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Introduction: Although a few studies suggest that young overweight to obese children
and adolescents (YO) may have impaired postural control compared to young normal-
weight (YN) peers, little information exists about how these two groups differ in the
quality of the underlying balance strategies employed. Hence, the aim of the present
study was a first comprehensive examination of the structural complexity of postural
sways in these two cohorts during quiet bilateral standing.

Methods: Nineteen YO secondary school students (13.0 ± 1.4 years; male = 10,
female = 9) were carefully matched to YN controls (13.0 ± 1.5 years) for age, sex,
height, and school. Mediolateral (ML) and anteriorposterior (AP) acceleration signals
were recorded with an inertial measurement unit (IMU) positioned at the trunk while
standing barefoot in two conditions: firm and foam support surface. The magnitude of
postural fluctuations was obtained using the root mean square (RMS). The temporal
structure of the signals was analyzed via sample entropy (SEn), largest Lyapunov
exponent (LyE), and detrended fluctuation analysis (α-DFA) algorithm. Reliability was
assessed using a test–retest design.

Results: In both groups, foam standing caused higher postural fluctuations (higher RMS
values) and reduced structural complexity (lower SEn values, higher LyE values, higher
α-DFA values). In comparison to YN, YO exhibited a higher RMSAP. Especially in ML
direction, the acceleration signals of the YO had higher repeatability (smaller SEn values),
greater long-range correlations (higher α-DFA values), and lower local stability (higher
LyE values). However, these observations were largely independent of the task difficulty.
Except for α-DFAAP, the IMU approach proved reliable to characterize posture control.

Discussion: Our outcomes confirm postural control deficits in YO compared to their
YN peers and indicate impaired regulatory mechanisms reflected as rigidity. Such less
complex patterns usually reflect diverse pathologies, are detrimental to compensate
for internal or external perturbations, and are attributed to lower adaptability and task
performance. Without targeted balance stimuli, YO likely end in a lifelong vicious circle
of mutually dependent poor balance regulation and low physical activity.

Keywords: inertial measurement unit, root mean square, sample entropy, largest Lyapunov exponent, detrended
fluctuation analysis, reproducibility
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INTRODUCTION

According to the most recent report published by the Non-
Communicable Disease Risk Factor Collaboration, more than
340 million children and adolescents aged 5–19 years worldwide
were overweight or obese (girls: 18% and boys: 19%) in 2016
(Abarca-Gómez et al., 2017). Increasing physical activity would
be a valuable instrument to counteract this pediatric condition
and its detrimental effects on health (Kelley et al., 2014). However,
several studies have discovered a negative association between
adiposity levels and physical activity participation in childhood
and adolescence (Jimenez-Pavon et al., 2010; Prentice-Dunn
and Prentice-Dunn, 2012). Following, for example, McGraw
et al. (2000), a contributing factor for the poor adherence to
physical activity in overweight to obese children and adolescents
(YO) could be their well-established difficulties in maintaining
balance (Steinberg et al., 2018). Consequently, YO likely feel less
confident to execute basic motor tasks and thus less motivated
to engage in sports and exercise than their young normal-weight
peers (YN; McGraw et al., 2000; Jimenez-Pavon et al., 2010;
Prentice-Dunn and Prentice-Dunn, 2012).

Postural control deficits in YO have been systematically
demonstrated with static post-urography, particularly under
challenging conditions like standing under proprioceptive
manipulation (e.g., D’Hondt et al., 2011; Steinberg et al., 2018).
Center of pressure (CoP) fluctuations, usually registered with
force plates, are acknowledged as not purely random but to
have a deterministic origin containing crucial information about
the time-evolving dynamics of balance control. However, these
structural features embedded in the time series remained ignored
by previous studies, that only focused on the outcome of
performance by analyzing the magnitude instead of the structure
of CoP variability in YO. Best to our knowledge, only three
studies examined CoP trajectories of YO at the underlying control
level. They indicated proprioceptive impairments (Fink et al.,
2019), less sensitivity to correct for small shifts in the CoP
(Villarrasa-Sapina et al., 2016), and altered behavioral strategies
governing standing (Pau et al., 2012). Given the few original and
explorative studies on measures of the structure of variability,
it remains unclear to what extent an excessive body mass in
childhood and adolescence affects the collective regulation of the
postural system, or in other words, its fundamental patterns of
coordination during postural balance tasks. Hence, additional
research is required to provide more detailed insights into
the complexity of these regulation processes unveiled by non-
linear dynamical analyses and give trainers and clinicians better
knowledge to promote more sustainable exercise behavior in this
specific cohort.

