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Abstract

The prognosis of pancreatic cancer is poor because patients are usually asymptomatic in the early stage and the early diagnostic rate is
low. Therefore, in this study, we aimed to identify potential prognosis-related genes in pancreatic cancer to improve diagnosis and the out-
come of patients. The mRNA expression profile data from The Cancer Genome Atlas database and GSE79668, GSE62452, and GSE28735
datasets from Gene Expression Omnibus were downloaded. The prognosis-relevant genes and clinical factors were analyzed using Cox re-
gression analysis and the optimal gene sets were screened using the Cox proportional model. Next, the Kaplan-Meier survival analysis was
used to evaluate the relationship between risk grouping and patient prognosis. Finally, an optimal gene-based prognosis prediction model
was constructed and validated using a test dataset to discriminate the model accuracy and reliability. The results showed that 325 expres-
sion variable genes were identified, and 48 prognosis-relevant genes and three clinical factors, including lymph node stage (pathologic N),
new tumor, and targeted molecular therapy were preliminarily obtained. In addition, a gene set containing 16 optimal genes was identified
and included FABP6, MAL, KIF19, and REG4, which were significantly associated with the prognosis of pancreatic cancer. Moreover, a
prognosis prediction model was constructed and validated to be relatively accurate and reliable. In conclusion, a gene set consisting of 16
prognosis-related genes was identified and a prognosis prediction model was constructed, which is expected to be applicable in the
clinical diagnosis and treatment guidance of pancreatic cancer in the future.
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Introduction

Pancreatic cancer, which is the most fatal malignancy of the di-
gestive system, is highly aggressive with a poor prognosis, leading
to considerable morbidity and mortality worldwide and it contin-
ues to be a major health challenge (Forster et al. 2020; Nevala-
Plagemann et al. 2020). The 5-year survival rate of pancreatic can-
cer is <5%, and 85% of patients die within 12 months of diagnosis
because the asymptomatic early stages generally lead to late de-
tection (Qian et al. 2019). Conventional risk factors such as ad-
vanced age, alcohol consumption, tobacco use, obesity, and
history of diabetes mellitus and chronic pancreatitis are associ-
ated with the etiology of pancreatic cancer (Rawla et al. 2019). In
addition, molecular biomarkers play an important role in the de-
velopment and prognosis of pancreatic cancer. The discovery of
effective biomarkers is essential for the detection of pancreatic
cancer at an early stage, which may contribute to improving the
prognosis and developing new therapeutic strategies.

Recently, numerous abnormally expressed genes have been
identified in pancreatic cancer based on a microarray technology,
which can detect subsets of genes that could be potential

biomarkers for cancer diagnosis (Nonogaki et al. 2010). For in-
stance, AKT serine/threonine kinase 1 (AKT 1) regulates growth
factor-induced cell survival and its phosphorylated form (p-Akt1)
is involved in the carcinogenesis of pancreatic cancer (Liu et al.
2010). This molecule has been detected at high levels in patients
and is correlated with a lower primary tumor size and extent tu-
mor (T) stage, which may be a favorable prognostic factor for
pancreatic cancer (Liu et al. 2010). Song et al. (2020) found that
protein arginine methyltransferase 1 (PRMT1) promotes pancre-
atic cancer growth and is predictive of poor prognosis. Saif et al.
(2007) reported that P16 deletion may potentially inhibit cyclin D,
CDK4, and CDK6 function and regulate cell-cycle progression.
Furthermore, P16 deletion is significantly associated with shorter
average survival times and acts as a predictive marker for poor
prognosis in patients with pancreatic ductal adenocarcinoma
(Luo et al. 2013). In addition, many studies suggest that the abnor-
mal expression of growth factors or their receptors may affect
cellular functions and the tumorigenicity of pancreatic cancer
(Ebert et al. 1995; Gnatenko et al. 2018). It has been reported that
high plasma levels of the transforming growth factor (TGF)- b1 in
pancreatic cancer patients is associated with advanced stages of
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the disease and significantly shorter survival times (Javle et al.
2014).

Genes with variable expressions that are related to the progno-
sis of pancreatic cancer have been identified in many studies.
However, screening for new indicators and the construction of
prognostic models based on additional prognosis-related genes,
appears to be a more sensitive strategy than using signal genes for
the early detection of pancreatic cancer. Moreover, the predictive
accuracy of these potential prognostic biomarkers has been largely
limited by the sample size in previous studies. Therefore, in the
present investigation, the mRNA expression profiles extracted
from The Cancer Genome Atlas (TCGA) database were used to
identify significant prognosis-related genes and clinical factors.
Then, a risk prediction model for prognosis was constructed based
on optimal genes and clinical factors, and three datasets
(GSE79668, GSE62452, and GSE28735) from the Gene Expression
Omnibus (GEO) database were downloaded to validate the correct-
ness and reliability of the prognostic prediction models.

