that mutual information interactions represent a
directed relationship, from miR to gene; hence, higher values
of mutual information indicate that the involved miR regu-
lates directly the expression of the target gene.

2.2. Bipartite Network Analysis. Each network, healthy and
cancer, was analyzed to identify general topological features,
including number of miR and gene nodes, number of edges,
and number of connected components. For each set of nodes,
miR or genes, distributions were calculated for degree, clus-
tering coefficient, and redundancy. Network analysis was
performed using a combination of NetworkX for Python
[16], igraph for R [24], and Cytoscape [25], as implemented
previously [26].

2.3. Cdre-miR Identification. To identify highly influential,
nonredundant Cdre-miRs, we separated all miRs in each net-
work using two thresholds: a degree threshold of 100 and a
redundancy threshold of 0.5.

2.4. Enrichment Analysis. For each Cdre-miR identified, we
performed an over-representation analysis (ORA) of Gene
Ontology (GO) biological processes [27, 28]. We performed
the analysis using the WebGestalt [29] portal, with default
parameters (number of genes in category between 5 and

2000, Benjamini-Hochberg multiple test adjustment, top 10
most significant processes).

3. Results

3.1. miR-Gene Bipartite Networks in Health and Cancer. We
constructed two comparable networks representing the two
states: healthy and cancer. Figure 2 shows a visualization of
these networks. Table 1 contains the basic descriptors for
each network; these networks are also provided, as GML files,
in Supplementary Material 2. Figure 3 shows the cumulative
frequency distribution for redundancy values for miRs and
genes in healthy and cancer networks. Other distribution
plots including degree and clustering coefficient of gene
nodes are provided in Supplementary Material 2.

3.2. Identification of Cdre-miRs. In Figure 4, we show a
scatter plot of miRs, with the y-axis representing degree
and the x-axis representing redundancy. We divide this
plot in four sectors delimited by the thresholds selected
to define high connectivity (degree larger than 100) and
low redundancy (redundancy lower than 0.5). Five miRs
were identified to be highly connected and nonredundant
in the cancer setting: miR-190b, miR-let7i, miR-292-b,
miR-511, and miR-141. Importantly, no Cdre-miRs were
identified in healthy breast tissue.

Figure 4(a) shows the five Cdre-miRs and their first
gene neighbors, colored by LFC. As it is expected, there
is little overlap between the neighborhoods of each Cdre-
miR; however, they are not completely isolated from each
other, as there is a small subset of genes that are regulated
by more than one Cdre-miR. Figure 4(b) shows the 3
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Figure 1: In this figure, we show a simple bipartite graph with 3 top nodes (A to C) and 5 bottom nodes (1 to 5). The projection of bottom
nodes is shown on the right side. If node B is removed, no link in the projection is lost, as all bottom nodes connected through B are also
connected through A; therefore, B is redundant. Meanwhile, removing node C causes the loss of connections of bottom nodes 4 and 5;
therefore, C is nonredundant.
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(a)

(b)

Figure 2: Network visualizations. (a) Healthy breast tissue. (b) Breast cancer tissue. Node color intensity in both networks is proportional to
expression levels.
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Gene Ontology biological processes more enriched in the
gene neighborhoods of each Cdre-miR. Complete enrich-
ment analysis results may be found in Supplementary
Material 3. In this panel, we also include the enrichment
of the neighborhood intersection of miR-511 and let-7i:
the innate immunity process.

4. Discussion

Understanding the role of miR-gene regulation is crucial to
unveil the mechanisms behind tumorigenesis and progres-
sion in breast cancer. Bipartite networks offer a powerful tool
to analyze the behavior of these interactions and at the same
time the structural and functional relevance of specific miRs
in the transcriptional regulatory program.