Unlike the perturbed conditions in previous non-linear
analyses of YO, we used a foam surface to enhance the task
demands in a manner that challenges the whole sensorimotor
balance control system and is significant for a plethora of physical
activities. In addition, we aimed to perform an exhaustive but
routinely applicable assessment of postural balance in YO and
YN by unfolding postural control dynamical properties via
the first parallel use of the most prominent non-linear tools,
known as sample entropy (SEn), largest Lyapunov exponent

(LyE), and detrended fluctuation analysis (α-DFA; Stergiou and
Decker, 2011; Mukherjee and Yentes, 2018). In brief, SEn
estimates the rate of regularity, LyE extracts the trajectory
divergence, and α-DFA quantifies long-range correlations (Peng
et al., 1995; Richman and Moorman, 2000) in the signal in
question. In contrast to the amount of variability, each of these
techniques evaluates the structural characteristics embedded in
the CoP trajectory from different conceptual perspectives (e.g.,
Goldberger et al., 2002; Stergiou and Decker, 2011). However,
all output measures of SEn, LyE, and α-DFA belong to the
same construct, usually called complexity (Roerdink et al., 2006;
Lamoth et al., 2009; Lamoth and van Heuvelen, 2012; Mukherjee
and Yentes, 2018). High complexity in human motion is thought
to reflect a rich repertoire of coordinative solutions (Harrison
and Stergiou, 2015) that allow the controller to readily respond
to the diverse internal and external stressors encountered in daily
life. Inversely, pathology, aging, increased task demands, or a lack
of physical experience are prominent causes that render systems
physiologically less complex and thus less adaptive (Goldberger
et al., 2002; Roerdink et al., 2006; Lamoth et al., 2009; Stergiou
and Decker, 2011; Lamoth and van Heuvelen, 2012; van Emmerik
et al., 2016). Although not uncontroversial, a loss of complexity
in CoP displacement of static posturography tests would be
accompanied by a breakdown in the number of active degrees of
freedom and, as a result, maladaptive responses to perturbation
(Lipsitz, 2002). Accordingly, postural sway dynamics of YO and
elderly typically show more repetitive (analyzed via SEn) or
less locally stable (analyzed via LyE) patterns or a decrease in
the fractal organization of the scaling exponent α (analyzed via
α-DFA) (Ko and Newell, 2016; Villarrasa-Sapina et al., 2016).

Since single non-linear metrics cannot comprehensively
quantify the complexity of a one-dimensional time series
(e.g., Goldberger et al., 2002; Stergiou and Decker, 2011),
the application of three complementary mathematical tools is
a strength of our study. In this way, we reveal the overall
impression of the temporal organization of the sway signal
while reducing the risk of misinterpretations. Considering the
earlier findings described above, we expected a reduced postural
complexity in terms of higher repeatability (lower SEn values),
lower local stability (higher LyE values), and higher long-range
correlation (higher α-DFA values) in YO compared to their
YN peers. Further, we hypothesized that this functional deficit
would become even more evident in the foam standing condition.
Since sway data were captured using simple accelerometry within
a non-laboratory setting, we also tested the reliability of the
methodology employed.

MATERIALS AND METHODS

A two-group cross-sectional comparative design was used to
examine the hypothesis. Participating children were recruited
from three local secondary schools, and all subjects were
informed about the objectives, risks, and benefits of the
study before providing their written consent. Signed parental
permission was sought for children younger than 14 years.
The project was approved by the local ethics review board
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FIGURE 1 | Summary of volunteer recruitment and participation. Children were excluded due to self- or parental-reported acute injury or orthopedic, neurological,
cardiac, or cognitive disorders, including medication that could affect balance (Level 1), or in case one of the following applied during any test session: unavailability
(Level 2), feeling unwell or non-compliant behavior (both Level 3), or corrupted signals (Level 4).

TABLE 1 | Group statistics of the young overweight/obese (n = 19) and their matched normal-weight controls (n = 19).

Overweight/Obese Normal-weight t36 Difference BCa 95% CI p f

Girls/Boys 9/10 9/10

Age (Years) 13.0 ± 1.4 13.0 ± 1.5 0.09 [−0.88, 0.88] 0.930 0.01

Body height (cm) 158.2 ± 7.9 157.8 ± 8.4 0.14 [−4.80, 5.15] 0.892 0.02

Body mass (kg) 64.0 ± 10.8 46.4 ± 9.6 5.32 [10.92, 24.12] <0.001 0.89

BMI (kg·m−2) 25.4 ± 2.5 18.4 ± 2.1 9.22 [5.64, 8.44] <0.001 1.54

BMI percentile (%) 93.4 ± 3.7 45.1 ± 22.5 9.22 [38.49, 57.35] <0.001 1.54

Descriptive statistics are expressed as mean ± standard deviation values. t-values, p-values, and effect size f are presented for the independent t-test. Bias-corrected
and accelerated (BCa) 95 percent bootstrap confidence interval for mean differences. Age, body height, and body mass information were obtained during the first visit.
BMI, body mass index.