Methods
Data sources and data preprocessing
The mRNA-seq expression profile data of pancreatic cancer were
downloaded from the TCGA database (https://gdc-portal.nci.nih.
gov/), which is based on the Illumina HiSeq 2000 RNA sequencing

platform and used as a training dataset in this analysis. A total of
168 samples, including 164 pancreatic cancer tumors and four
normal samples, were included in this dataset. Gene expression
profiles of GSE79668 (Kirby et al. 2016), GSE62452 (Yang et al.
2016), and GSE28735 (Zhang et al. 2012) were obtained from the
National Center for Biotechnology Information (NCBI) GEO data-
base (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al. 2005). The
GSE79668, GSE62452, and GSE28735 profiles were used as three
independent validation datasets and included information on 51,
69, and 45 pancreatic cancer tumors, respectively. The distribu-
tions of the clinical information for the training and validation
datasets are listed in Table 1. The CEL files of the GSE62452 and
GSE28375 datasets produced from Affymetrix platform were
downloaded and the raw data were processed using the oligo
package (version 1.44.0) in R3.4.1 (http://www.bioconductor.org/
packages/release/bioc/html/oligo.html) (Parrish and Spencer
2004). This process included background correction using the
MAS method, supplementation of missing values using the me-
dian method, and quantile normalization (Irizarry et al. 2003).
Furthermore, the gene count data of GSE79668 were acquired
from the GEO database based on the Illumina HiSeq 2000 RNA se-
quencing platform (Supplementary File S1, https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc¼GSE79668), and the gene
transcript sequence counts for all genes across all tissues using
GENCODE v. 9.

Table 1 Distributions of clinical information for training set and testing sets

TCGA (N¼164) GSE79668 (N¼51) GSE62452 (N¼69) GSE28735 (N¼45)

Age (mean 6 SD) 64.28 6 11.31 64.04 6 11.57 — —
Gender (Male/Female/-) 86/65/13 32/19 — —
Chronic pancreatitis history

(Yes/No/-)
13/110/41 — — —

Diabetes history (Yes/No/-) 32/95/37 22/29 — —
Alcohol (Yes/No/-) 91/52/21 — — —
Tobacco (Never/Reform/

Current/-)
54/54/17/39 — — —

New tumor (patients had
new tumor event after ini-
tial treatment) (Yes/No/-)

54/89/21 — — —

Pathologic_metastasis (M,
the defined absence or
presence of distant spread
or metastases to locations
via vascular channels or
lymphatics) (M0/M1/-)

68/2/94 48/1 — —

Pathologic_node (N, the
stage of cancer based on
the nodes present) (N0/
N1/-)

40/107/17 14/37 — —

Pathologic_tumor (T, the
size or contiguous exten-
sion of the primary tumor)
(T1/T2/T3/T4/-)

8/16/124/2/14 3/12/31/5 — —

Pathologic_stage (the extent
of a cancer, especially
whether the disease has
spread from the original
site to other parts of the
body) (I/II/III/IV/-)

17/128/2/2/14 — 4/46/13/6 —

Radiation therapy (Yes/No/-) 37/102/25 — — —
Targeted molecular therapy

(Yes/No/-)
98/45/21 — —- —

Dead (Death/Alive/-) 83/66/15 45/6 49/16 29/13
Overall survival months

(mean 6 SD/-)
18.56 6 15.27 26.78 6 26.12 20.21 6 16.69 17.41 6 12.07

“-” indicates relevant information is missing.

2 | G3, 2021, Vol. 11, No. 11

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/oligo.html
http://www.bioconductor.org/packages/release/bioc/html/oligo.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79668
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79668
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79668


Preliminary screening of expression variable
genes
The expression variable genes were preliminarily identified based
on the coefficient of variation (CV) value, which is a random vari-
able defined as a ratio obtained by comparing the full range,
mean deviation, standard deviation, and mean values
(Koopmans et al. 1964). Both the dispersion and average value of
the variable can affect the CV, which reflects the fluctuations in
data size (Koopmans et al. 1964). The mRNAs were obtained after
filtering genes with expression median values <1 in the samples
retrieved from the TCGA database. The CV value of the gene ex-
pression of samples in the TCGA training dataset was calculated
using the genefilter package (version 1.58.1) (Gentleman et al.
2009) in R3.4.1 (https://bioconductor.org/packages/release/bioc/
html/genefilter. html), based on a threshold CV value >0.7.

