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spontaneous center formation in 
Dictyostelium discoideum
estefania Vidal-Henriquez & Azam Gholami  

Dictyostelium discoideum (D.d.) is a widely studied amoeba due to its capabilities of development, 
survival, and self-organization. During aggregation it produces and relays a chemical signal (cAMp) 
which shows spirals and target centers. Nevertheless, the natural emergence of these structures is 
still not well understood. We present a mechanism for creation of centers and target waves of cAMp 
in D.d. by adding cell inhomogeneity to a well known reaction-diffusion model of cAMP waves and 
we characterize its properties. We show how stable activity centers appear spontaneously in areas 
of higher cell density with the oscillation frequency of these centers depending on their density. the 
cAMp waves have the characteristic dispersion relation of trigger waves and a velocity which increases 
with cell density. Chemotactically competent cells react to these waves and create aggregation 
streams even with very simple movement rules. Finally we argue in favor of the existence of bounded 
phosphodiesterase to maintain the wave properties once small cell clusters appear.

Dictyostelium discoideum (D.d.) is a social amoeba that under adverse environmental conditions begins a devel-
opmental program in order to survive1. After 4–5 hours into this program, the cells start to produce the signal-
ing chemical cAMP (cyclic adenosine monophosphate), which travels the system as a wave relayed by the cells. 
The cells are chemotactically competent and move against the traveling wave of cAMP towards the aggregating 
centers. In the centers the cells form a mound, where they further develop and differentiate into a slug and even-
tually into a fruiting body who releases spores which can become myxamoebas; thus completing the life cycle of 
the amoeba.

The chemical signaling part of the process presents spirals and target centers, these structures are characteristic 
of both oscillatory and excitable systems, and are present in many systems in nature such as the cardiac muscle2,  
calcium waves in oocytes3, NADH waves in glycolysis4, among others. Other important system where such struc-
tures are observed is the chemical reaction known as Belousov-Zhabotinsky5,6, which has become a model exper-
imental system to study spirals and target waves.

A distributed oscillatory system would produce bulk oscillations if it is well stirred, that is, the whole system 
oscillates synchronously. If it is not stirred and presents some inhomogeneities, such as scratches on the container 
surface or dust particles, concentric circular waves will appear7,8. We refer to these structures as target patterns. 
Once a wave breaks, it creates a spiral wave, a persistent structure with topological charge9,10.

Many models have been proposed to describe the cAMP waves in D. d.11–13, from qualitative excitable models 
to models derived from the chemical reactions of production of cAMP from ATP. Each model has their own 
particular way of breaking the homogeneity and producing waves. Here we present the properties of the model 
proposed by Martiel and Goldbeter13,14 when cell inhomogeneity is introduced. We show through numerical sim-
ulations that cell inhomogeneity produces naturally stable target patterns which are centered in areas of higher 
cell density and relayed in the areas of lower density. Therefore, the system behaves both as oscillatory and excit-
able depending on local density. The produced waves are shown to be of the trigger kind, in contrast to phase 
waves (or pseudo-waves, without chemical transport), through their characteristic dispersion relation15. We also 
show that wave speed is density dependent. It has been shown in other chemotaxis models that this dependence is 
enough to produce the wave instability responsible for cell streaming once cell movement is added16,17. Our model 
reproduces that characteristic streaming pattern of this biological system. Finally we show that a form of degra-
dation which scales with local cell density is needed to have streaming at higher local densities, this degradation 
can exist in the form of phosphodiesterase bounded to the cell membrane.
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Results
Our work combines a cellular automata scheme with the model proposed by Martiel and Goldbeter13 and 
extended by Tyson14 where three fields are described. The extracellular concentration of cAMP is represented as γ, 
the intracellular concentration as β, and ρ represents the percentage of active receptors on the cell membrane. The 
receptors’ state changes between an active and an inactive state depending on the cAMP concentration at which 
they are exposed through the functions f1 and f2. The intracellular concentration of cAMP β increases through 
production Φ(ρ, γ) and decreases through internal degradation ki and transport towards the extracellular media 
kt. Finally the external concentration of cAMP can diffuse through the system, gets degraded by phosphodiester-
ase ke and increases due to transport from the internal media kt.

