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Liver disease is a collective term for hepatic damage caused curve analysis, which allows evaluating and comparing

by heterogeneous etiologies and poses a heavy health
burden worldwide. Modern medical imaging, such as
computed tomography (CT), magnetic resonance imaging
(MRI), and ultrasonography, plays an essential role in the
diagnosis andmanagement of liver diseases. Imaging-based
deep learning (DL) is one of the most actively investigated
techniques in recent decade. It enables high-dimensional
features extraction through the layered structures and can
be used in a variety of clinical scenarios, especially with the
convolutional neural network in computer vision.

Most DL tasks can be divided into image segmentation,
image classification, and lesion detection. In terms of
segmentation, unlike traditional semi-automatic segmen-
tation algorithms that need manual tracing or correction,
most DL segmentation algorithms perform end-to-end
segmentations, which can reduce labor and time cost. The
algorithms output an array of the same size as the input
images. Pixels (voxels) in the target usually demonstrate
higher values in the corresponding location on the output
array. By setting a cutoff value, a mask of the target region
is then generated. The segmentation algorithms are often
evaluated on spatial overlapping by Dice Similarity
Coefficient (DSC) and Hausdorff distance, with higher
DSC and lower Hausdorff distance indicating better
segmentation performance.

In classification tasks, DL algorithms can classify the input
image with or without a lesion mask into a specific and
output a probability from zero to one. DL classification is
usually assessed by discrimination, calibration, and clinical
utility. Discrimination refers to the ability to differentiate
between those with or without the outcome event, and is
usually estimated by area under receiver operating
characteristic curve (AUC). Calibration reflects the agree-
ment between model-derived outcomes and actual out-
comes,which is preferably analyzed by calibration curve. In
addition, the clinical utility is often evaluated by decision
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prediction models that incorporate clinical consequences.

DL detection task refers to lesion localization and
classification. The algorithms output both the lesion
location (a precise location array or a rough bounding
box) and the type of lesions. Different from image
segmentation algorithms, lesion detection algorithms
focus more on the identification of real lesions rather
than the precise spatial overlapping between the outputs
and the ground-truth regions. The results of detection
algorithms are divided into true-positive (lesions
detected), true-negative (no lesion in the image and no
positive output), false-positive (no lesion in the image but
a positive output), and false-negative (lesion undetected),
and detection performance can be measured by true-
positive rate and false-positive rate.

Application in diffuse liver diseases: Perez et al[1] used a
CT-based DL segmentation algorithm to automatically
segment the liver and identify its volume, aiming to
explore a more direct measurement for organ enlarge-
ment. They found the automated algorithm-derived liver
volume demonstrated a normal distribution and increased
linearly with patient weight, which matched well with
manual and semi-automated methods in a subset analysis
of 189 patients. Their results provided an objective and
more accurate assessment of liver size than linear measures
with added value in the screening of hepatomegaly.

Martí-Aguado et al[2] conducted a prospective multicenter
study to compare automated whole-liver segmentation
and manual region of interest (ROI) for proton density fat
fraction and iron estimation in MRI for patients with
chronic liver disease. Measurements derived from whole-
liver segmentation were found accurate for liver steatosis
grading, and strongly correlated with pathological fat
ratio. Furthermore, the DL method provided similar
diagnostic accuracy, as well as demonstrating less
variability and time cost than manual segmentation.
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In CT images, Yin et al[3] used Gradient-weighted Class
Activation Mapping (Grad-CAM) method to provide a
visual-based explanation of DL in predicting liver fibrosis.
The location map demonstrated the DL algorithm focused
more on the liver surface in patients without liver fibrosis
(F0), while it had more focus on the parenchyma of the
liver and spleen in cases of cirrhosis (F4), which was
logical from a clinical point of view in some degree.
Nowak et al[4] utilized the sameDL technique inMRI, and
found the caudate lobe area was important for the DL
algorithms in detecting liver cirrhosis. In the future, the
Grad-CAM method can be used for the quality control of
DL fibrosis stage prediction with prior knowledge of
specific location map patterns.

Application in focal liver diseases: Quantitative tumor
image analysis begins with accurate lesion segmentation.
Conventional radiomics features are extracted from
manually drawn ROI, which often leads to segmentation
variability. Khan et al[5] proposed a residual U-Net with
the dilated convolution and a new loss function based on a
combination of DSC and absolute volumetric difference.
Their model achieved mean DSC of 91.92% and 86.70%
for liver tumor segmentation in 3D Image Reconstruction
for Comparison of Algorithm Database and Liver Tumor
Segmentation Challenge dataset, respectively.

Based on the images from gadoxetic acid-enhanced MRI,
Takenaga et al[6] proposed a multichannel three-dimen-
sional fully convolutional residual network for focal liver
lesions (FLLs) detection and classification. The model
reached a true-positive ratio of 0.6 at an average of 25
false-positives per case and classification accuracy of
0.790. However, the detection accuracy of hemangiomas,
one of the most common benign FLLs, was low, mostly
owing to their rarity in the dataset. Thus, this algorithm
required further improvement to help reduce the work-
load of radiologists.

In the study by Wang et al,[7] a DL-based hepatocellular
carcinoma (HCC) diagnosis system was developed on a
training dataset of CT images from 7512 patients. This
system firstly predicted the presence or absence of liver
nodules, and classified them into HCCs or non-HCCs if
presented. The system was validated internally (n= 385)
and externally (n= 556), which achieved good diagnostic
performance with AUC values of 0.887 and 0.883 on each
dataset. In addition, the diagnostic accuracy of HCC was
significantly improved in radiologists with DL assisted.