Prognosis-related gene and clinical factor
identification
After screening for expression variable genes and their corre-
sponding samples, the clinical information was extracted for
follow-up analysis. The univariate and multivariate Cox regres-
sion analyses were performed to identify significant prognosis-
related genes and clinical factors using the R3.4.1 language sur-
vival package (version 2.41.3, http://bioconductor.org/packages/
survival/) (Wang et al. 2016). Statistical significance was set at
P< 0.05.

Following the extraction of the expression values of the var-
iable genes from the TCGA database, a coupled two-way clus-
tering analysis based on centered Pearson’s analysis (Eisen
et al. 1998) was conducted to identify similarities among these
genes using the pheatmap package (version 1.0.8) in R3.4.1

Table 2 Prognosis relevant genes obtained via cox univariate and multivariate analysis

Gene P-value Hazard ratio Lower 0.95 Upper 0.95 Gene P-value Hazard ratio Lower 0.95 Upper 0.95

HTR3A 1.24E-06 0.426 0.30176 0.6015 SFTPA2 0.004024 1.8497 1.21644 2.8125
LUZP2 2.24E-06 2.0719 1.5321 2.802 GSTM1 0.004456 1.1257 1.0375 1.2215
TRHDE 1.29E-05 0.5313 0.39987 0.7059 CRYBA2 0.005296 1.7281 1.1765 2.5384
TF 1.61E-05 1.9314 1.432 2.6049 MUC17 0.006349 0.8364 0.7358 0.9509
KCNMB2 2.40E-05 7.603 2.96625 19.4879 UPK1B 0.007586 1.2045 1.0507 1.3808
FABP6 4.55E-05 0.6701 0.55282 0.8123 CALY 0.009702 0.5868 0.3918 0.8789
FAM150A 0.000116 0.4829 0.33349 0.6993 NKX2 0.010313 1.9606 1.1721 3.2795
DNAH3 0.000116 0.4031 0.25397 0.6398 NXF3 0.010715 1.3481 1.07175 1.6958
TMEM63C 0.000214 2.7768 1.617 4.7685 MMP3 0.012372 1.5115 1.09353 2.0892
CDH19 0.000253 0.4374 0.28086 0.6812 HBA1 0.013372 0.7897 0.65504 0.9522
ST18 0.000329 0.2055 0.08663 0.4873 SVOP 0.015743 0.3359 0.13858 0.8143
REG4 0.000523 1.3042 1.1224 1.5153 HEPACAM2 0.016981 0.766 0.6154 0.9534
EGF 0.000677 1.9088 1.31479 2.7712 TNNT2 0.017516 1.5525 1.08001 2.2316
LRRC24 0.001067 0.4726 0.30162 0.7404 NLRP2 0.017973 0.8446 0.7344 0.9714
MAL 0.001079 2.2394 1.38108 3.6311 FPR2 0.018503 0.5301 0.31264 0.8989
KIF19 0.001551 1.787 1.24737 2.5602 KCNJ3 0.022995 1.7697 1.08191 2.8948
CTSG 0.001583 0.465 0.28918 0.7478 CCDC141 0.030918 0.5583 0.32888 0.9479
RFX6 0.001695 0.3283 0.16376 0.6581 G6PC2 0.033274 0.6703 0.4638 0.9688
FCRL5 0.001762 0.537 0.36366 0.7928 BIRC7 0.034584 1.3956 1.02446 1.9011
FCGR3B 0.001964 2.2492 1.34631 3.7576 KLK8 0.03853 1.2119 1.0102 1.4539
CD177 0.002024 1.4554 1.14682 1.8471 PI16 0.039332 1.2375 1.0105 1.5155
CCK 0.002994 0.6613 0.50323 0.8689 CUZD1 0.040752 0.691 0.4849 0.9846
DMRTC1B 0.003835 2.9336 1.41439 6.0847 NEUROD1 0.045108 1.8698 1.0137 3.4486
FER1L6 0.003862 0.7896 0.6728 0.9269 PSAPL1 0.045527 1.2431 1.00434 1.5386