We created a grid in our 1-D or 2-D system, dividing it in segments of size r = 10 μm (or respectively squares 
of area r2) and assigned random locations for the cells, each cell had their own value for the intracellular and 
membrane bound variables ρi and βi, while γ(x, y) was assigned to a square in space. The used equations look as 
follows
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where s = qσα/(1 + α) measures the production intensity, (xi, yi) correspond to the Cartesian coordinates of the 
i-th cell, and H is an indexing function such that H(i, x, y) = 1 if xi ∈ (x − r/2, x + r/2) and yi ∈ (y − r/2, y + r/2) and 
0 otherwise. In this way γ will increase on a grid space if there is a cell producing cAMP in that location and only 
diffuse and be degraded if there are no cells in that space. All used parameter are selected following Lauzeral et al.18  
for their good agreement with experimental measures and are indicated in Table 1. We keep ke the external media 
degradation rate as our control parameter.

The original homogeneous system studied by Tyson et al.14 presented different regimes as ke was increased. In 
our set of parameters for low ke the system has one steady state which is stable. At ≈ .⁎k 4 3e  min−1 the system 
undergoes a Hopf bifurcation and a stable limit cycle appears. This is the oscillatory regime of the system. Upon 
further increasing ke two new steady states appear through a saddle-node bifurcation at ≈ .†k 7 74e  min−1, an 
unstable one and a stable but excitable one. At approximate the same time the limit cycle destabilizes, resulting in 
the excitable regime of the system. We set our parameter ke so that the system is in the oscillatory regime. For a 
detailed description of the different regimes present in this system refer to our previous work19.

oscillatory clusters. Numerical simulations of a small cluster of very closely located cells producing cAMP 
surrounded by buffer media without cells, reach a stable steady (non oscillatory) state due to cAMP diffusion to 
its surroundings. This state is shown in Fig. 1a. To approximate this solution we calculate separately the area with 
cells and the area without them. In the area without cells the system reduces to

γ γ γ∂ = ∂ −D k ,t xx e

which in 1-D has a time independent decaying tail as solution. If the cluster size is 2L, with the cells located in 
x ∈ (−L, L) the decaying tail takes the form

γ = | | >− | |Ae if x Lk D x/e

where A is chosen to fulfill the boundary condition at x = ±L, which are continuity, γ(±L−) = γ(±L+), and con-
tinuity of the derivative, ∂xγ(±L−) = ∂xγ(±L+).

c = 10 h = 5 k1 = 0.09 min−1

κ = 18.5 σ = 0.55 min−1 ki = 1.7 min−1

kt = 0.9 min−1  = 101  = .0 0052

q = 4000 λ1 = 10−4 λ2 = 0.2575

θ = 0.01 D = 0.024 mm2/min r = 10 μm

a0 = 0.04423 a1 = 0.1526 a2 = 328.2

vc = 0.02 mm/min ρc = 0.6 Δγc = 25.98 nM/mm

Table 1. Parameters used for simulations of equation (1) in the first row. Second row: Parameters used to 
approximate the production function in equation (2). Third row: Parameters used when cell movement was 
included.
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For the cAMP concentration inside the cell cluster we used the fact that simulation results showed that the γ 
values inside the cluster are small compared to the values of the cAMP waves, which justifies making an approx-
imation of the production function Φ for small values of γ, we therefore take the polynomial approximation 
kt β/h ≈ a0 + a1γ + a2γ2 and the system reduces inside the cluster to

γ γ γ= + − + + ∂ .a a k a D0 ( ) (2)e xx0 1 2
2

It is worth mentioning that the polynomial approximation values were not taken from the Taylor expansion of 
the production function for γ  1, but rather from a least square fitting of the production function. The fitted 
values for our set of parameters (independent of ke) are listed in Table 1. Equation (2) just by itself is invariant to 
space translation, even though this is not true for the entire system, this invariance produces a conserved quantity, 
which we will call energy and can be used to calculate the shape of the cAMP accumulated around the cluster. We 
can rearrange the equation to show its energy conservation more clearly
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and the total energy E can be found by integrating both sides by γ. Therefore E = V + (∂xγ)2/2 is conserved and 
fixed by the boundary condition. To calculate the shape of the solution we need the energy value, but since the 
decaying tail has a free parameter we need to introduce a second free parameter and then match the two solutions. 
Therefore, we leave the maximum value of γ, γM as a free parameter and we numerically calculated the solution 
using
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For every γM there is a size L such that it fits the boundary condition to match the decaying tail
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an example of the relation γM vs L is shown in Fig. 1b. From there, it can be seen that it exists a maximum 
length for which the static solution exists. For those values of L where two possible values of γM exist, the sys-
tem chooses the one with smaller γM. Indeed linear stability analysis showed that the smaller solution is stable, 
while the bigger one is unstable. Following this procedure we arrive at two results. First the cluster size values at 
which a stable, time independent solution exists, and second an approximation of this solution when it exists, see 
for comparison Fig. 1a where both the numerical solution and theoretical prediction are plotted with excellent 
agreement.