(EK-GZ: 17/2018) and was conducted in accordance with the
Declaration of Helsinki.

Participants
The detailed participant selection process and the participants’
characteristics are presented in Figure 1 and Table 1. In sum, 38
out of the 115 10–16-year-old YO and YN had to be excluded for
further analysis due to medical, personal, or technical reasons. Of
the remaining 77 children, 24 were overweight or obese, while
53 were normal-weight. In the end, 19 (overweight, n = 9; obese,
n = 10) out of 24 of the YO could be a posteriori strictly age-,
sex-, height-, and school-matched to a YN control, thus leaving
38 children to be thoroughly evaluated. Age- and sex-specific
body mass index percentiles for classifying weight status among
children were computed using the online calculator provided by
the Centers for Disease Control and Prevention1: normal-weight,

1https://www.cdc.gov/healthyweight/bmi/calculator.html

5th ≤ BMI < 85th percentile; overweight, 85th ≤ BMI < 95th
percentile; obese, BMI ≥ 95th percentile). No child stated to have
ever been involved in a weight loss or obesity treatment program.

Data Collection
For reliability testing, the same principal investigator
accomplished experimental data collection twice within
approximately 12 days (SD: ± 2 days) at the same location and
at a comparable time of the day.

Children were tested individually in a quiet room at their
regular school during morning classes. After height and weight
assessment, the young participants were asked to stand (two-
legged) as still as possible with eyes open, first, on a firm,
and then on a foam (Balance-pad Solid, Airex, Switzerland)
support surface. We refrained from using randomization since
we expected higher transfer effects from foam to the firm
condition than vice versa. Both trials lasted 60 s with a 2 min
rest period in between. All tests were performed with minimal
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clothing and without shoes. The detailed instructions included
(a) to look straight ahead at an eye-level target (positioned
3 m away), (b) to keep the feet hip-width apart and the arms
relaxed at the sides, and (c) to breath as usual. Simultaneously,
postural sway acceleration (ACC) signals were captured through
a commercially available 50 mm × 70 mm × 20 mm (mass:
35 g) inertial measurement unit (IMU) (GyKo, Microgate, Italy)
sampling data routinely at 500 Hz. The IMU was attached
following the manufacturer’s recommendation to the children’s
thoracic spine using the associated semi-elastic vest. The vest
was equipped with a specific bib with magnetic support to
avoid relative mediolateral (ML) and anteriorposterior (AP) IMU
movements during the balance tests. The position of the IMU
was noted thoroughly for reproducibility measures. All records
were transferred via Bluetooth to a personal computer and stored
as text files by the manufacturer’s RePower software version
1.1.1.7 (Microgate).

Data Pre-processing
Raw ACC signals were initially down-sampled to 100 Hz and
cropped to the middle 50 s, yielding 5,000 data points entering
in-depth analysis. Further pre-processing steps involved (a) tilt-
correction to obtain values concerning the anatomic frame
of reference (Moe-Nilssen, 1998) and (b) bandpass filtering
(Butterworth filter, 4th order, zero-lag, bandpass frequency: 0.3–
10 Hz) to reduce both biases caused by respiration and by
low amplitude measurement noise (Ruhe et al., 2010; Martinez-
Mendez et al., 2012). Subsequently, given time series were
inspected for potential (previously overlooked) abnormalities in
task performance (Mancini et al., 2012). More precisely, the
resultant ACC vector time series (the square root of the sum of
squares of the ACC vector in ML and AP direction) was divided
into five 10 s windows. The standard deviation was evaluated in
each window. If one of these standard deviation values exceeded
the fivefold of the smallest standard deviation value, all data from
the particular child were ignored (Mancini et al., 2012). For this
reason, three children had to be excluded for further analysis and
another two because of unexpected signal gaps (see Level 4 in
Figure 1).

Outcome Variables Overview
The primary outcome was the measure of postural complexity,
including the structure related scaling exponent α-DFA, as well
as SEn and LyE estimates. The secondary outcome was the
root mean square (RMS) quantifying the magnitude of sway
variability. Differences in the dependent variables were assessed
separately for ACCML and ACCAP profiles.