In this work, we have shown that the bipartite networks
representing miR-gene regulation in health and breast cancer
exhibit notable structural differences. This can be observed in
terms of structural parameters, including degree, clustering,
and redundancy coefficients (as seen in Table 1, Figures 3
and 5, and Supplementary Material 4); the overall distribu-
tion of these parameters is qualitatively different in each net-
work, which indicates that they have essentially different
topologies. This result is in agreement with the widely under-
stood notion that miR regulation is altered in cancer.

miRs are, on average, more connected in the health con-
text than in cancer. They also happen to be more redundant,
as seen in Figure 4. Biologically, this represents an abundance
of joint miR regulation over sets of genes in health, which
provides a mechanism that confers a structural robustness
and a stronger maintenance of the transcriptional regulatory
program in a normal tissue. Meanwhile, miRs in cancer tend
to be less connected on average and also less redundant.

4.1. Cdre-miRs and Their Role in Breast Cancer. A major
finding in this work is that the presence of highly connected,
nonredundant miRs, which we define as Commodores, is a
phenomenon only observed in the breast cancer network.
Cdre-miRs emerge as important gene expression regulators,
as each of them alone is responsible for the regulation of large
groups of genes. Perhaps, more interesting is the fact that,
through the regulation of these gene sets, each Cdre-miR is
an important control element of specific biological processes.

For instance, miR-141 is a widely studied oncomiR
[30–38]. Our group has previously observed that this miR
is one of the most relevant mediators of structural processes

in breast cancer and particularly involved in the epithelial-
to-mesenchymal transition (EMT), as well as in the opposite
mesenchymal-to-epithelial transition (MET) [13]. Here, we
show that its functional importance is reflected by its crucial
role in the miR-gene network. The processes that mir-141
controls through the regulation of its gene neighborhood,
which includes genes such as VIM and ZEB1-2, are directly
related to EMT-MET: motility, cell migration, and extracel-
lular matrix (ECM) organization.

Another miR that has been previously studied in the
context of breast cancer is miR-190b. Previously, it has
been shown that this miR is associated with estrogen-
positive breast cancer [39] and hormone therapy resistance
[40]. However, its specific role in the pathogenesis of the
disease has not been described. We identified mir-190b
as a Cdre-miR that is associated to the regulation of dynein
assembly, vitamin metabolism, and cell proliferation of
mammary epithelial cells, a well-known hallmark of cancer.
As a Cdre-miR, it is possible that deregulation of this miR
is mechanistically involved in the acquisition of these distinc-
tive cancer features.

Other important cancer features are controlled by
miR-29b. This miR has been found in serum of patients
with breast cancer [41] and overexpressed in cervical can-
cer [42]. In this work, we identify it as an important reg-
ulator of transport, angiogenesis, and epithelial cell migration,
processes that are predominantly controlled by this miR.

4.2. Concurrent Regulation of Innate Immune Response by
Cdre-miRs. So far, we have identified processes that are
uniquely controlled by a single Cdre-miR. However, we
also found processes that are controlled by two different
Cdre-miRs, through the regulation of different gene neigh-
borhoods. For instance, let-7i controls genes related to leu-
kocyte cell-cell adhesion, adaptive immune response, and
cell activation. Meanwhile, miR-511 regulates genes associ-
ated to cytokine production, cell activation, and adaptive
immune response; that is, they each control related, but
nonoverlapping, processes.

Importantly, the overlap between these two miRs is the
largest observed between any pair of Cdre-miRs, but is less
than 25% of the size of either miRs’ neighborhood (53 out
of 238 and 213, resp.). Perhaps more interestingly, by eval-
uating the enrichment of the intersection of these two
Cdre-miRs, we identify that their jointly regulated genes
highly overrepresent the innate immune response process,
which is not significantly enriched by neither of neighbor-
hood alone. This can be interpreted as an instance of a
coregulated process that requires combined action of two
different Cdre-miRs.

5. Conclusion

Using bipartite networks, we identified differences in the
miR-gene regulation between healthy breast tissue and breast
cancer. We christened those miRs that are highly connected
and nonredundant as Commodore miRs. The emergence of
Cdre-miRs is a network structural property that is only found
in the context of breast cancer.

Table 1: Bipartite network parameters.