The predicted maximum cluster size for different values is compared to the biggest clusters found through 
numerical simulations in one and two dimensions in Fig. 1c with good agreement for small ke. We believe the 
difference in agreement for large ke comes from the potential V approximation, which is valid only for low values 
of γ, since for larger ke the values of γ are higher, the approximation is not so good, but still manages to catch the 
general behavior of the system. For 2-D simulations, cells where located in r < L with r2 = x2 + y2. We see that 
bigger clusters can be maintained in a low steady state when the degradation is increased, this is expected since 
for fixed L, γM diminishes with increasing ke.

Figure 1. (a) Time independent cluster size solution. Spaces occupied by cells in blue, result of numerical 
simulations in red, and theoretical prediction in black, dashed line. ke = 7.0 min−1 and L = 0.17 mm, equivalent 
to 34 consecutive cells. (b) Distance L from the center at which the system matches the decaying tail boundary 
condition, depending on the maximum concentration γM reached at x = 0. Stable solution in continuous line 
and unstable in dashed line. ke = 7.0 min−1. (c) Maximum size at which cluster still remain non-oscillatory.  
1-D simulations in black, 2-D in red, theoretical 1-D prediction in dashed line.
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If the cell group is bigger than its critical size it oscillates at a frequency that is size dependent, see for exam-
ple Fig. 2a, also depicted in Supplementary Video S1, where one oscillating cluster is shown. As the cell group 
becomes larger, the frequency increases converging towards the limit cycle frequency. We measured this value 
for different cluster sizes once the cluster frequency converged to measuring precision. This relation is shown in 
Fig. 2d.

At small sizes the cluster oscillation is synchronized (bulk), but as it gets bigger ( .⪆L 0 19 mm) a wave devel-
ops. This wave starts at the center of the cluster and moves towards the sides increasing its amplitude as it travels, 
as can be seen in Fig. 2b,c. Compare to Fig. 2a which shows a smaller cluster which oscillates synchronously. This 
effect can also be seen in Supplementary Video S2 which in turn can be compared to Supplementary Video S1.

target patterns in random distributions of cells. When we assigned random locations to the cells, 
the system showed different regimes as we increased ke. For low values of ke the system oscillated mostly syn-
chronously, see Supplementary Video S3 and Fig. 3a) for a space-time plot. For high values of ke the system was 
incapable of oscillating by itself and reached a steady state of low cAMP (see Fig. 3c).

A more interesting behaviour was observed for intermediate values of ke. There, the areas of higher local 
density acted as oscillatory centers, while the rest of the system relayed the emitted waves. This means that the 
lower density areas although not capable of oscillating by themselves are capable of producing enough cAMP to 
maintain the wave and avoid its complete degradation.

This heterogeneity in the system response, seemingly both oscillatory and excitable, appeared even though 
the same parameters were used trough the whole system, the heterogeneity being given by the cell distribution.

The appeared target centers have a range of frequencies and are stable. They also interact with each other, thus 
higher frequency centers dominate over the lower frequency ones. These characteristics match the observation in 
D.d. patterns20. A typical example of our simulation results can be seen in Fig. 3b and in Supplementary Video S4.

The range of degradation values ke in which centers can be observed depends on cell density as is shown in 
Fig. 4a. Under the shaded area bulk oscillations like in Fig. 3a are observed, and above the shaded area spontane-
ous center do not appear, like in Fig. 3c. At higher cell densities, higher degradation rates are required to observe 
spontaneous centers, which is consistent with the idea that phosphodiesterase is produced and released to the 
external media by the cells, therefore a higher concentration of cells should produce a higher concentration of 
phosphodiesterase and therefore a faster degradation. Nevertheless, the amount of maximum degradation does 
not scale linearly with density, but the size of the existence range decreases with higher density.