Sample Entropy
The SEn procedure indexes the predictability (regularity or
orderliness) of a signal and is mathematically defined as the
negative natural logarithm of the conditional probability that a
time series of length N, having repeated itself for M samples
within a tolerance r, will also repeat itself for M + 1 samples,
but without allowing self-matches (Richman and Moorman,
2000). Thus, a SEn value becomes zero for a perfectly repeatable
signal where sub-sequences exhibit the same configuration upon

comparison, and vice versa, a perfectly random signal elicits a SEn
value converging toward infinity. Healthy human functioning is
located in the intermediate region of this continuum (Stergiou
and Decker, 2011). Although not undisputed, pathological states
typically involve more regular and constrained movements
(Goldberger et al., 2002; Stergiou and Decker, 2011; van Emmerik
et al., 2016). Here, the input parameters M and r were set in line
with guidelines suggested by Ramdani et al. (2009), showing that
the referenced estimate of the relative error of the determined SEn
values across the present records was as small as possible when
M = 3 with r = 0.07·standard deviation regarding ACCML data
and r = 0.06·standard deviation regarding ACCAP data.

Largest Lyapunov Exponent
To extract LyE estimates from one-dimensional observations, an
m-dimensional state space was reconstructed in the first step with
the method of embedding delays (Rosenstein et al., 1993; Stergiou
et al., 2004). Therefore, classical concepts of “average mutual
information” and of “false nearest neighbors” were applied to
obtain the required delay τ and the embedding dimension m,
respectively (Stergiou et al., 2004). In fact, τ was chosen as the
first minimum in the average mutual information function, and
m when the percentage of false nearest neighbors as a function
of the embedding dimension dropped to near zero. Altogether,
m = 4 with τ = 17 samples for ACCML and with τ = 20 samples
for ACCAP data were found acceptable for unfolding certain
attractors. In the second step, the average exponential rate of
divergence of initially nearby trajectories in each reconstructed
state space was calculated following Rosenstein et al. (1993). In
the third and last step, LyE values were quantified as the slope
of the first linear growing part (0–75 samples) of the resulting
divergence curves. Finally, they were converted to bits per second
by multiplying them by the sampling frequency (100 Hz). As a
general rule, the larger a LyE estimate, the greater the system’s
sensitivity to infinitesimal perturbations, or in other words, the
lower the local dynamic stability (Roerdink et al., 2006; Donker
et al., 2007; Lamoth et al., 2009).

Detrended Fluctuation Analysis
Detrended fluctuation analysis is a modification of the random
walk analysis and has been proven suitable for revealing the
extent of long-range correlations in biological signals (Peng
et al., 1995; Goldberger et al., 2002; Lipsitz, 2002; Harrison and
Stergiou, 2015). In brief, DFA fits a power law to the time
series’ average detrended fluctuations, F(n), across different box
sizes (or scales), n, and evaluates the scaling exponent α by
determining the slope of the linear regression line of the log-
log graph of F(n) vs. n (Damouras et al., 2010). For example,
if data are completely uncorrelated (white noise), the scaling
exponent α = 0.5, while for the opposite extreme (brown noise)
of α = 1.5, a value at any given moment is strongly correlated
to the previous one. In contrast, α = 1 reflects 1/f (pink) noise
and implies that an event at every point approximately depends
equally on those from the recent and those from the very distant
past (Peng et al., 1995). Referring to Peng et al. (1995) and
Lipsitz (2002), this class of fractal-like (self-similar) processes can
be supposed to be quite adaptive. It should be interpreted as a
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broad compromise between fairly “rough” and fairly “smooth”
assembled control mechanisms. Of note, to more specifically
address the proprioceptive feedback loop, only α values derived
from a range of scales associated with the higher frequencies
in postural balance signals, that is, between 2 and 10 Hz, were
currently examined. Detailed theoretical and technical aspects of
this approach are described in Gilfriche et al. (2018).

Code Availability and Statistical Analyses
The SEn and LyE algorithms were taken from PhysioNet
(Goldberger et al., 2000), whereas for DFA the source code
provided by Gilfriche et al. (2018) was employed. These tools
were implemented in Matlab software version R2020b (The
MathWorks Inc., Natick, MA, United States). Data analysis,
including state space reconstruction through its integrated
“Predictive Maintenance Toolbox” was entirely managed with
Matlab–unless otherwise specified.