Parameter Healthy Cancer

Nodes, miR 97 414

Nodes, gene 2967 3240

Edges 16,589 14,063

Average degree, miR 171.02 33.97

Average degree, gene 5.59 4.34

Average clustering coefficient, miR 0.28 0.18

Average clustering coefficient, gene 0.24 0.27
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We identified five Cdre-miRs: miR-190, miR-29b,
miR-141, miR-511, and let-7i that regulate specific biological
processes. miR-190 is involved in cell structure, proliferation,
and metabolism. miR-29b regulates cell transport, migration,
and angiogenesis. miR-141 controls cell motility and extra-
cellular matrix organization. miR-511 and let-7i indepen-
dently regulate genes associated to cell adhesion and
adaptive immune response through different gene sets. The
latter shows that nonredundancy does not interfere with net-
work robustness at a functional level.

Furthermore, innate immune response is a function
which is not controlled by a single Cdre-miR, but it emerges
in the context of the neighborhood overlap of miR-511 and
let-7i. This is an example of how cooperation allows the

emergence of new features that provide biological robustness
to breast cancer. Identifying these elements is a step forward
to identify actionable elements that provide controllability
over the transcriptional networks.

Cdre-miRs may serve as novel biomarkers in breast
cancer, which may be used to identify perturbation of bio-
logical functions in pathological phenotypes. Currently,
therapeutic targeting of miRs in clinical oncology is lim-
ited; however, as technologies advance, the use of systems
such as antagomiRs, microRNA mimics, and reporter sys-
tems will be available. In this context, we propose that
Cdre-miRs may be attractive targets for the disruption of
processes that are favorable for tumor growth and survival.
With this in mind, Cdre-miRs may be an important

0.00

0.25

0.50

0.75

1.00
Fr

eq
ue

nc
y

0.25 0.50 0.75 1.000.00
Redundancy

(a)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

0.25 0.50 0.75 1.000.00
Redundancy

(b)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

1.000.50 0.750.250.00
Redundancy

(c)

0.25 0.50 0.75 1.000.00
Redundancy

0.00

0.25

0.50

0.75

1.00
Fr

eq
ue

nc
y

(d)

Figure 3: Redundancy coefficient cumulative frequency distribution plots. (a) miR, healthy. (b) miR, cancer. (c) gene, healthy. (d) gene,
cancer. In each panel, x-axis represents redundancy coefficient values, and y-axis represents the normalized, accumulated frequency.
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Figure 4: (a) shows the five Cdre-miRs and their gene neighbors. Nodes are colored in blue if subexpressed or red if overexpressed. (b) shows
the GO biological processes enriched in each Cdre-miR neighborhood, in light grey. Additionally, the process enriched in the neighborhood
intersection of mir-511 and let-7i, innate immunity, is shown in dark grey.
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element in the development of strategies for precision
medicine in breast cancer. We strongly believe that further
research in the role of Cdre-miRs in cancer shall provide a
novel approach to understand the disease.
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Supplementary Materials

Supplementary Material 1. Compressed (Zip) file containing
the graphic pipeline followed in this work.We use raw counts
from RNA-seq and miRNA-seq for breast tumors and adja-
cent control (“healthy”) breast tissue from Genome Data
Commons. MicroRNA preprocessing included mature count
annotation, low-count filtering, and TMM normalization;
RNA-seq preprocessing included mRNA annotation, RSEM
normalization, and low-count filtering. This preprocessing
is thoroughly described in [13]. These counts were integrated
in an expression matrix which was used for a differential
expression analysis (between cases and controls), and the
inference of mutual information miR-gene networks. The
final step is the identification of Cdre-miRs. Supplementary
Material 2. Compressed (Zip) file containing GML represen-
tations of networks. Supplementary Material 3. Compressed
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Figure 5: This scatterplot shows miR nodes in the healthy and cancer networks: grey dots for cancer and black squares for healthy. The x-axis
represents the redundancy coefficient, and y-axis represents the degree of a miR. Only nodes with degrees larger than 2 are represented, as
redundancy is not defined for nodes with a lower degree value. The plot is divided by lines representing thresholds for redundancy (0.5)
and degree (100). The upper left sector of the plot is populated by five Cdre-miR nodes (red dots) with high connectivity and low redundancy.
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(Zip) file containing ORA results for each Cdre-miR gene
neighborhood. Supplementary Material 4. Compressed
(Zip) file containing degree and clustering coefficient distri-
bution plots. (Supplementary Materials)
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