Figure 2. (a) Space-time visualization of a self-oscillating cluster, with cells in |x| < 0.15 mm. ke = 5.0 min−1. 
(b) A larger cluster of cells with L = 0.375 mm and ke = 5.0 min−1. (c) Different representation of the simulation 
in (b), concentration of cAMP is shown in the z axis with equitemporal lines to guide the view. The increase in 
amplitude towards the cluster edges can be observed (see also Supplementary Video S2). (d) Oscillation period 
of isolated clusters depending on their size in black line. Cells located in |x| < L and rest of the system empty 
space, ke = 5.0 min−1. Red dashed line marks the period of the limit cycle in spaceless (0-D) simulations.

Figure 3. Patterns at different degradation rates. Patterns showed by the system with a random cell distribution 
at a density of 5 · 105 cells/cm2 (0.5 mono-layer) and different degradation rates. (a) ke = 4.0 min−1, (b) 
ke = 5.5 min−1, and (c) ke = 7.0 min−1.
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The transitions between synchronized oscillations, center creation, and low steady state are not bifurcations 
but rather smooth and of a stochastic nature. That means, for example, that for high values of ke a small number of 
centers may still appear in some simulations if by chance big clusters of cells appear together. The shaded area of 
Fig. 4a indicates where centers spontaneously appear in more than 75% of the cases. See Methods for a description 
of the boundary calculations for Fig. 4a.

To understand the nature of the traveling waves we calculated their dispersion relation, i.e. the shape of the 
velocity-period curve. We used the homogeneous distribution simulations mentioned in Methods to study more 
controlled waves. The waves are generated perturbing the system with a period T and the velocity is calculated 
following each individual peak once they passed the initial transient. These dispersion relations are presented in 
Fig. 4b. It can be seen that they present the characteristic shape of trigger waves15, therefore they are actual waves 
that produce transport of chemicals in contrast to pseudo- or phase waves which do not involve chemical trans-
port and have a smaller dependence on diffusion. Here, diffusion is necessary to activate the next cell and with 
that relay the wave, another characteristic of trigger wave behaviour.

If the homogeneous system is perturbed with higher frequencies than those depicted in Fig. 4b it will not react 
with a 1:1 response, but instead it will propagate the waves with a lower frequency, usually located in the elbow 
(strong curvature) area of the curve.

Furthermore, we measured the frequency of the signaling centers in 1-D simulations for a fixed cell density 
of 4 · 105 cells/cm2 (0.4 mono-layer) as a function of degradation rate. We measured lower center frequencies at 
higher degradation rates, as shown in Fig. 4c.

streaming. One common test for the waves generated in a D.d. model is if the system is capable of showing 
streaming once cell movement is added. Streaming is a characteristic feature of the intermediate state of D.d. on 
their way towards the mounds. It consist on the alignment of the cells in a head to tail manner, thus displaying 
long ramified lines of higher density that spread radially from the aggregating center.

To test this feature, we added cell movement in a simple toy-like manner. The cells would move at a constant 
speed vc if they sense a cAMP gradient bigger than a minimum ∂xγ > Δγc and if their percentage of active recep-
tors is bigger than a cutoff ρ > ρc. The first rule avoids movement due to random noise and the second avoids 
the back-of-the-wave problem21,22. The back-of-the-wave paradox consists in taking into account that D.d. only 
moves in the first half of the wave, ignoring the gradient of the decreasing cAMP in the second half which would 
move the cell in the opposite direction. By adding a minimum ρ to allow the cells to move, they effectively move 
only in the first part due to the desensitization produced by the passing wave. The cells continue moving as long 
as these both conditions are met. Initially we did not allowed cell superposition, therefore a cell would only move 
towards a different space if the arriving location were empty. The updated cell positions were calculated each time 
step using a forward Euler scheme, after the γ, β, and ρ fields were calculated. All used parameter are listed in 
Table 1.

We performed numerical simulations in 2-D where we allowed cell movement after a pattern was already 
established (t ≈ 50 min). Images of a typical simulation are presented in Fig. 5 where the streams can be clearly 
observed, thus recovering the expected behavior. The full simulation can be seen in Supplementary Video S5. It is 
also worth mentioning that after cells start to move some wave fronts may break and produce spirals.

Cell superposition and bounded phosphodiesterase. As a way of perfecting our simple toy model 
for movement we included the possibility of cells superimposing in the same location, with a maximum of 5 
cells per grid point. In order for the system to continue presenting centers and continuous cell streaming, addi-
tional degradation is needed. That is, with the previously used constant degradation the centers and aggregation 
streams start to break once cell clumps appear due to movement. See Fig. 6 in comparison to Fig. 5 where target 
centers and stream lines quickly break apart. A simulation showing this behaviour is presented in Supplementary 
Video S6.