For statistical analyses, data sets were initially transformed
by the natural logarithm (after adding a constant of 1) to
better approximate normality (Osborne, 2002). A three-way
mixed analysis of variance (ANOVA) with “condition” (firm vs.
foam) and “visit” (first vs. second) as the within-subject factors
and “group” (YO vs. YN) as the between-subjects factor was
completed for each dependent variable. In case of significant
main or interaction effects, follow-up pairwise comparisons
were performed using the Benjamini-Hochberg procedure (false
discovery rate) to control for family wise type I error. However, if
the effect of “visit” was statistically negligible, mean values were
pooled across this factor before post-hoc testing. The Alpha level
for rejecting the null hypothesis was set at 0.05. In addition,
the differences between the values obtained were evaluated by
computing Cohen’s (1988) effect size f (small: f > 0.10, medium:
f > 0.25, large: f > 0.40). For assessing test-retest reliability,
a one-way random model of intra-class correlation (ICC1,1)
was employed (cf. Mancini et al., 2012). Based on the work of
Fleiss (1986), particular results were interpreted as poor when
ICC1,1 ≤ 0.40, fair when ICC1,1 ≤ 0.60, good when ICC1,1 ≤ 0.75,
and excellent when ICC1,1 ≤ 1.00. IBM SPSS version 27.0 (SPSS
Inc., Chicago, IL, United States) software was applied for all
statistical analyses.

RESULTS

Reliability
Table 2 summarizes the test–retest reliability of ACCML and
ACCAP measures for the YO and their matched YN controls
while standing on firm and foam support surfaces. The reliability
of the non-linear measures was fair to excellent, except for the
α-DFAAP variable in terms of the YN controls. Therefore, the
reports on this variable remain a purely descriptive one (see the
section below). Despite the occasional only fair reliability in some
measures of YN controls, it seems justified to assume that the
given experimental field approach investigates the distinct aspects
of postural control with sufficient precision.

TABLE 2 | Test–retest reliability, as expressed with the intraclass correlation
coefficient(1,1), of postural sway measures.

Variable Direction Overweight/Obese Normal-weight

Firm Foam Firm Foam

SEn (bit) ML 0.74 0.75 0.81 0.57

AP 0.76 0.86 0.71 0.43

LyE (bit·s−1) ML 0.70 0.79 0.52 0.71

AP 0.68 0.73 0.54 0.55

α-DFA ML 0.64 0.75 0.59 0.69

AP 0.51 0.52 0.40 0.20

RMS (mm·s−2) ML 0.83 0.79 0.64 0.49

AP 0.85 0.84 0.75 0.59

SEn, sample entropy; LyE, largest Lyapunov exponent; α-DFA, scaling exponent
α derived from detrended fluctuation analysis; RMS, root mean square; ML,
mediolateral direction; AP, anteriorposterior direction.

Differences
Descriptive, non-log-transformed statistics are shown in Table 3,
while a summary of ANOVA results is provided in Table 4. All
significant post-hoc comparisons are reported in Figures 2A–H.

There was no significant main effect of visit nor any
group × visit, condition × visit, or group × condition × visit
interaction across the variables considered (all p > 0.05). Each
outcome measure revealed a significant main effect of condition
(all p < 0.001). More precisely, SEnML (YO: p < 0.001, f = 1.09;
YN: p < 0.001, f = 1.02) and SEnAP (YO: p < 0.001, f = 1.24;
YN: p = 0.001, f = 0.91) values were lower for standing on a
foam compared to standing on a firm support surface, whereas
the LyEML (YO: p < 0.001, f = 0.97; YN: p < 0.001, f = 1.14),
LyEAP (YO: p = 0.003, f = 0.87; YN: p = 0.039, f = 0.52), α-DFAML
(YO: p = 0.031, f = 0.55; YN: p < 0.001, f = 1.37), RMSML (YO:
p < 0.001, f = 2.13; YN: p < 0.001, f = 2.61), and RMSAP (YO:
p < 0.001, f = 1.84; YN: p < 0.001, f = 2.70) variables exhibited
higher values in the foam than in the firm condition.

A significant main effect of group was found for the SEnML,
SEnAP, LyEML, α-DFAML, and RMSAP (all p < 0.05) but
not for the LyEAP and RMSML variables (all p > 0.05). In
detail, the YO had smaller SEnML (firm: p = 0.030, f = 0.38;
foam: p = 0.030, f = 0.41) and SEnAP (firm: p = 0.059, f = 0.33;
foam: p = 0.018, f = 0.47) values as well as increased LyEML
(firm: p = 0.006, f = 0.53; foam: p = 0.017, f = 0.42), α-DFAML
(firm: p = 0.004, f = 0.56; foam: p = 0.040, f = 0.35), and RMSAP
(firm: p = 0.049, f = 0.34; foam: p = 0.049, f = 0.34) values
compared to their YN controls.