Liu et al[8] developed a DL model for predicting
microvascular invasion (MVI) in patients with HCC.
They firstly tested proposed models on 309 patients, and
validated them on 164 patients from 54 different
hospitals. Themodel incorporated with DL image features
and clinical factors was superior to traditional radiomics
models, and achieved the highest AUC values of 0.845 and
0.777 in internal validation and external dataset,
respectively. Moreover, by using the Grad-CAM method,
the authors found that the DL model identified MVI was
similar to the logic of a previously reported image
biomarker. This may help to build a more interpretable
predictive model for MVI.
1326
Careful surgery planning with accurate segmentation of
majorvessels isofgreat importancebeforehepatectomyand
liver transplantation. Kazami et al[9] developed a DL
algorithm for fast portal vein andhepatic vein segmentation
onCT images. The sensitivity andDSC of theDL algorithm
were significantly higher than traditional tracking-based
algorithm. This technique may help predict future liver
remnant volume and optimize decision-making regarding
liver graft selection and venous reconstruction in liver
transplantation. However, the feasibility of this DL
algorithm on assisting liver malignancy surgery remains
further validations.

Another study[10] developed a DL strategy to optimize the
treatment selection inpatientswith very-early or early-stage
HCC by pre-operatively predicting the progression-free
survival of radiofrequency ablation and surgical resection.
Nomograms incorporated with DL prediction provided
good 2-year progression-free survival prediction accuracy
and good calibrations. As reported, 17.3%patients treated
with radiofrequency ablation and 27.3% patients treated
with surgury were identified and suggested to swap their
treatment for a higher 2-year progression-free survival. In
terms of trans-arterial chemoembolization (TACE) treat-
ment, Peng et al[11] andLiuet al[12]developedDLmodels for
the prediction of treatment response after the first TACE
session.Althoughtheyuseddifferent imagemodalities,both
models reached relatively high AUCs ranging from 0.80 to
0.93 in the validation cohorts.

Moawad et al[13] evaluated the correlation between DL
automated volumetric assessment and unidimensional
modified Response Evaluation Criteria In Solid Tumors
measurements for response evaluation of HCC after
TACE treatment. Their study showed a good correlation
between unidimensional modified Response Evaluation
Criteria In Solid Tumors and the automated volumetric
RECIST with a correlation coefficient of 0.774, indicating
that DL-based automated volumetric measurements may
be good substitutes for manual volumetric measurements.

Plentiful studies witnessed the dramatic potential and
clinical value of DL in a variety of liver diseases in recent
years. There is no doubt that DL-assisted medical
decision-making will become a trend in the coming
decades, thanks to its great power in data processing.
However, several challenges remain to be solved before
the DL technique can bewidely applied in clinical practice.

Firstly, as DL algorithms succeed on big data, large
datasets on liver images are needed to support its
development. Although several public medical imaging
datasets were recently established, most of them failed to
provide detailed demographic characteristics of patients
due to the privacy protocol, and thus cannot be used in
some classification tasks.

Secondly, the interpretability of DL framework is to be
improved, which may increase the usefulness, reliability,
and effectiveness of DL models in clinical environment.
Now some researchers have shifted their focus from the
development of much more sophisticated DL models to
the medical explanation of the DL output.[3,4,8] New
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medical knowledge may be generated from DL algorithms
in the future. On the other hand, the integration of prior
knowledge when designing the DL architecture can gather
more confidence from doctors in machine decisions.

Thirdly, current DL models should be validated externally
on a large scale. The algorithm outcomes are reliable only
when they can generalize to data in other medical centers,
especially in classification models. The sizes of DL models
will become larger alongwith the ever-growing computing
power. In this condition, research into interpretability is
becoming much harder due to the complexity of models.
Multicenter large-scale validation provides a solution in a
black-box manner to assess the model’s performance. If
the model can reach similar satisfactory performance in
external validation, doctors can choose to trust this DL
model in clinical condition.

Finally, the study reporting guideline and risk of bias tool
are urgently needed. Studies with artificial intelligence face
some unique challenges when applying current risk of bias
assessment tools.[14] For example, a predictive model
usually demonstrated low risk of bias when the outcome
events per variable ratio is over 20. However, this part of
bias cannot be evaluated in DL models since they do not
need predictors when calculating. Furthermore, it is
almost impossible to present the whole parameters of a
DL model and compare them between different models.
Recently, multi-disciplinary experts are working on
developing extensions to the report guideline and risk
of bias assessment tool for studies based on machine
learning techniques, which may help report key details
specifically focused in DL, reduce research waste, and
evaluate the bias with a robust standardized tool.[15]

In conclusion, DL shows promising performance in data
mining and quantitative image assessment. Recent
researches have unveiled the great potential of DL in
both diffuse and focal liver diseases [Supplementary
Figure 1, http://links.lww.com/CM9/B129]. However,
current studies mostly focused on the feasibility of DL,
and whether these models can be utilized to handle the
sophisticated clinical practice remains unknown. More
accurate, interpretable, and robust DL models with large-
scale validation are warranted before they can be widely
accepted for medical use. Reporting guidelines and risk of
bias tools are also needed to improve the standardization
of proposed algorithms.
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