Many experimental studies point to the existence of phosphodiesterase bounded to the cell membrane23,24. 
Adding this extra bounded phosphodiesterase keB solves these problems and the system behaves as before, 

Figure 4. (a) The shaded area indicates where spontaneous centers can be observed, depending on cell density. 
Blue dots indicate the degradation rate at which 75% of the simulations presented spontaneous centers. Error 
bar extends up to 50%. Lower boundary marks the maximum degradation rate at which the homogeneous 
system presents bulk oscillations. (b) Dispersion relations for different densities. 5 · 105 cells/cm2 (0.5 mono-
layer) in red circles, 4 · 105 cells/cm2 (0.4 mono-layer) in black squares, and 3 · 105 cells/cm2 (0.3 mono-layer) 
in blue triangles. ke = 5.0 min−1. (c) Center frequency for different degradation values. 1-D simulations with 
density = 4 · 105 cells/cm2, 100 simulations used for each ke value.

https://doi.org/10.1038/s41598-019-40373-4


6Scientific RepoRts |          (2019) 9:3935  | https://doi.org/10.1038/s41598-019-40373-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

producing centers which persist after movement (see Supplementary Video S7). Therefore, we conducted sim-
ulations where there is a constant degradation present on the system keU which represents the unbounded, free 
phosphodiesterase; and a bounded degradation keB which exists attached to the outside of the cell membrane and 

Figure 5. Snapshots of aggregation at different elapsed times. cAMP concentration on the left and cell 
distribution on the right. Same γ scale as in Fig. 3, gray squares show where cells are present and empty spaces 
are shown in black. Density = 4 · 105 cells/cm2 (0.4 mono-layer) and ke = 5.7 min−1. (a) t = 30 min, (b) t = 75 min, 
(c) t = 100 min, and (d) t = 150 min.

Figure 6. Snapshots of aggregation at different elapsed times with cell superposition, but only unbounded 
degradation. cAMP concentration on the left and cell distribution on the right. Same γ scale as in Fig. 3, gray 
squares show where one cell is present, white squares contain more than one cell, and empty spaces are shown 
in black. Density = 5 · 105 cells/cm2 (0.5 mono-layer) and ke = 5.7 min−1. (a) t = 39 min, (b) t = 75 min, (c) 
t = 120 min, and (d) t = 150 min.
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therefore exists only on the occupied spaces and in an amount dependent on the number of cells in that location. 
The new equations are then

ρ γ ρ γ ρ∂ = − + −−k f x y f x y( ( , )) ( ( , ))(1 ), (3a)t i i i i i i i1
1

1 2
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∑γ γ γ β γ∂ = ∇ − + − .x y D x y k x y H i x y k h k x y( , ) ( , ) ( , ) ( , , )[ / ( , )] (3c)t eU i
N

t i eB
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The results obtained with these equations are similar to those shown in Fig. 3, that is, we distinguish three 
types of behaviour depending on the degradation rates. The degradation combinations for which the system still 
presents spontaneous centers are shown in Fig. 7. Unlike in the case with no bounded phosphodiesterase, the var-
iance of the normal distribution decreased with the bounded degradation rate, thus making the transition from 
centers to low steady state much sharper at higher keB.

We see that there is no fixed ratio of bounded/unbounded phosphodiesterase such that the system produces 
centers, but rather there is a whole range of values, depending on the system density, thus allowing the cells 
to have some variability and still present the same behaviour. It is noteworthy that as the bounded degrada-
tion increases (keB), keU decreases, as does the range of possible unbounded values keU, and the upper transition 
becomes sharper, since the range of values where 50–75% of simulations presented centers diminishes (length of 
the upper errorbars). Thus the cells can have less variability in keU as keB increases.