No group × condition interaction was detected throughout
(all p > 0.05) except for the α-DFAML variable (p = 0.030),
where the differences between groups were noticed to be more
pronounced in the firm compared to foam condition.

DISCUSSION

In agreement with our primary hypothesis and the loss-of-
complexity hypothesis (Lipsitz and Goldberger, 1992), YO
display postural control deficits with a more conservative and
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TABLE 3 | Descriptive statistics of postural sway measures in mediolateral and anteriorposterior direction for the young overweight/obese (n = 19) and their matched
normal-weight controls (n = 19) while standing on firm and foam support surfaces according to both visits.

Mediolateral direction Anteriorposterior direction

Variable Visit Overweight/Obese Normal-weight Overweight/Obese Normal-weight

Firm Foam Firm Foam Firm Foam Firm Foam

SEn (bit) Visit 1 0.920 ± 0.131 0.854 ± 0.130 0.996 ± 0.065 0.933 ± 0.079 0.986 ± 0.126 0.894 ± 0.130 1.040 ± 0.068 0.982 ± 0.078

Visit 2 0.923 ± 0.137 0.877 ± 0.096 0.992 ± 0.064 0.941 ± 0.069 0.967 ± 0.128 0.903 ± 0.114 1.036 ± 0.082 0.988 ± 0.079

LyE (bit·s−1) Visit 1 0.817 ± 0.144 0.897 ± 0.131 0.695 ± 0.089 0.792 ± 0.123 0.702 ± 0.114 0.771 ± 0.108 0.673 ± 0.106 0.728 ± 0.105

Visit 2 0.818 ± 0.164 0.871 ± 0.125 0.707 ± 0.094 0.789 ± 0.122 0.722 ± 0.120 0.765 ± 0.144 0.688 ± 0.099 0.717 ± 0.080

α-DFA Visit 1 1.257 ± 0.135 1.307 ± 0.102 1.129 ± 0.112 1.215 ± 0.097 1.233 ± 0.107 1.313 ± 0.111 1.200 ± 0.108 1.239 ± 0.093

Visit 2 1.238 ± 0.130 1.268 ± 0.103 1.129 ± 0.106 1.228 ± 0.109 1.240 ± 0.114 1.242 ± 0.157 1.208 ± 0.100 1.207 ± 0.108

RMS (mm·s−2) Visit 1 40.3 ± 16.8 61.1 ± 30.5 34.7 ± 11.6 51.2 ± 14.5 47.4 ± 18.3 65.8 ± 26.1 37.1 ± 8.5 52.6 ± 13.4

Visit 2 43.2 ± 24.3 56.1 ± 17.1 38.8 ± 11.4 55.4 ± 18.4 50.5 ± 24.4 64.8 ± 20.0 39.5 ± 10.1 53.9 ± 15.5

Data are expressed as mean ± standard deviation values. SEn, sample entropy; LyE, largest Lyapunov exponent; α-DFA, scaling exponent α derived from detrended
fluctuation analysis; RMS, root mean square.

TABLE 4 | Summary of inferential ANOVA statistics. F-values, p-values, and effect size f are presented for a three-way mixed analysis of variance.

Variable Direction Statistics Group Condition Visit Group × Condition Group ×

Visit
Condition ×

Visit
Group ×

Condition × Visit

SEn (bit) ML F1,36 6.11 39.78 0.81 0.00 0.41 0.95 0.11

p 0.018 <0.001 0.373 0.996 0.528 0.336 0.739

f 0.41 1.05 0.15 0.00 0.11 0.16 0.06

AP F1,36 6.34 42.15 0.03 1.83 0.06 2.15 0.47

p 0.016 <0.001 0.867 0.184 0.801 0.152 0.497

f 0.42 1.08 0.03 0.23 0.04 0.24 0.11

LyE (bit·s−1) ML F1,36 9.05 40.39 0.09 0.93 0.40 1.55 0.08

p 0.005 <0.001 0.765 0.341 0.532 0.221 0.779

f 0.50 1.06 0.05 0.16 0.11 0.21 0.05

AP F1,36 1.56 16.15 0.10 0.26 0.01 2.84 0.00

p 0.220 <0.001 0.749 0.613 0.914 0.100 0.945

f 0.21 0.67 0.05 0.08 0.02 0.28 0.01

α-DFA ML F1,36 8.81 32.38 0.72 5.10 1.76 0.06 0.95

p 0.005 <0.001 0.403 0.030 0.194 0.810 0.337

f 0.49 0.95 0.14 0.38 0.22 0.04 0.16

AP F1,36

p not inferentially tested due to poor reliability (see Table 2)