Table 3 Independent prognosis relevant clinical factors obtained via cox univariate and multivariate analysis

Clinic characteristics Univariable cox regression Multivariable cox regression

P-value HR (95% CI) P-value HR (95%CI)

Age (Above/Below 60) 0.1013 1.483(0.923–2.385) — —
Gender (Male/Female) 0.6876 0.915 (0.594–1.409) — —
Pathologic_M (M0/M1) 0.3855 1.872 (0.444–7.895) — —
Chronic pancreatitis history

(Yes/No)
0.8403 1.079 (0.513–2.269) — —

Diabetes history (Yes/No) 0.7064 0.896 (0.504–1.591) — —
Alcohol (Yes/No) 0.6921 1.099 (0.688–1.757) — —
Tobacco (Never/Reform/

Current)
0.3998 1.114 (0.867–1.431) — —

Pathologic_T (T1/T2/T3/T4) 0.02309* 1.696 (1.07–2.689) 0.6734 0.859(0.425–1.738)
Pathologic_Stage (I/II/III/IV) 0.03476* 1.569 (1.04–2.367) 0.135 1.863(0.824–4.215)
Radiation therapy (Yes/No) 0.01989* 0.508 (0.284–0.908) 0.4666 0.778(0.398–1.526)
Pathologic_N (N0/N1) 0.006263* 2.09 (1.218–3.585) 0.04824* 1.805(0.927–3.516)
New tumor (Yes/No) 0.01367* 1.753 (1.116–2.755) 0.01218* 1.921(1.153–3.199)
Targeted molecular therapy

(Yes/No)
0.001809* 0.493 (0.313–0.776) 0.000356* 0.362(0.207–0.633)

* P<0.05 indicates statistical significance.
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(Wang et al. 2014) (https://bioconductor.org/packages/release/
Bioc/html/pheatmap.html).

Optimal prognostic gene identification
After inputting the matrix of the gene expression values obtained
from previous screening steps, the associations between optimal
genes and the prognosis of pancreatic cancer were analyzed

using the Cox proportional hazards (PHs) model based on L1–pe-
nalized regularization in the penalized package (version 0.9.50,
http://bioconductor.org/packages/penalized/) in the R3.4.1 lan-
guage (Tibshirani 1997; Goeman 2010). The optimal parameter
“lambda” in the screening model was obtained using 1000 cross-
validation likelihood (cvl) cycle calculations.

Risk prediction model construction and validation
Risk prediction model construction based on optimal genes
The risk prediction model of the optimal genes was constructed
based on the prognostic coefficient of the Cox-PH generated using
L1–penalized regularization and the gene expression levels (clini-
cal factors) in the TCGA training set. The prognosis index (PI) of
each sample was calculated using the following formula: PI score
¼
P

Coefgene/clinical � Expgene/clinical, where Coefgene/clinical repre-
sents the coefficient of the identified genes (clinical factors),
Expgene/clinical represents the expression level of the genes (clinical
factors) in the TCGA training set, and the median PI score was
used as the boundary to divide the samples into high- and low-
risk groups in the training dataset.

Figure 1 Screening for prognosis-related genes and clinical factors. (A) Two-way hierarchical clustering analysis of 48 prognosis relevant genes. First row
represents cluster 1 (black bars) and 2 (white bars), and rows two to four represent patients treated with targeted molecular therapy (yellow and blue
represent those with and without targeted therapy, respectively), pathologic N stage (blue and orange represent N0 and N1, respectively), and new
tumor (red and green represent patients with and without new tumors, respectively). (B) OS time according to targeted molecular therapy groups: red
and black represent patients with and without targeted therapy, respectively. (C) OS time according to pathologic groups: red and black represent
patients with pathologic N1 and N0, respectively. (D) OS time according to new tumor groups: red and black represent patients with and without new
tumors.

Table 4 Statistics of clinical factors in clusters 1 and 2 based on
clustering analysis of 48 independent prognosis-related genes

Clinic characteris-
tics

Cluster1 Cluster2 X-squared P-value

New tumor (Yes/
No)

22 56 29 31 5.0649 0.02441*

Pathologic_N
(N0/N1)

29 54 12 49 3.3096 0.06888

Targeted molecu-
lar therapy
(Yes/No)

54 23 39 18 5.00E-04 0.9819

* P<0.05 indicates statistical significance.
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The Kaplan-Meier (KM) survival analysis in the R3.4.1 lan-
guage survival package (version 2.41.3, http://bioconductor.org/
packages/survival/) was used to evaluate the relationship be-
tween risk grouping and the overall survival (OS) time of pancre-
atic cancer patients (Goeman 2010). Finally, three datasets were
used to validate the correctness and reliability of the prognostic
prediction models using survival and receiver operating charac-
teristic (ROC) curve analyses (Hajian-Tilaki 2013).