Discussion
Over the past years several models have been used to describe the patterns observed in D.d. Excitable models are 
capable of sustaining spiral and trigger waves, but in order to generate a target pattern they require either an oscil-
latory center or spontaneous/random firing from the cells. On the other hand, oscillatory models require some 
sort of inhomogeneity to be added to the system to produce stable centers and avoid bulk oscillations. It has been 
shown that increasing the cell parameters along a developmental path or adding random firing decides the loca-
tion of the observed patterns in an artificial way25–28 which contrast with experimental observations showing that 
oscillation is a collective effect instead of the work of some specialized cells, where even the cells composing the 
oscillating center move continuously in and out of the signaling center29,30. We suggest that a more simple mech-
anism is also in play to produce centers for densities less than a mono-layer: the inhomogeneous cell distribution 
in the system is enough to create stable emitting centers. Our model matches the observation of Lee et al.31 who 
showed that at lower densities (below mono-layer density ≈106 cells/cm2) target centers dominate the observed 
patterns, while high above confluency, spirals appear. Our simulations show that below confluency and for a fixed 
value of ke, the number of target centers increases with cell density until the transition to bulk oscillations occur 
(see Fig. 4a). A recent experiment by Ohta et al.30 showed that at densities of the order of 1.25 · 105 cells/cm2 (0.125 

Figure 7. Phosphodiesterase degradation rates at which spontaneous centers exist. Below the shaded area the 
system presents bulk oscillations. Above the shaded area no spontaneous centers appear. Cell density is 4 · 105 
cells/cm2 (0.4 mono-layer) in panel (a) and 6 · 105 cells/cm2 (0.6 mono-layer) in panel (b). Upper boundaries 
indicate the degradation rate at which 75% of the simulations presented spontaneous centers. Error bar extends 
up to 50%. Lower boundary marks the maximum degradation rate at which the homogeneous system presents 
bulk oscillations.
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mono-layer) centers can be generated by groups of roughly 13 synchronized cells in an area of 100 × 100 μm2. 
These results match our observation with ke = 1.56 min−1 where a group of approximately 18 cells produce an 
oscillatory center, see Fig. 8 and Supplementary Video S8.

At higher cell densities when the pattern evolves towards spiral creation, we expect this mechanism to be less 
relevant, although our model did show occasionally spirals when the wave front broke due to high inhomoge-
neities in cell density (see Supplementary Video S9). Above mono-layer densities it has been shown that the cell 
development inhomogeneity18,32 and the strength of the feedback loop on excitability33 play a prominent role in 
the spiral creation process.

We stress the simplicity of this mechanism which does not make big assumptions about the inside state of the 
cells, but simply requires an external degradation mechanism to be present in the media. Small groups of isolated 
cells reach a steady state of low cAMP concentration. We showed that this stable solution exist for small clusters, 
where the system has two solutions, a stable and an unstable one. Once the cluster size increases over a critical 
value, the cluster is no longer stable and starts to oscillate with a size dependent frequency, therefore bigger 
clusters have a higher frequency which allows them to dominate over smaller clusters. In simulations with ran-
domized cell locations the centers are not necessarily large clusters of consecutive cells, but rather just areas of a 
higher local density, where some clusters are usually separated by small distances and act together as a big cluster. 
Even though this does not exactly match the scenario described in the Oscillatory Clusters section, it does provide 
an insight into why these centers spontaneously appear. Our model is therefore, a collective effect where groups of 
cells behave oscillatory and individual cells are excitable to external cAMP pulses, consistent with experimental 
observations29, furthermore the lower cAMP level at lower densities is fundamental for their excitable behavior, 
displaying an oscillatory behaviour if the cAMP levels are artificially risen29.

Having a constant degradation across the entire system is an oversimplification of the real setup where the 
cells produce different amounts of phosphodiesterase34 and it even changes over time35, but since the centers exist 
over a range of degradations (see Fig. 4a) we believe that the observed effect is robust to individual differences of 
phosphodiesterase production in cells, an effect which is also dampened by phosphodiesterase diffusion. Further 
modeling including phosphodiesterase diffusion and production is necessary to explore these possibilities.

The target patterns showed to have all the main features of those observed in experiments, like producing 
trigger waves, having different frequencies, and higher frequency centers taking over lower frequency ones. The 
system showed a range of degradation values at which it presents centers, this range decreased with increasing 
density, while the maximum value scaled non linearly with density. For a fixed cell density increasing the degra-
dation rate decreased the average center frequency (see Fig. 4c), consistent with measurements in flow chamber 
experiments29.