f

RMS (mm·s−2) ML F1,36 0.45 197.05 2.33 0.06 1.83 1.36 0.12

p 0.505 <0.001 0.136 0.806 0.185 0.251 0.734

f 0.11 2.34 0.25 0.04 0.23 0.19 0.06

AP F1,36 4.47 169.39 1.80 0.10 0.02 1.09 0.01

p 0.042 <0.001 0.188 0.748 0.878 0.303 0.942

f 0.35 2.17 0.22 0.05 0.03 0.17 0.01

SEn, sample entropy; LyE, largest Lyapunov exponent; α-DFA, scaling exponent α derived from detrended fluctuation analysis; RMS, root mean square; ML, mediolateral
direction; AP, anteriorposterior direction.

constrained balance strategy in double-legged quiet standing
than their YN peers. We were the first to show that this
decomplexification of postural fluctuations in YO have already
been clearly detectable during firm standing. We expand this
finding to standing under proprioceptive manipulation and
provide evidence that the regulation of the trunk becomes
systematically more repeatable, less fractally organized, and more
sensitive to initial perturbations on a foam surface. However,

contrary to our secondary hypothesis, the sway differences
between YO and YN remained largely independent of the
task difficulty (Figures 2A–H). Another crucial discovery of
the present study was that a single inexpensive IMU enables
linear and non-linear trunk excursion analyzes of similar
reproducibility to gold-standard tests on a force plate (Table 2).
Subsequently, this IMU approach featured a high construct
validity and proved sensitive to discriminating strategies
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FIGURE 2 | Postural complexity and magnitude of postural fluctuations. Sample entropy (SEn) (A,B), largest Lyapunov exponent (LyE) (C,D), scaling exponent α

derived from detrended fluctuation analysis (α-DFA) (E,F), and root mean square (RMS) (G,H) values from acceleration time series in mediolateral and
anteriorposterior direction for the young overweight/obese (YO) and matched young normal-weight (YN) controls during standing on firm and foam support surfaces
pooled across the visit. Bars represent anti-logged means and 95% confidence intervals. †, significant (p < 0.05) group × condition interaction; #, significant
(p < 0.05) difference between groups; (#), nearly significant (p = 0.059) difference between groups; §, significantly different (p < 0.05) to standing on a firm support
surface.
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in the underlying organization of postural control between YO
and YN of the firm and foam bilateral static stance.

At a meta-level, these main outcomes of reduced balance
control caused by a lower complexity in YO are broadly in line
with the few previous cross-comparison studies in this cohort
(Pau et al., 2012; Villarrasa-Sapina et al., 2016; Fink et al.,
2019). However, past reports did not follow a comprehensive
approach to reveal the temporally evolving dynamics of postural
control by employing three prominent non-linear measures.
Furthermore, non-neglectable methodological and sample-based
differences (e.g., the number of included data points, different
data pre-processing techniques) make it difficult to contextualize
our structure-based outcomes in the available literature. Still,
to classify our findings within this research framework, the
increased magnitudes of fluctuations in the sagittal plane when
being overweight or obese are consistent findings of cross-
comparison studies (McGraw et al., 2000; Deforche et al., 2009;
Pau et al., 2012). Likewise, the lack of between groups RMS
disparity in the frontal plane is in line with our expectation of
minor task challenge due to the high base of support of the hip-
width double-legged stance. However, this appearance of more
significant postural control deficits in the AP direction seems to
emerge reversed when looking beyond the postural performance
at an outcome level. That means, SEn, LyE, and the α-DFA values
systematically provided group differences with pronounced
decomplexification in the ML direction. These discrepancies in
the outcome of magnitude (RMS) and structure-based variables
(SEn, LyE, α-DFA) highlight that postural control is embedded in
a complex network composed of many interacting heterogeneous
constituents and underpins the value of monitoring postural
control from the perspective of complexity.