Risk prediction model construction based on optimal genes
and clinical factors
To identify the significant clinical factors, the Cox-PH model was
also constructed again using the clinical information of the sam-
ples provided by the TCGA training dataset. We used the same
method to construct a risk prediction model for optimal genes
and clinical factors and calculated the PI score of each sample.
Then, we divided the samples into high- and low-risk groups by
setting the median PI score as the dividing point. Similarly, the

association between risk grouping and the survival ratio of
patients was analyzed again using the survival analysis, and the
accuracy of prognosis of the training dataset was evaluated using
an ROC curve analysis.

Results
Preliminary screening of variable mRNA
Expression values for 13,238 mRNAs were retained after fil-
tering out genes with median expression values <1 in the
TCGA database. Then, 325 expression variable genes from
13,238 mRNAs were obtained using a CV > 0.7 as the thresh-
old.

Screening for prognosis-related genes and clinical
factors
The Cox univariate regression analysis identified 129 prognosis-
related genes from 325 expression variable genes. A set of 48

Figure 2 Screening of optimal prognosis genes. (A) Curve for lambda parameter based on cross-validation likelihood screening. Horizontal and vertical
axes represent different values for lambda and cross-validation likelihood (cvl), respectively, and the red dotted line indicates lambda ¼ 19.33 when cvl
¼ �427.79. (B) Coefficient of optimal prognosis-related genes based on Cox-PH model and each color represents a different gene. (C) Distribution of gene
coefficient. Horizontal and vertical axes represent 48 prognosis-related genes and coefficient of each gene, respectively.
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genes significantly associated with the prognosis of pancreatic
cancer were identified using the Cox multivariate analysis
(Table 2). Similarly, the following three independent prognostic
clinical factors were identified: pathologic N (P¼ 0.05), new tumor
(P¼ 0.01), and targeted molecular therapy (P¼ 0.00) (Table 3). The
survival curve analysis showed that there were statistically sig-
nificant differences in OS time between patients with and with-
out targeted molecular therapy (logRank P¼ 0.00, Figure 1B),
pathologic N0 compared with pathologic N1 (logRank P¼ 0.01,
Figure 1C), and between patients with and without new tumors
(log-rank P¼ 0.01, Figure 1D).

Hierarchy cluster analysis was conducted according to the
similarity of the expression values of 48 independent prognosis-
related genes. The results showed that samples in the TCGA
database were, clearly, divided into clusters 1 and 2, which con-
tained 97 and 67 pancreatic cancer samples, respectively
(Figure 1A). In addition, the distribution of clinical information of
the two clusters was determined using the chi-square test, and
the results are shown in Table 4. A statistically significant associ-
ation between new tumors and the formation of clusters was ob-
served (P¼ 0.02). However, there was no significant correlation
between the formation of clusters and any other clinical factors
(pathologic N and targeted molecular therapy).

Screening of optimal prognosis genes
A Cox-PH model was constructed to identify the optimal genes
related to the prognosis of pancreatic cancer, and the lambda
score (19.33) was obtained from 1000 cvl cycle calculations
(Figure 2A). As shown in Table 5, of these 48 genes, 16 optimal
genes (CCK, FABP6, FER1L6, G6PC2, GSTM1, HEPACAM2, KIF19,
KLK8, MAL, MUC17, NLRP2, PI16, REG4, SFTPA2, TNNT2, and
UPK1B) associated with the prognosis of pancreatic cancer were
identified (Table 5). Furthermore, the distribution of the gene
coefficients is shown in Figure 2, B and C.

Construction and validation of risk prediction
models
Risk prediction model construction based on optimal genes
The training dataset included 164 patients who were divided into
the high- and low-risk groups according to the median PI score
(0.12). The mean OS time was 21.3 6 17.26 months and
12.42 6 10.73 months for the low- (82 of 164 samples) and high-
risk (82 of 164 samples) groups, respectively according to clinical
information. The survival curve analysis revealed a significant
difference in OS time between the high- and low-risk groups
(P< 0.01, Figure 3A). The area under the ROC (AUROC) curve
analysis value was 0.99, indicating that our risk prediction model
for prognosis might be relatively accurate and in agreement with
real-life conditions in estimating the prognosis based on the sam-
ples (Figure 3E).