Once cell movement was introduced, the system showed streaming when aggregating. We attribute this 
behaviour to the velocity dependence on density (see Fig. 4b), as it has been shown before in similar descrip-
tions16,17,36. In those systems, as in ours, the cAMP wave travels faster on the areas with higher cell density thus 
producing a wave which is not perfectly circular. This shape leads to an aggregation which is not radially uniform, 
thus producing streams. In this model the velocity dependence on density comes from the wave speed differ-
ence between spaces with cells, where new cAMP is produced, and empty spaces where speed is given only by 
diffusion, thus on average higher density areas relay waves faster than lower density ones, producing streaming. 
This simple aggregation model shows that intracellular localization of cAMP or ACA is not necessary to explain 

Figure 8. Image of a numerical simulation showing a signaling center with the characteristics of those observed 
by Ohta et al.30. Density = 1.25 · 105 cells/cm2 (0.125 mono-layer), ke = 1.56 min−1. (a) cAMP concentration in 
the areas occupied by cells, with equal concentration levels of the whole extracellular media. (b) Zoom of the 
signaling center marked with red in (a) showing the percentage of active receptors ρ. Cells with lower ρ (dark 
purple) are those which initially fire. Around 18 cells constitute the firing center.
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streams, along with other mechanisms such as cell-cell adhesion, chemotactical memory37, and directional recti-
fication38, that, although are present in the experimental system, do not seem to be fundamentally necessary for 
stream formation.

The final section highlights the role of a cell bounded form of degradation. This comes into relevance once the 
cells have started to move and form small clumps. In order for these clumps to not disrupt the wave propagation 
process, a degradation that scales with density is necessary. The existence of this type of phosphodiesterase is still 
a matter of discussion in the experimental community24,34,39,40 and even though we believe our model provides 
arguments in favor of the existence of both types, the effect of locally increasing degradation can also be explained 
by a local accumulation of phosphodiesterase around the cells possibly due to the recent release of PDE to the 
extracellular media that has not yet diffused sufficiently.

In conclusion, we have presented a scenario of creation of target patterns in a model describing pattern for-
mation in D.d. This scenario does not require specific stages along the cell developmental path, nor requires the 
introduction of random firing, both of which preselect the location of target centers. Instead, in this description 
wave centers appear spontaneously in areas of higher cell density. We have shown that introducing cell inhomo-
geneity in the Martiel-Goldbeter model creates naturally target patterns that are stable and capable of producing 
waves that fill the whole system. We characterized these centers, which correspond to areas of higher cell density. 
The size of the minimum cluster required to produce a center increases with the degradation rate of the system. If 
the cluster size is not big enough to sustain autonomous oscillations, it reaches a low steady state whose amplitude 
decreases with the degradation rate. These smaller clusters, or areas of lower local density can nevertheless be 
excited, thus allowing waves to propagate through the system. Therefore, this scenario reproduces the large scale 
organization displayed by D.d. populations.

Methods
The system was simulated using a fourth-order Runge-Kutta scheme with Merson correction41 and an adaptive 
time step. We used finite differences and a 5 points laplacian in 2-D and 3 points in 1-D. For 1-D simulations 
dx was selected equal to the cell size r = 10 μm. To speed up calculations for most 2-D simulations, dx = 5r was 
selected, with the results being confirmed by smaller grid sizes.

To calculate the upper boundary of Figs 4a and 7 we simulated the system a hundred times for each set of 
parameters and recorded how many simulations presented centers. We then fitted a gaussian distribution around 
the boundary and from this fitting extracted the expected value for a 75% of center appearance (marked as a 
circle) and for a 50%, marked as the end of the errorbar. In Fig. 4, where only unbounded phosphiesterase was 
present, the fitted gaussian distributions presented the same variance, differing only in their mean. In Fig. 7 the 
variance lowered with increasing keB.

To calculate the lower boundary we used a extreme case consisting in homogeneously distributed simulations, 
where cells had a constant distance between them. This is the most spread out possible distribution for the cells, 
thus avoiding clusters as much as possible. For example, if the density is 5 · 105 cells/cm2 (0.5 mono-layer) the 
distribution would be one cell, then 0.01 mm of empty space, then another cell and so on. In this homogeneous 
system if the degradation is too small the cells show bulk oscillations. As we increased the amount of phosphodi-
esterase the bulk oscillations ceased and the system reached a stable steady state of low cAMP concentration. The 
lower boundary of Figs 4a and 7 indicates the maximum amount of phosphodiesterase such that the homogene-
ous system shows bulk oscillations, therefore at that degradation rate or higher any inhomogeneous cell distribu-
tion will produce target centers.

Data Availability
All data used in this study will be made available upon request.
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