Cumulatively, the used non-linear sway measures during
bilateral stance on a firm or foam support surface show
less complex balance strategies for YO than YN peers. Such
patterns of decomplexification of postural regulation are thought
to reduce the adaptability of YO to heterogeneous stressors
of the natural environment but bring them into a state of
increased postural challenge or even a state comparable to
persons with different pathologies. Accordingly, CoP variabilities
of lower SEn (Hansen et al., 2017; Lubetzky et al., 2018),
higher LyE (Lamoth et al., 2009; Lamoth and van Heuvelen,
2012; Buchecker et al., 2018), and higher α-DFA values (Zhou
et al., 2013) have systematically been observed across various
cohorts during balance conditions like standing on unstable
surfaces, perturbing the optical flow, or desensitizing the
somatosensory system. Likewise, decomplexifications in postural
control indicate pathologies affecting selective neuromuscular or
sensory control systems (see Goldberger, 1996 for review) or age-
related deteriorations (Sturnieks et al., 2008). Concerning task
difficulty, the foam condition deteriorated postural performance
in both groups of the present study. However, contrary to our
second hypothesis and previous non-linear observations in a
comparable cohort (Pau et al., 2012; Villarrasa-Sapina et al.,
2016; Fink et al., 2019), standing under altered sensory condition
exhibited no amplification of detrimental balance effects in the
YO compared to their YN peers (Figures 2A–H). Instead, the
contrary, group differences in α-DFAML values between YO and

YN were even more significant in the firm than in the foam
condition (Figure 2E). We speculate that this task independence
reflects that standing on a foam support surface even pushed YN
to their postural equilibrium limits and impeded better group
discriminations.

Nevertheless, the present findings clearly show that the
balance strategy of YO is less complex than the regulation
processes of their YN peers. Based on models of optimal
movement (Stergiou et al., 2006) or optimal coordination (Hamill
et al., 2012) variability, it is strongly indicated to foster the
degree of variability–particularly in YO–up a certain level
where the balance control system develops a highly complex,
chaotic structure. Such a system brings multiple degrees of
freedom at different spatio-temporal scales into proper relations
so that it flexibly compensates and quickly adapts to internal
and external perturbations. At an optimal degree of temporal
structuredness (Stergiou et al., 2006) and an optimal coupling
variability (Hamill et al., 2012), the control system is said
to become globally more stable with an improvement in
task performance. From a practical perspective, state-of-the-
art training concepts, like the constraints-led approach (Davids
et al., 2008) or differential learning (Schöllhorn et al., 2012),
aim to encourage movement complexity by prompting self-
organization processes through the exploration of different
movement solutions. In a recent quantitative meta-analysis
(Tassignon et al., 2021), differential learning was more effective
than at least traditional training methods. The constraint-led
approach can be even more effective by adding specific task
constraints that further stimulate exploration of the solution
space (Gray, 2020). However, finding the optimal movement
complexity and the optimal dose of practice variability for a given
task and a certain individual in the time course of learning is still
an open question, for which the assessment of the actual level
of motion (postural) complexity with a toolbox of non-linear
measures provides future relief.

Using a cost- and time-effective procedure in the form of
one single IMU and one single 60 s balance test for judging
the temporal structure of sway patterns of balance is a strength
of the present paper. Intriguingly, the RMS measures and most
non-linear tools provided ICC values comparable to the gold-
standard force plate CoP evaluations (see Ruhe et al., 2010 for
review). Data reproducibility was further confirmed by observing
no relevant changes between test sessions means of any main
factorial ANOVA model (a priori disregarding α-DFAAP). It is
reasonable to assume that the reliability can be further improved
by using the mean sway patterns of multiple similar double-
legged tests within a short break. This may also advance the
reproducibility of DFAAP up to an acceptable level. Besides
being reliable, highly economical, and practical, IMU signals
have frequently been connected to smartphone applications (e.g.,
Aqueveque et al., 2020). Moving forward, such applications
could open new possibilities for enabling real-time feedback
in self-organization routines such as Newell’s Constraints Led
Approaches. Therefore, the shown applicability can be crucial
for opening the door to a vast array of new exercise-based
therapeutic perspectives in postural control for clinicians and
other practitioners.
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CONCLUSION

Our findings replicated previous observations showing that
YO are more disadvantaged in their coordination and balance
ability than normal-weight peers. Our novel approach using
a simple IMU by extending traditional magnitude-based
methods through implementing the most valued non-linear
tools revealed underlying control processes toward a less
complex but more simplified balance regulation in this specific
cohort. This increased system rigidity with decreased degrees
of freedom and increased sensitivity to internal perturbations
is unisonously described as a disability in motor development.
Since balance/stability is an essential prerequisite of almost
all movement skills, we strongly urge to implement postural
challenges in the early years to avoid life-long physical inactivity
and all the negative consequences.

Likewise, we hope future studies delve even more into the
mechanisms underlying the harmful effects of being overweight
and its reciprocal impact on physical activity. Besides studies
to examine the usefulness of targeted exercises, prospective
investigations are urgently required to quantify the long-term
effects of improvements in postural control. Consequently, much
research remains to be done, yet we are confident of the high
potential of balance training to help to alleviate the global
epidemic of inactivity and overall mortality.
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