Then, the risk model of the optimal genes was further vali-
dated using three validation datasets. The patient samples in the
GSE62452 dataset were divided into high- and low-risk groups,
and 32 patients in the low-risk group showed a longer mean OS
time (23.98 6 16.02 months) than that of the 33 in the high-risk
group (16.55 6 16.73 months). The patients in the GSE79668 data-
set were also divided into high- and low-risk groups according to
the median PI score (0.81), and the mean OS time of the 25 low-
risk patients was higher (34.04 6 29.63 months) than that of the
26 high-risk patients (20.33 6 21.06 months). There were signifi-
cant differences in survival rates between the high- and low-risk
pancreatic cancer groups represented in the GSE62452 (Figure 3B)
and GSE79668 datasets (Figure 3C, both P¼ 0.03). In addition, the
AUROC curve analysis values for accurate discrimination of the
prognosis of pancreatic cancer patients in the GSE62452 and
GSE79668 datasets were 0.96 and 0.94, respectively.

The patients in the GSE28735 dataset were also divided into high-
and low-risk groups (21 samples each) according to the median PI
score (0.44), and they showed mean OS times of 13.146 10.44 and
21.66 12.31months, respectively. However, no significant correlation
between risk grouping and the OS time of the pancreatic cancer
patients was observed according to the survival curve analysis of this
dataset (P¼ 0.08, Figure 3D). The AUROC curve value for accurate
analysis of the GSE28735 dataset was 0.91.

Risk model construction based on optimal genes and clinical
factors
Overall, the following three clinical factors related to the prognosis
of pancreatic cancer were identified from the TCGA training dataset:
pathologic N, new tumor, and targeted molecular therapy based on
the Cox-PH model (Figure 4B), and the results were consistent with
those of the Cox univariate and multivariate analyses. The lambda
score was 0.55 after 1000 cvl cycle calculations (Figure 4A). The re-
sult of the discriminant analysis of the two risk groups (82 samples
each) using the clinical information showed that the mean OS time
was longer for the low-risk group (19.026 15.02 months) than it was
for the high-risk group, which showed a poor prognosis
(14.936 11.68 months). The results of the survival curve analysis
suggested that risk grouping was significantly associated with the
prognosis of pancreatic cancer (P< 0.01, Figure 5A).

To further estimate the prognosis of pancreatic cancer, a risk
model was constructed using the optimal genes and three clinical
factors. The mean OS time of the low-risk group was higher
(21.81 6 14.97 months) than that of the high-risk group

Table 5 The prognosis of pancreatic cancer relevant genes and
clinical factors

Features Coef in coxPH Hazard ratio P-values

Gene features
FABP6 �0.0728 0.6701 4.55E-05
REG4 0.0570 1.3042 0.000523
MAL 0.0175 2.2394 0.001079
KIF19 0.0419 1.787 0.001551
CCK �0.0377 0.6613 0.002994
FER1L6 �0.0557 0.7896 0.003862
SFTPA2 0.0597 1.8497 0.004024
GSTM1 0.0331 1.1257 0.004456
MUC17 �0.0076 0.8364 0.006349
UPK1B 0.0868 1.2045 0.007586
HEPACAM2 �0.0877 0.766 0.016981
TNNT2 0.0155 1.5525 0.017516
NLRP2 �0.0920 0.8446 0.017973
G6PC2 �0.0075 0.6703 0.033274
KLK8 0.0336 1.2119 0.03853
FABP6 �0.0728 0.6701 4.55E-05

Clinic features
Pathologic_N 0.6794 1.805 0.04824
New tumor 0.4940 1.921 0.01218
Targeted molecular therapy �0.9077 0.362 0.000356

6 | G3, 2021, Vol. 11, No. 11



Figure 3 Risk prediction model construction based on optimal genes. OS time of patients in (A) TCGA training, (B) GSE62452, (C) GSE79668, and (D)
GSE28735 validation datasets assigned to low-risk group (black) compared with high-risk group (red). (E) ROC curve for all datasets based on optimal
gene combination. Black, red, green, and purple curves represent TCGA training, GSE62452, GSE79668, and GSE28735 validation datasets, respectively.
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(13.78 6 11.5 months, 82 samples each) and the KM curve analysis
showed that there was significant difference in survival rate be-
tween low and high-risk groups (P< 0.01; Figure 5B), indicating
that degrees of risk for these genes and factors were significantly
related to the prognosis of pancreatic cancer. In addition, the
AUROC value was 0.99 (Figure 5C), reflecting the accuracy and re-
liability of the prognostic prediction system.

Discussion
A total of 325 genes with high expression variability were prelimi-
narily identified between tumor and normal tissue samples.
Furthermore, 48 genes and the following three clinical factors,
pathologic N, new tumor, and targeted molecular therapy rele-
vant to prognosis, were screened using data from the TCGA data-
base. In addition, a risk prediction model containing 16 optimal
genes related to prognosis was constructed and validated to be
relatively accurate and reliable according to the results of the KM
curve analysis of the GSE79668 and GSE62452 validation datasets.
Among these genes, FABP6, MAL, KIF19, and REG4 were signifi-
cantly correlated with the prognosis of pancreatic cancer and are

expected to be further applied in the clinical diagnosis of pancre-
atic cancer and treatment guidance.

The most significant prognosis-related gene in our data was the
fatty acid binding protein 6 (FABP6), which is a highly conserved cyto-
plasmic protein that binds bile acids and participates in the metabo-
lism of enterohepatic bile acid (Fisher et al. 2009). Bile acids have been
reported to regulate cell growth and proliferation, and abnormal levels
are implicated in hepatic inflammation and tumorigenesis (Li and
Apte 2015). Thus, genes associated with bile acids are also likely to be
involved in cancer pathogenesis. Ohmachi et al. (2006) demonstrated
higher expression levels of FABP6 mRNA in colorectal cancer tissues
than in adenomas and metastatic lymph nodes, and the tumor size
was smaller with high expression levels of FABP6. In addition, colorec-
tal cancer cells transfected with FABP6 showed weaker invasiveness
and lower levels of apoptosis than mock cells did (Ohmachi et al.
2006). Fang et al. (2007) reported that a novel transcript of FABP6 may
protect colon cancer cells from apoptosis through activation of the nu-
clear factor (NF)-jB pathway. In this study, we found that FABP6 may
act as a favorable biomarker for the prognosis of pancreatic cancer
according to the multivariate Cox PH regression analysis. Further
comprehensive investigations of the mechanism mediating the

Figure 4 Risk model construction based on optimal genes and clinical factors. (A) Curve for lambda parameter based on cross-validation likelihood (cvl)
screening. Horizontal and vertical axes represent different values for lambda and cvl, respectively, and red dotted line indicates lambda ¼ 0.55 when the
cvl ¼ �375.46. (B) Distribution of coefficients for prognosis-related clinical factors based on Cox-PH model of the L1–penalized regularized algorithm.

Figure 5 Validation of correctness and reliability of prognostic prediction models. OS time of patients in TCGA training dataset assigned to high-risk
group (black) compared with low-risk group (red) based on (A) clinical factors and (B) combination of optimal genes and clinical factors. (C) ROC curve of
prognosis model based on optimal genes and clinical factors.
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involvement of FABP6 in pancreatic cancer development are needed
and will be included in our future work.

The Mal, T cell differentiation protein (MAL) is mainly local-
ized in the endoplasmic reticulum and plasma membrane of T
cells, and regulates T cell differentiation (Ranca~no et al. 1994).
MAL has been reported as a tumor suppressor gene, and its in-
creased expression may be implicated in the reducing the patho-
genesis of head and neck squamous cell carcinoma (HNSCC) via
suppression of cell proliferation, invasiveness, and tumor growth
(Cao et al. 2010). In addition, MAL expression is correlated with
prolonged disease-free survival in breast and gastric cancers
(Buffart et al. 2008; Horne et al. 2009). However, the predictive ac-
curacy of MAL in cancer prognosis remains controversial. For in-
stance, upregulated MAL mRNA levels were significantly
associated with shorter OS and progression-free survival in a co-
hort of high-grade serious epithelial ovarian carcinoma patients
(Zanotti et al. 2017). This previous finding is consistent with our
observation that MAL, which has high expression variability, was
identified as one of the optimal genes related to the poor progno-
sis of pancreatic cancer. Our observation suggests that MAL
might play an important role in the etiology of pancreatic cancer.

Kinesin superfamily proteins (KIFs) facilitate the transport of
mRNAs, protein complexes, and organelles in an ATP- and
microtubule-dependent manner (Brendza et al. 2000). KIFs are es-
sential for mitosis and meiosis (Vicente and Wordeman 2015)
and any abnormalities in mitosis cause cell death, gene deletion,
and even induce carcinogenesis (Yu and Feng 2010; Zhu et al.
2014). Thus, the detection of abnormal kinesin protein expression
could be utilized as a biomarker for early tumor diagnosis or to
predict the survival of patients with tumors. Numerous studies
have reported that altered expression of kinesins is related to the
development and progression of various human tumors (Corson
et al. 2007; Taniwaki et al. 2007;Lukong and Richard 2008). For in-
stance, altered KIF14 mRNA expression has been shown to be a
prognostic indicator for patients with breast and lung cancers
(Corson and Gallie 2006). KIFC1 is essential for the viability of cer-
tain extra-centrosome-containing cancer cells (Cai et al. 2009).
Chen et al. (2017) reported that KIF19 is significantly associated
with the prognosis of hepatocellular carcinoma. The results
showed that KIF19 expression was significantly correlated with
the prognosis of pancreatic cancer, which implies it has a role in
carcinogenesis and may have clinical value as a biomarker.

Another significantly poor prognosis-related gene identified in
our data was regenerating family member 4 (REG4), a member of
the regenerating (REG) islet-derived family of proteins. REG4 has
been demonstrated to be highly expressed in ovarian (Lehtinen
et al. 2016), colorectal (Zhu et al. 2015), rectal (He et al. 2014), and
gastric (Miyagawa et al. 2008) cancers, and acts as a predictive
biomarker for early diagnosis and prognosis. High serum REG4
levels in pancreatic ductal adenocarcinoma at tumor stages IA–
IIA are associated with a worse survival rate than that of patients
with grade I tumors (Saukkonen et al. 2018). The REG4-induced
epidermal growth factor receptor (EGFR)/AKT/cAMP-response el-
ement binding protein (CREB) signaling pathway is involved in
macrophage polarization to the M2 phenotype, which may pro-
mote pancreatic cancer cell proliferation and invasion, and regu-
late the invasion of extra-pancreatic and lymph vessels (Ma et al.
2016). In addition, a study reported that REG4 promotes the pro-
liferation and invasiveness of pancreatic cancer cells by upregu-
lating the invasion-related genes matrix metalloproteinase 7
(MMP-7) and MMP-9 (He et al. 2012). These findings suggest that
REG4 may serve as a useful biomarker for the prognosis of pan-
creatic cancer.

In addition, the three clinical factors, pathologic N, new tu-
mor, and targeted molecular therapy relevant to the prognosis of
pancreatic cancer were screened in this study. In addition, a
prognosis prediction model based on optimal genes was con-
structed, which was verified in the independent validation data-
sets GSE79668 and GSE62452. However, the model was not
verified in the GSE28735 validation dataset (P¼ 0.08), which
might have been due to the limited dataset sample size.
Furthermore, a prediction model based on optimal genes and
clinical factors was also constructed, and a significant difference
was observed in the survival ratio between the high- and low-risk
groups, and the AUROC value was 0.99, indicating the correctness
and reliability of our prognostic prediction models.

This study used three datasets to verify the prediction model.
However, this study had some limitations that are worth men-
tioning. First, although the trend of the result is consistent, no
significant correlation between risk grouping and the OS time of
pancreatic cancer was observed according to KM survival curve
analysis in GSE28735 dataset. In addition, the comprehensive
model was not validated because the clinical information on the
pathologic N, new tumor, and targeted molecular therapy were
not included in the three validation datasets at the same time.
Therefore, more comprehensive data validation needs to be con-
ducted in future studies. In addition, relevant experiments need
to be performed to verify the multiple candidate targets identified
in this study.

Conclusions
In summary, in this study, 325 expression variable genes and a
gene set consisting of 16 prognosis-related genes were identified
from data retrieved from the TCGA database. The risk prediction
model for prognosis based on optimal genes was validated to be
relatively accurate and reliable in the GSE79668 and GSE62452
validation datasets according to the results of the KM curve
analysis. Among these genes, FABP6, MAL, KIF19, and REG4 were
significantly associated with the prognosis of pancreatic cancer
and can expected to be further applied in the clinical diagnosis of
pancreatic cancer and in the guidance of its treatment.

Data availability
The data used to support the findings of this study are available
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portal.nci.nih.gov/), GEO database (http://www.ncbi.nlm.nih.gov/
geo/, containing datasets of GSE79668, GSE62452, GSE28735).
Supplementary material is available at figshare: https://doi.org/
10.25387/g3.15104160.
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